Skip to main content

Improved Control of DLO Transportation by a Team of Quadrotors

  • Conference paper
  • First Online:
Book cover Biomedical Applications Based on Natural and Artificial Computing (IWINAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10338))

Abstract

Quasi-stationary sections of a deformable linear object (DLO) hanging freely from two extreme points can be modeled either by catenaries or parabolic curves, depending on the conditions of the UAVs. DLO transportation is an instance of a leader-follower platoon team strategy, in which the local quadrotor control must cope with the dynamic perturbations due to the DLO linking the quadrotors. The quadrotor team control has two phases, one achieving a spatial configuration with equal energy consumption, the other is to manage the horizontal motion which is the transportation process per se. We propose a Model Reference Adaptive Control (MRAC) for the quadrotors team, which uses fuzzy modeling of the error in order to modulate the activation of the adaptation rules applied to proportional-derivative (PD) controller parameters, which are derived as error gradient descent rules. In this paper, we contribute the parabolic representation of the DLO and improved follow the leader control, testing the MRAC stability and robustness under a series of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argentim, L.M., Rezende, W.C., Santos, P.E., Aguiar, R.A.: PID, LQR and LQR-PID on a quadcopter platform. In: 2013 International Conference on Informatics, Electronics Vision (ICIEV), pp. 1–6, May 2013

    Google Scholar 

  2. Duro, R.J., Graña, M., Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponent robotic system development. Inf. Sci. 180(14), 2635–2648 (2010)

    Article  Google Scholar 

  3. Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robot. Auton. Syst. 58(12), 1292–1305 (2010)

    Article  Google Scholar 

  4. Estevez, J., Graña, M.: Robust control tuning by PSO of aerial robots hose transportation. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 291–300. Springer, Cham (2015). doi:10.1007/978-3-319-18833-1_31

    Chapter  Google Scholar 

  5. Estevez, J., Lopez-Guede, J.M., Graña, M.: Particle swarm optimization quadrotor control for cooperative aerial transportation of deformable linear objects. Cybern. Syst. 47(1–2), 4–16 (2016)

    Article  Google Scholar 

  6. Estevez, J., Lopez-Guede, J.M., Graña, M.: Quasi-stationary state transportation of a hose with quadrotors. Robot. Auton. Syst. 63(2), 187–194 (2015). Cognition-oriented advanced robotic systems

    Article  Google Scholar 

  7. Lopez-Guede, J.M., Estevez, J., Graña, M.: Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects. Integr. Comput.-Aided Eng. Preprint(Preprint), 1–15 (2016)

    Google Scholar 

  8. Fernandez-Gauna, B., Lopez-Guede, J.M., Graña, M.: Transfer learning with partially constrained models: application to reinforcement learning of linked multicomponent robot system control. Robot. Auton. Syst. 61(7), 694–703 (2013)

    Article  Google Scholar 

  9. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)

    Article  Google Scholar 

  10. Hsu, Y., Pan, C.: The static WKB solution to catenary problems with large sag and bending stiffness. Math. Probl. Eng. 2014 (2014)

    Google Scholar 

  11. Larsen, L., Pham, V.L., Kim, J., Kupke, M.: Collision-free path planning of industrial cooperating robots for aircraft fuselage production. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2042–2047, May 2015

    Google Scholar 

  12. Lopez-Guede, J.M., Fernandez-Gauna, B., Graña, M.: State-action value modeled by ELM in reinforcement learning for hose control problems. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 21(supp02), 99–116 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lopez-Guede, J.M., Graña, M., Ramos-Hernanz, J.A., Oterino, F.: A neural network approximation of L-MCRS Dynamics for reinforcement learning experiments. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7931, pp. 317–325. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38622-0_33

    Chapter  Google Scholar 

  14. Nguyen, D.Q., Gouttefarde, M., Company, O., Pierrot, F.: On the simplifications of cable model in static analysis of large-dimension cable-driven parallel robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 928–934, November 2013

    Google Scholar 

  15. Pruner, E., Necsulescu, D., Sasiadek, J., Kim, B.: Control of decentralized geometric formations of mobile robots. In: 2012 17th International Conference on Methods Models in Automation Robotics (MMAR), pp. 627–632, August 2012

    Google Scholar 

  16. Pruner,E.: Control of self-organizing and geometric formations. Ph.D. thesis. Université d’Ottawa/University of Ottawa (2014)

    Google Scholar 

  17. Seraji, H.: Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Trans. Robot. Autom. 5(2), 183–201 (1989)

    Article  Google Scholar 

  18. Su, Y., Qiu, Y., Liu, P.: Optimal cable tension distribution of the high-speed redundant driven camera robots considering cable sag and inertia effects. Adv. Mech. Eng. 6 (2014)

    Google Scholar 

  19. Wei, K., Zhang, L.X., Ren, A.D.: The analysis method of highline cable of alongside replenishment system based on suspended cable theory. In: Advanced Materials Research, vol. 490, pp. 633–637. Trans Tech Publications (2012)

    Google Scholar 

  20. Wen, N., Zhao, L., Xiaohong, S., Ma, P.: Uav online path planning algorithm in a low altitude dangerous environment. IEEE/CAA J. Autom. Sin. 2(2), 173–185 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yao, R., Tang, X., Wang, J., Huang, P.: Dimensional optimization design of the four-cable-driven parallel manipulator in fast. IEEE/ASME Trans. Mechatron. 15(6), 932–941 (2010)

    Google Scholar 

  22. Yeh, F.-K.: Attitude controller design of mini-unmanned aerial vehicles using fuzzy sliding-mode control degraded by white noise interference. Control Theory Applications 6(9), 1205–1212 (2012). IET

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Estevez, J., Graña, M. (2017). Improved Control of DLO Transportation by a Team of Quadrotors. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics