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Abstract. 21st century astrophysicists are confronted with the her-
culean task of distilling the maximum scientific return from extremely
expensive and complex space- or ground-based instrumental projects.
This paper concentrates in the mining of the time series catalog pro-
duced by the European Space Agency Gaia mission, launched in De-
cember 2013. We tackle in particular the problem of inferring the true
distribution of the variability properties of Cepheid stars in the Milky
Way satellite galaxy known as the Large Magellanic Cloud (LMC). Clas-
sical Cepheid stars are the first step in the so-called distance ladder: a
series of techniques to measure cosmological distances and decipher the
structure and evolution of our Universe. In this work we attempt to
unbias the catalog by modelling the aliasing phenomenon that distorts
the true distribution of periods. We have represented the problem by a
2-level generative Bayesian graphical model and used a Markov chain
Monte Carlo (MCMC) algorithm for inference (classification and regres-
sion). Our results with synthetic data show that the system successfully
removes systematic biases and is able to infer the true hyperparameters
of the frequency and magnitude distributions.

Keywords: Astrostatistics, Bayesian, data analysis, hierarchical model,
Markov chain Monte Carlo, catalogues

1 Introduction

Gaia [5] is a European Space Agency (ESA) space mission, launched in December
2013, whose main objective is to compile a large-scale astronomical survey of
about one billion stars (≈1%) of our Galaxy and its Local Group. The satellite
will scan the entire sky for about 5 years yielding an unprecedented catalog
in both size and precision of positions, distances and proper motion measures.
Additionally, it will perform multi-epoch photometry (70 transits per object on
average) which renders the satellite suitable too for studies of stellar variability.
Amongst the many variability types present in the stellar zoo, one in particular is
of paramount importance: the Classical Cepheids. Classical Cepheids represent
the first calibrator in the cosmic distance ladder used to infer the structure
and evolution of our Universe, and our current knowledge about the Big Bang,
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the inflationary period, the dark matter problem or dark energy relies on the
period-luminosity relation for Classical Cepheids [14]. Therefore, a precise and
accurate understanding of the population of Classical Cepheids is central to all
cosmological studies.

In this paper we address the problem of inferring the true properties of this
population of variable stars from the petabyte-size Gaia catalog. In order to
populate the catalog, and as part of a much larger framework to deliver a data
set of scientific quality, the Data Processing and Analysis Consortium (DPAC1)
developed a pipeline to characterize the time series observed and classify them.
A key element of this process is that the time sampling of stellar brightness time
series will have the imprint of the satellite intrinsic frequencies (amongst other,
the spinning and precessing frequencies, a description of which is out of the scope
of this paper). As a consequence, some (but not all) of the derived frequencies
will be affected by aliasing which results in biased samples.

The objective is to characterize the phenomenon of aliasing in the Gaia
catalog, correct for it, and reconstruct the real distribution of LMC Classical
Cepheids properties. In order to achieve these goals, we tackle the problem under
the Bayesian paradigm [6,7] and adopt the knowledge representation language of
Bayesian Networks (BN) [11,8]. This framework allows a hierarchical represen-
tation of the problem in which the time series gathered by Gaia are the product
of a generative process which ultimately depends on the parameters of the pop-
ulation of stars. Given that the computation of the posterior probabilities of our
model are analytically intractable, the inference mechanism of our proposal is
founded in Markov chain Monte Carlo (MCMC) simulation techniques [13].

We have validated our models using a data base of 36688 synthetic Classi-
cal LMC Cepheids time series generated according to controlled prescriptions
based on current understanding of the true distributions and the satellite char-
acteristics. Our results prove that we are ready for the second Gaia data release
expected for 2018. This will be the first data release to include photometric time
series (although this still needs to be confirmed).

The structure of the rest of the paper is as follows. In section 2 we describe
our model and the MCMC technique used for the inference of the parameters of
interest. In Section 3 we validate the model with the simulated data base in a
scenario of extreme aliasing and describe the results of this validation procedure.
Finally, in Section 4 we summarize the contributions of this work and some of
its limitations, and give pointers to future developments.

2 Hierarchical Modelling of the distribution of pulsation
properties of Classical Cepheid Variable stars

2.1 The Hierarchical Model

Figure 1 and Table 1 depict the structure of the DAG associated to the model
and summarize the meanings of the nodes and the types of their distributions.

1 The DPAC (Data Processing and Analysis Consortium) is the consortium responsible
for building and making accessible the GAIA catalogue.
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We classify the nodes into a hierarchy of three levels. The hierarchy distinguishes
between evidential nodes (observations), the rest of nodes inside the rectangle
or plate, which is replicated N times (one per star), and the nodes outside the
rectangle. In the following paragraphs we describe the parameters and proba-
bility distributions for each level and its contribution to the joint probability
distribution.

N

log(ν i)

 Ai  mG,i 

ν rec,i

βi

 Tν(rec),i 

 Arec,i  mG(rec),i 

 Tν,i 

Λ[M,2] 

b[M] 

 τν  ων   μν    θν  

  wν 

 τG  aG  bG  τA  aA  bA   μA  

Fig. 1. Graph structure of our proposed Bayesian Graphical Model (BGM). Most fixed
parameters are not included in the graph, with the exception of those enclosed inside
a square. See the text and Table 1 for node descriptions.

2.1.1 Likelihood. In the bottom level of our graph we present the evidential
nodes, that is, the variables measured directly or derived by the DPAC

D = (νrec,i, Arec,i,mGrec,i) . (1)

These nodes, depicted by double circles, are the output/recovered frequency
νrec,i, the amplitude Arec,i and the apparent G-magnitude mGrec,i for the i -th
star.

Recovered Frequencies. Most of the pairs (νinput, νrec) in the simulated data base
fall on straights lines of the form:

νrec = ±νinput ± k1νs ± k2νp , (2)

where k1 ∈ {0, 3, 7}, k2 ∈ {0, ..., 19}, νs ≈ 1
0.25 = 4d−1 is the rotational frequency

of Gaia and νp = 1
63d−1 is its precessional frequency. We refer to each line as a
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Table 1. Description of parameters. NI = non informative

Node Description Type of distribution

τG Precision Gamma NI prior
aG Slopes Gaussian NI prior
bG Intercepts Gaussian NI prior
mG,i Input apparent G magnitude Gaussian
mG,rec,i Recovered apparent G magnitude Gaussian

µA Mean Gaussian NI prior
τA Precision Gamma NI prior
aA Slope Gaussian NI prior
bA Intercept Gaussian NI prior
Ai Input amplitude Gaussian
Arec,i Recovered amplitude Mixture of skewed Cauchy

wν Mixing proportions. Gamma NI prior
Tνi Category of log (νi) Categorical
µν Mean Non informative
θν Mean Perturbations Gaussian NI prior
τν Precision Non informative
ων Precision Perturbations Uniform prior

log (νi) Input frequency
[
d−1

]
. Mixture of Gaussian

Λ Logistic R. coefficients Student t prior
Tνrec,i Category of νrec,i Categorical
νrec,i Recovered frequency Mixture of Gaussian

locus/category of recovered frequencies. Excluding the line νrec = νinput, all these
loci correspond to spurious (aliased) frequencies. Based on that, we parameterize
the i-th recovered frequency as the following mixture of Gaussian distributions

f
(
νrec,i | log (νi) , Tνrec,i

)
=

M∑
j=1

δjTνrec,i
N
(

(−1)
j−1

10log(νi) + bj , τνrec

)
. (3)

In Equation 3 the Kronecker deltas δjTνrec,i
dictate the Gaussian component to

which νrec,i belongs according to the value of the categorical variable Tνrec,i
(described in Section 2.1.2). The mean of each component represents the locus
in which the input frequency has been recovered, i.e. the identity locus, with
bj = 0 for j = 1, or some locus of spurious (aliased) frequencies for j > 1. We
assume the same precision τνrec = 10000 for all components.

Recovered Amplitudes. To gain insight into the form of the conditional distri-
bution of the recovered amplitude given the input amplitude we have checked
the hypothesis that recovered amplitudes are also biased by the aliasing phe-
nomenon, just as recovered frequencies are. By analysing the relationship be-
tween loci of frequencies and pairs (Ainput, Arec), we have discovered that for a
perfect recovery the distribution Arec | A is skewed to lower amplitudes with a
central parameter approximately equal to the input amplitude. Otherwise, for
loci of aliased frequencies we have observed that the skewness of the recovered
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amplitude increases as the input amplitude does according to a certain slope to
be determined as part of the model. To account for this fact we have fitted two
linear regression models

Arec,i = βj1Ain,i + βj0 + εji , j = 1, 2 , (4)

with j = 1 corresponding to the identity locus and j = 2 to the loci νrec =
±νin + 7νs − 3νp

2. For the identity locus, we have assumed a skewed Student
t distribution [2] with one degree of freedom (skewed Cauchy) for the error
component ε1i ∼ st (0, ω, α, 1) where ω and α denote respectively the shape and
scale parameters. For the locus νrec = ±νin + 7νs − 3νp we have assumed that
ε2i ∼ t (0, ω, 1). Based on that, we model the conditional distribution for the
recovered amplitude Arec,i by means of the mixture of two skewed Student t
distributions

f
(
Arec,i | Ai, Tνrec,i

)
= δ1Tνrec,i

ST (Ai, 0.020,−2.395, 1)

+

M∑
j=2

δjTνrec,i
ST (0.749 ·Ai, 0.0266, 0, 1) ,

(5)

where the location parameters ξ1 = Ai, ξj = 0.749 ·Ai,∀j = 2, ..,M , the scale ω
and the shapes α have been obtained from the fitting of the two linear models
of Equation 4 and taken as constants in our BGM.

Recovered Apparent Magnitudes. We parameterize the distribution of the i -th
recovered apparent G magnitude by means of a Gaussian distribution with mean
mG,i and precision τG(rec) = 2.5E+5 (to be adjusted when real Gaia data become
available)

f (mGrec,i | mG,i) = N (mG,i, τGrec) . (6)

The conditional distribution of the data given their parents is then given by

p (D | θ1) =

N∏
i=1

f1
(
νrec,i | log (νi) , Tνrec,i

)
· f2

(
Arec,i | Ai, Tνrec,i

)
· f3 (mGrec,i | mG,i) .

(7)

2.1.2 First Level Random Parameters. These are

θ1 =
(
log (νi) , Ai,mG,i, Tνrec,i , Tνi

)
. (8)

In θ1, we distinguish two classes of nodes. The input nodes are, for the i -th
star, the real frequency log (νi), the real amplitude Ai and the real apparent G-
magnitude mG,i. The categorical nodes Tνrec,i and Tνi determine the component

2 We only select these particular loci of aliased frequencies because they are the most
frequent loci located far away from the identity locus and because the model does
not work well if we include more loci located close to them.
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of a node modelled by a mixture of distributions. Tνi and Tνrec,i are respectively
associated with the real frequency and the recovered frequency and amplitude.
In Figure 1 all the nodes at this level replicate with the plate. They depend on
(amongst other) non informative orphan nodes outside the plate.

Categories of Recovered Frequencies. The node Tνrec,i takes a value j ∈ {1, ..,M}
if the i -th frequency has been recovered in the j -th locus, which occurs with
a probability πij . In this paper we assume that the main factor determining
the aliasing phenomenon in Gaia is the ecliptic latitude β of the stars. The
influence of β over the rate of correct detections of periodic signals by Gaia
has been studied in [4] where it is shown that for high values of β, typical
of LMC sources, the relation between the rate of correct detections and β is
approximately linear with a negative slope. Based on that, we make πij depend
on the ecliptic latitude βi and parameterize this dependence by a multinomial
logistic regression submodel with a softmax transfer function. We model the
conditional distribution of Tνrec,i as

p
(
Tνrec,i | {λj}

M
j=2

)
= Cat

(
M, {πij (β′i,λj)}

M

j=1

)
, (9)

with

πij (β′i,λj) =
eλ

T
j ·(1,β

′
i)∑M

l=1 e
λTl ·(1,β′

i)
, (10)

where we have rescaled the predictor βi by subtracting the mean and dividing

by two times the standard deviation, i.e. β′i = βi−β
2·sd(β) , which guaranties that the

mean and the standard deviation are respectively 0 and 0.5.

Input Frequencies and Categories. The marginal distribution of the (decadic)
logarithm of the input frequency in the synthetic data set created by the DPAC
Quality Assessment group was sampled from a mixture of five Gaussian dis-
tributions [1]. In our BGM, we parameterize it by the mixture of only three
components3

f (log (νi) | Tνi , µν ,θν , τν ,ων) = δ1Tνi
N (µν , τν) +

δ2Tνi
N
(
µν +

√
τ−1ν θν1, τνω

−2
ν1

)
+

δ3Tνi
N
(
µν +

√
τ−1ν θν1 +

√
τ−1ν ων1θν2, τνω

−2
ν1 ω

−2
ν2

)
.

(11)

In Equation 11, µν and τν denote, respectively, the mean and the precision of
the first component of the mixture. (θν1, θν2) and (ων1, ων2) denote, respectively,
the perturbation parameters which affect the mean and the scale parameter of a
given component to obtain the mean and scale parameter of the next component
[12]. The Kronecker deltas δjTνi

have the same role as in Eq. 3 but now the

3 We rely on the Occam’s razor principle.
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categorical variable Tνi represents the class of the real frequency. For Tνi we
assign the distribution

p (Tνi) = Cat (3, wν1, wν2, wν3) , (12)

where wνj are the mixing proportions of the mixture.

Input Amplitudes. This distribution has been simulated based on the OGLE III
catalogue of Classical Cepheids [15], as

f (A | log (ν)) =

{
N (−0.5 · log (ν) + 0.2, 0.15) log (ν) < −1

N (0.7, 0.15) log (ν) > −1
(13)

In our BGM we parameterize this variable as

f (Ai | log (νi) , aA, bA, µA, τA) = 1{log(νi)<−1}N (aA · log (νi) + bA, τA)

+ 1{log(νi)>−1}N (µA, τA) ,
(14)

where 1S denotes the indicator function of a subset S, aA and bA are, respectively,
the slope and the intercept of the regression line of A on log (ν) when log (ν) <
−1, µA denotes the mean of the amplitude when log (ν) > −1, and τA denotes
the precision, which we take equal in both cases.

Input Apparent G magnitudes. Based on Equations 12 and 13 of [14] and dis-
carding the distance r to the sources, we parameterize this node as

f (mG,i | log (νi) , aG1, bG1, aG2, bG2, τG) =

1{log(νi)<−1}N (aG1 · log (νi) + bG1, τG)

+1{log(νi)>−1}N (aG2 · log (νi) + bG2, τG) .

(15)

The conditional distribution of the first level of random parameters given the
parameters of the top level is then

p (θ1 | θ2) =
N∏
i=1

g1

(
Tνrec,i | {λj}

M
j=2

)
· g2 (Ai | log (νi) , aA, bA, µA, τA)

·g3 (mG,i | log (νi) ,aG,bG, τG) · g4 (log (νi) | Tνi , λν ,θν , τν ,ωυ)

·g5 (Tνi | wν)

(16)

2.1.3 Top Level Random Parameters. These hyperparameters are

θ2 = (aA, bA, µA, τA,aG,bG, τG, µν ,θν , τν ,ων ,wν , Λ) . (17)

θ2 include the orphan nodes in the graph. We only have a vague (or non
informative) prior knowledge about their distributions. The nodes denoted by
a and b represent the slopes and intercepts of the distributions of the real am-
plitude and apparent G-magnitude given the frequency. The nodes denoted by
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τ and µ represent precisions and means. The nodes denoted by Λ represent the
coefficients of the logistic regression submodel of Equation 10. The rest of nodes
are associated with the parameterization of the real frequency of Equation 11.
For these latter hyperparameters we take the non informative priors

p (wν) = Dir (1, 1, 1) (18)

p (µν) = N (0, 0.001) (19)

p (θνj) = N (0, 0.01) (20)

p (τν) = Gamma (0.001, 0.001) (21)

p (ωνj) = U (0, 1) (22)

For the hyperparameters of the logistic regression submodel of Equation 10
λj = (λ0j , λ1j) with j ∈ {2, ...,M}, we assign the weakly informative priors
p (λkj) = t

(
0, 1

2.52 , 7
)
, k ∈ {0, 1}. This election provides a minimal prior infor-

mation to constrain the range of coefficients λkj once the covariate βi has been
rescaled [6]. This approximation is used to enhance the convergence rate of our
model.

For the parameters aA , bA , λA of the input amplitude distribution of Equa-
tion 14 and the parameters aG1, bG1, aG2 ,bG2 of the input apparent G magnitude
of Equation 15 we take N (0, 0.001) non informative priors. And for the preci-
sions τA and τG we take Gamma (0.001, 0.001) priors. For all these priors the full
conditional distribution of the node is available in closed form.

The distribution (hyperprior) of the top level parameters is then

p (θ2) = h1 (aA) · h2 (bA) · h3 (µA) · h4 (τA) · h5 (aG) · h6 (bG) · h7 (τG)

· h8 (wν) · h9 (µν) · h10 (θν) · h11 (τν) · h12 (ων) · h13 (Λ) .
(23)

2.1.4 Joint distribution of the Parameters and Data. From Equations
7, 16 and 23 we formulate the joint PDF associated to the graphical mode by

p (θ,D) = p (D | θ) · p (θ) = p (D | θ1) · p (θ1 | θ2) · p (θ2) . (24)

2.2 Computation

The joint posterior distribution of the 22+5N parameters of the model described
in Section 2.1 is given by

π∗ (θ) = π (θ | D) ∝ L (θ1) · p (θ1 | θ2) · p (θ2) . (25)

Our goal is to infer the marginal a posteriori distribution π∗ (θ2) of the top
level hyperparameters4. The marginalization to obtain samples from π∗ (θ2) can

4 In the case of the logarithm of the frequency distribution log (ν) we are interested in
the means and standard deviations of each Gaussian component, but obtaining these
parameters from those in Equation 11 by deterministic relationships is straightfor-
ward.
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be accomplished by a general MCMC procedure in which, once a sample for the
joint posterior has been obtained, the procedure retains only the values of θ2
and discards the rest. The joint posterior distribution of Equation 25 can be
efficiently sampled by means of a Gibbs sampling scheme (see Sec. 4.2 of [9]). To
reduce our model to the programming language level we have used the BUGS
[10] probabilistic language and the OpenBUGS software environment.

3 Application to the Gaia Simulated Database of Classical
Cepheids

In this Section we evaluate the effectiveness of our model to infer the real dis-
tributions of hyperparameters in an extreme scenario of systematic biases in
the recovered data. In order to do so, we have constructed a dataset T =

{(Arec,i, νrec,i,mG,rec,i)}8541  D composed of 500 randomly selected instances from
the locus νrec = νin and all instances (354) from the locus νrec = ±νin + 7νS − 3νp.
Figure 2 shows the systematic biases for the empirical frequency distribution
(histogram) vs the true probability density function (PDF) and for the empirical
conditional distributions of the recovered amplitude given the input amplitude
for the three loci (the identity locus and the νrec = ±νin + 7νS − 3νp loci), whose
observed parameters are included in the training set.
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Fig. 2. Biases in the frequencies (left) and amplitudes (right) present in the training
set.

We have trained the model using the OpenBUGS MCMC engine. We have
divided the training in two stages and generated three Markov chains (more
properly realizations) in each, with a total of 30000 iterations. We have used the
first 20000 iterations as a burn-in phase, and discarded them after using them for
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convergence assessment. Thereafter, we obtain 10000 samples from each chain in
a second stage (30000 in total). We will assume that these samples were drawn
from the posterior distribution of the parameters of interest.

Table 2. Summary Statistics of Parameters of Interests.

θ ACR GRB θ 2.5%-97.5% Perc. Real value

wν2 0.39 1.09 0.03 0.01,0.05 -
wν1 0.18 1.03 0.41 0.32,0.50 -
wν3 0.16 1.01 0.57 0.47,0.66 -

µν2 0.60 1.16 -1.50 -1.61,-1.37 -
µν1 0.19 1.01 -0.66 -0.71,-0.61 -
µν3 0.05 1.01 -0.53 -0.54,-0.51 -

σν2 0.83 1.25 0.14 0.10,0.20 -
σν1 0.25 1.01 0.28 0.25,0.33 -
σν3 0.09 1.02 0.09 0.08,0.10 -

aA 0.04 1.00 -0.43 -0.67,-0.21 -0.5
bA 0.03 1.00 0.28 -0.02,0.57 0.2
µA 0.00 1.00 0.62 0.58,0.66 0.7
σA 0.00 1.00 0.15 0.14,0.16 0.15

aG1 0.25 1.04 2.55 2.22 ,2.91 -
bG1 0.23 1.03 16.76 16.38 ,17.17 -
aG2 0.01 1.00 3.01 2.96 ,3.06 -
bG2 0.01 1.00 17.16 17.13 ,17.19 -
σG 0.00 1.00 0.10 0.09,0.11 -

λ02 0.00 1.00 -1.132 -1.314 ,-0.955 -
λ03 0.00 1.00 -0.981 -1.156 ,-0.816 -
λβ2 0.00 1.00 -0.766 -1.140 ,-0.395 -
λβ3 0.00 1.00 -0.743 -1.091 ,-0.385 -

3.1 Convergence analysis

To evaluate the convergence within and between the three chains we have selected
the first 20000 iterations of the algorithm and computed the mean autocorrela-
tion (ACR) (after 200 lags) and the upper bound of a credible interval (at 95%)
for the corrected GR statistic [3]. The results of the analysis are summarized
in the second and third columns of Table 2. Since the ACR function should de-
crease to zero as the lag increases and the upper bound for the corrected scale
reduction factor (CSRF) should approach unity if the chain is reaching its sta-
tionary distribution, we conclude that the worst scenario (high autocorrelation)
is encountered in the chains of the parameters specifying the second Gaussian
component of log (ν), namely the mixing proportion wν2, the mean µν2 and the
standard deviation σν2. In particular, chains for σν2 show the worst behaviour
with a mean ACR after 200 lags of about 0.8 and a CSRF upper bound of
1.25. In contrast, the best scenario is found in the chains of the parameters of
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the conditional distributions of apparent G-magnitude and amplitude (given the
frequency) when log (ν) > −1, and by chains of logit coefficients. For the slope
aG2, the intercept bG2, the mean µA and the logit coefficients λβj ,λ0j , j ∈ {1, 2}
the mean ACR is nearly zero after lags greater than 50 and the CSRF bound is
close to unity.

3.2 Posterior Distributions and Comparison with Real Parameters

In this Section we evaluate the ability of our model to retrieve the real distribu-
tions of the frequency, amplitude and apparent G-magnitude of the simulated
Cepheids sample from the recovered values in the training set T . We first com-
pute summary statistics (means and 2.5%-97.5% percentiles) for the samples of
the posterior distributions of the hyperparameters inferred by the model. Then,
we have compared the posterior means with the parameters of the real the-
oretical distributions used to generate the simulated sample. Finally, we have
constructed theoretical distributions using the posterior means and compared
them with the true theoretical distributions and the empirical distribution in
the set I = {(Ain,i, νin,i,mG,in,i)}8541 .
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Fig. 3. Posterior versus Real Distributions.

The results of our analysis are shown in Table 2 and Figure 3. We do not
include in the Table the parameters used to generate the real frequency log (ν),
because it is difficult to make a correspondence with the inferred parameters due
to the different number of Gaussian components. But if we observe the compari-
son graph to the left of Figure 3, we conclude that the fitting of log (ν) with three
components (dotted line), reconstructs the real PDF (solid line) successfully.

For the parameters of the conditional distribution Ain | log (νin) we fitted
the piecewise linear model of Equation 14. The middle rows of Table 2 and the
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graph at the right of Figure 3 show that the system underestimates the true
value of the mean µA when log (νin) > −1.

4 Summary and Conclusions

We have presented a two-level BGM to infer the real distributions of amplitude,
frequency and apparent G-magnitude of the Large Magellanic Cloud population
of Classical Cepheids from the values recovered by the Gaia DPAC pipeline. We
have modelled the real frequency by a mixture of three Gaussian distributions
and used piecewise linear models (with a fixed knot value depending on the fre-
quency) to model the dependency of the true amplitude and G-magnitude on the
true frequency. We have tackled the problem of aliasing in the DPAC frequency
recovery module which arises as a result of the Gaia scanning law. We have
modelled the recovery probabilities in various loci of aliased frequencies using
a logistic regression submodel based on the ecliptic latitude predictor. We have
modelled the recovered frequencies and amplitudes as generated from mixtures
of distributions where the mixing proportions are the recovery probabilities. Al-
though our model has not yet solved completely the aliasing problem (we have
only used some predefined configurations of aliased data, and we have restricted
the application to a very narrow range of ecliptic latitudes in which the rela-
tionship between the recovery probability of aliased frequencies and the ecliptic
latitude is monotone) it represents a major step forward. The next step will nec-
essarily consist in extending the analysis to the full celestial sphere by clustering
the full variety of time samplings (and corresponding window functions) into
discrete bands of ecliptic longitudes and latitudes.
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