Skip to main content

Minimizing Landscape Resistance for Habitat Conservation

  • Conference paper
  • First Online:
  • 1714 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10335))

Abstract

Modeling ecological connectivity is an area of increasing interest amongst biologists and conservation agencies. In the past few years, different modeling approaches have been used by experts in the field to understand the state of wildlife distribution. One of these approaches is based on modeling land as a resistive network. The analysis of electric current in such networks allows biologists to understand how random walkers (animals) move across the landscape. In this paper we present a MIP model and a Local Search approach to tackle the problem of minimizing the effective resistance in an electrical network. This is then mapped onto landscapes in order to decide which areas need restoration to facilitate the movement of wildlife.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adriaensen, F., Chardon, J., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., Matthysen, E.: The application of ‘least-cost’ modelling as a functional landscape model. Landscape Urban Plann. 64(4), 233–247 (2003)

    Article  Google Scholar 

  2. Alexander, C.K., Sadiku, M.N.: Electric circuits (2000)

    Google Scholar 

  3. Amos, J.N., Bennett, A.F., Mac Nally, R., Newell, G., Pavlova, A., Radford, J.Q., Thomson, J.R., White, M., Sunnucks, P.: Predicting landscape-genetic consequences of habitat loss, fragmentation and mobility for multiple species of woodland birds. PLoS One 7, 1–12 (2012)

    Google Scholar 

  4. Amos, J.N., Harrisson, K.A., Radford, J.Q., White, M., Newell, G., Nally, R.M., Sunnucks, P., Pavlova, A.: Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds. Ecology 95(6), 1556–1568 (2014)

    Article  Google Scholar 

  5. Balabanian, N., Bickart, T.A., Seshu, S.: Electrical Network Theory. Wiley, New York (1969)

    MATH  Google Scholar 

  6. Beier, P., Majka, D.R., Spencer, W.D.: Forks in the road: choices in procedures for designing wildland linkages. Conserv. Biol. 22(4), 836–851 (2008). http://dx.doi.org/10.1111/j.1523-1739.2008.00942.x

    Article  Google Scholar 

  7. Beier, P., Noss, R.F.: Do habitat corridors provide connectivity? Conserv. Biol. 12(6), 1241–1252 (1998). http://dx.doi.org/10.1111/j.1523-1739.1998.98036.x

    Article  Google Scholar 

  8. Brittain, J.E.: Thevenin’s theorem. IEEE Spectr. 27(3), 42 (1990)

    Article  Google Scholar 

  9. Crossman, N.D., Bryan, B.A.: Systematic landscape restoration using integer programming. Biol. Conserv. 128(3), 369–383 (2006)

    Article  Google Scholar 

  10. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 102–116. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13520-0_14

    Chapter  Google Scholar 

  11. Dorf, R.C., Svoboda, J.A.: Introduction to Electric Circuits. Wiley, New York (2010)

    MATH  Google Scholar 

  12. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Association of America, Washington, D.C. (1984)

    MATH  Google Scholar 

  13. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomes, C.P.: Computational sustainability: computational methods for a sustainable environment, economy, and society. Bridge 39(4), 5–13 (2009)

    Google Scholar 

  15. Aars, J.: R.A.I.: The effect of habitat corridors on rates of transfer and interbreeding between vole demes. Ecology 80(5), 1648–1655 (1999). http://www.jstor.org/stable/176553

    Article  Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, US (1972)

    Chapter  Google Scholar 

  17. LeBras, R., Dilkina, B.N., Xue, Y., Gomes, C.P., McKelvey, K.S., Schwartz, M.K., Montgomery, C.A., et al.: Robust network design for multispecies conservation. In: AAAI (2013)

    Google Scholar 

  18. Lovász, L.: Random walks on graphs. Combinatorics, Paul erdos is eighty 2, 1–46 (1993)

    Google Scholar 

  19. McRae, B.H.: Isolation by resistance. Evolution 60(8), 1551–1561 (2006). http://dx.doi.org/10.1111/j.0014-3820.2006.tb00500.x

    Article  Google Scholar 

  20. McRae, B.H., Beier, P.: Circuit theory predicts gene flow in plant and animal populations. Proc. Nat. Acad. Sci. 104(50), 19885–19890 (2007). http://www.pnas.org/content/104/50/19885.abstract

    Article  Google Scholar 

  21. McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B.: Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724 (2008). http://dx.doi.org/10.1890/07-1861.1

    Article  Google Scholar 

  22. Pimm, S.L., Jones, H.L., Diamond, J.: On the risk of extinction. Am. Nat. 132(6), 757–785 (1988). http://dx.doi.org/10.1086/284889

    Article  Google Scholar 

  23. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006). http://dx.doi.org/10.1287/trsc.1050.0135

    Article  Google Scholar 

  24. Rosenberg, D.K., Noon, B.R., Meslow, E.C.: Biological corridors: form, function, and efficacy. BioScience 47(10), 677–687 (1997). http://bioscience.oxfordjournals.org/content/47/10/677.short

    Article  Google Scholar 

  25. Shah, V., McRae, B.: Circuitscape: a tool for landscape ecology. In: Proceedings of the 7th Python in Science Conference, vol. 7, pp. 62–66 (2008)

    Google Scholar 

  26. Urli, T., Brotánková, J., Kilby, P., Van Hentenryck, P.: Intelligent habitat restoration under uncertainty. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  27. Williams, J.C.: Delineating protected wildlife corridors with multi-objective programming. Environ. Model. Assess. 3(1–2), 77–86 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Julian Di Stefano and Holly Sitters from the School of Ecosystems and Forest Sciences at the University of Melbourne as well as Nevil Amos from the Department of Environment, Land, Water and Planning of Victoria for meeting with us and introducing us to this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego de Uña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

de Uña, D., Gange, G., Schachte, P., Stuckey, P.J. (2017). Minimizing Landscape Resistance for Habitat Conservation. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics