Skip to main content

The Weighted Arborescence Constraint

  • Conference paper
  • First Online:
  • 1705 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10335))

Abstract

For a directed graph, a Minimum Weight Arborescence (MWA) rooted at a vertex r is a directed spanning tree rooted at r with the minimum total weight. We define the MinArborescence constraint to solve constrained arborescence problems (CAP) in Constraint Programming (CP). A filtering based on the LP reduced costs requires \(O(|V|^2)\) where |V| is the number of vertices. We propose a procedure to strengthen the quality of the LP reduced costs in some cases, also running in \(O(|V|^2)\). Computational results on a variant of CAP show that the additional filtering provided by the constraint reduces the size of the search tree substantially.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A strong component of a graph G is a maximal (with respect to set inclusion) vertex set \(S \subseteq V\) such that (i) \(|S| = 1\) or (ii) for each pair of distinct vertices i and j in S, at least one path exists in G from vertex i to vertex j [9].

References

  1. Beldiceanu, N., Flener, P., Lorca, X.: The tree Constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005). doi:10.1007/11493853_7

    Chapter  Google Scholar 

  2. Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network. Dev. Oper. Res. 1, 29–44 (1971)

    MATH  Google Scholar 

  3. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Sci. Sin. Ser. A 14, 1396–1400 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Dooms, G., Katriel, I.: The minimum spanning tree constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 152–166. Springer, Heidelberg (2006). doi:10.1007/11889205_13

    Chapter  Google Scholar 

  5. Dooms, G., Katriel, I.: The “not-too-heavy spanning tree” constraint. In: Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72397-4_5

    Chapter  Google Scholar 

  6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stand. B 71(4), 125–130 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Fahle, T., Sellmann, M.: Cost based filtering for the constrained knapsack problem. Ann. Oper. Res. 115(1–4), 73–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischetti, M., Toth, P.: An additive bounding procedure for asymmetric travelling salesman problem. Math. Program. 53, 173–197 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischetti, M., Toth, P.: An efficient algorithm for min-sum arborescence problem on complete digraphs. Manage. Sci. 9(3), 1520–1536 (1993)

    MATH  Google Scholar 

  10. Fischetti, M., Vigo, D.: A branch-and-cut algorithm for the resource-constrained minimum-weight arborescence problem. Network 29, 55–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Focacci, F., Lodi, A., Milano, M., Vigo, D.: Solving TSP through the integration of OR and CP techniques. Electron. Notes Discrete Math. 1, 13–25 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(3), 109–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Hist. Comput. 7, 13–25 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Guignard, M., Rosenwein, M.B.: An application of lagrangean decomposition to the resource-constrained minimum weighted arborescence problem. Network 20, 345–359 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Houndji, V.R., Schaus, P.: Cp4cap: Constraint programming for constrained arborescence problem. https://bitbucket.org/ratheilesse/cp4cap

  16. Kleinberg, J., Tardos, E.: Minimum-cost arborescences: a multi-phase greedy algorithm. In: Algorithm Design, Tsinghua University Press (2005)

    Google Scholar 

  17. Lorca, X.: Contraintes de Partitionnement de Graphe. Ph. D. thesis, Université de Nantes (2010)

    Google Scholar 

  18. Fages, J.-G., Lorca, X.: Revisiting the tree constraint. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 271–285. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_22

    Chapter  Google Scholar 

  19. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding priority queues. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 223–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27810-8_20

    Chapter  Google Scholar 

  20. Pesant, G., Gendreau, M., Potvin, J.-Y., Rousseau, J.-M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1), 12–29 (1998)

    Article  MATH  Google Scholar 

  21. Régin, J.-C.: Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68155-7_19

    Chapter  Google Scholar 

  22. Régin, J.-C., Rousseau, L.-M., Rueher, M., van Hoeve, W.-J.: The weighted spanning tree constraint revisited. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 287–291. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13520-0_31

    Chapter  Google Scholar 

  23. Tarjan, R.E.: Finding optimum branchings. Networks 7(3), 25–35 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. OscaR Team. Oscar: Scala in or (2012). https://bitbucket.org/oscarlib/oscar

  25. Van Cauwelaert, S., Lombardi, M., Schaus, P.: Understanding the potential of propagators. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 427–436. Springer, Cham (2015). doi:10.1007/978-3-319-18008-3_29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinasetan Ratheil Houndji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Houndji, V.R., Schaus, P., Hounkonnou, M.N., Wolsey, L. (2017). The Weighted Arborescence Constraint. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics