arXiv:1608.02527v1 [math.OC] 8 Aug 2016

Experimental validation of volume-based comparison
for double-McCormick relaxations*

Emily Speakman, Han Yu, and Jon Lee

Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI, U.S.A.

{eespeakm, yuha, jonxlee}@umich.edu

October 11, 2018

Abstract

Volume is a natural geometric measure for comparing polyhedral relaxations of non-convex sets.
Speakman and Lee gave volume formulae for comparing relaxations of trilinear monomials,
quantifying the strength of various natural relaxations. Their work was motivated by the spa-
tial branch-and-bound algorithm for factorable mathematical-programming formulations. They
mathematically analyzed an important choice that needs to be made whenever three or more
terms are multiplied in a formulation. We experimentally substantiate the relevance of their
main results to the practice of global optimization, by applying it to difficult box cubic problems
(boxcup). In doing so, we find that, using their volume formulae, we can accurately predict the
quality of a relaxation for boxcups based on the (box) parameters defining the feasible region.

*Supported in part by ONR grant N00014-14-1-0315.



1 Introduction

1.1 Measuring relaxations via volume in mathematical optimization

In the context of mathematical optimization, there is often a natural tradeoff in the tightness
of a convezification (i.e., a convex relaxation) and the difficulty of optimizing over it. This idea
was emphasized by [Lec07] in the context of mixed-integer nonlinear programming (MINLP) (see
also the recent work [DMW15]). Of course this is also a well-known phenomenon for difficult
0/1 linear-optimization problems, where very tight relaxations are available via extremely heavy
semidefinite-programming relaxations (e.g., the Lasserre hierarchy), and the most effective relax-
ation for branch-and-bound/cut may well not be the tightest. Earlier, again in the context of math-
ematical optimization, [LM94] introduced the idea of using volume as a measure of the tightness
of a convex relaxation (for fixed-charge and vertex packing problem). Most of that mathematical
work was asymptotic, seeking to understand the quality of families of relaxations with a growing
number of variables, but some of it was also substantiated experimentally in [Lee07].

1.2 Spatial branch-and-bound

The workhorse algorithm for global optimization of so-called factorable MINLPs (see [McC76]) is
spatial branch-and-bound (sBB) (see [ADFN9S], [RS96], [SP99]). sBB decomposes model functions
against a library of basic functions (e.g., 7172, 12213, 272, log(z), sin(z), 23, \/z, arctan(x)). We
assume that each basic function is a function of no more than 3 variables, and that we have a convex
outer-approximation of the graph of each such basic function on box domains. sBB realizes con-
vexifications of model functions by composing convexifications of basic functions. sBB subdivides
the domains of variables, and re-convexifies, obtaining stronger bounds on model functions.

1.3 Using volume to guide decompositions for spatial branch-and-bound

[SL15] applied the idea of [LM94], but now in the context of the low-dimensional relaxations of
basic functions that arise in sBB. Specifically, [SL15] considered the basic function f = zjxex3 on
box domains; that is the graph

Pr={(f. w1, 22,23) €ER" : f =a1a0ws, @ € a5, bi],i =1,2,3},

where 0 < a; < b; are given constants. It is important to realize that Py is relevant for any
model where any three quantities (which could be complicated functions themselves) are multiplied.
Furthermore, the case of nonzero lower bounds (i.e., a; > 0) is particularly relevant, especially
when the multiplied quantities are complicated functions of model variables. Though polyhedral,
P, has a rather complicated inequality description. Often lighter relaxations are used by modelers
and MINLP software. [SL15] considered 3 natural relaxations of Pj,. Thinking of the product
as x1(xoxs) or xo(rix3) or xs(xiwe), and employing the so-called McCormick relaxation twice,
leads to three different relaxations. [SLI5| derive analytic expressions for the volume of P} as
well as all three of the natural relaxations. The expressions are formulae in the six constants
0<a; <b;,i=1,2,3. In doing so, they quantify the quality of the various relaxations and provide
recommendations for which to use.

1.4 Our contribution

The results of [SL15] are theoretical. Their utility for guiding modelers and sBB implementers
depends on the belief that volume is a good measure of the quality of a relaxation. Morally, this



belief is based on the idea that with no prior information on the form of an objective function,
the solution of a relaxation should be assumed to occur with a uniform density on the feasible
region. Our contribution is to experimentally validate the robustness of this theory in the context
of a particular use case, optimizing multilinear cubics over boxes (‘boxcup’). There is considerable
literature on techniques for optimizing quadratics, much of which is developed and validated in the
context of so-called ‘boxqp’ problems, where we minimize Zi, ; QijTiT; OVer a box domain in R™. So
our boxcup problems, for which we minimize Zz ; ijkTiT;jTh OVer a box domain in R", are natural.

[SL15] find an ordering of the three natural relaxations by volume. But their formulae are for
n = 3. Our experiments validate their theory as applied to our use case. We demonstrate that
in the setting of ‘boxcup’ problems, the average objective discrepancy between relaxations very
closely follows the prediction of the theory of [SLI5]. Moreover, we are able to demonstrate that
these results are robust against sparsity of the cubic forms.

[LM94] defined the idealized radius of a polytope in R? as essentially the d-th root of its volume
(up to some constants depending on d). For a polytope that is very much like a ball in shape, we
can expect that this quantity is (proportional to) the “average width” of the polytope. The average
width arises by looking at ‘max minus min’, averaged over all normalized linear objectives. So, the
implicit prediction of [SL15] is that the idealized radius should (linearly) predict the expected ‘max
minus min’ for normalized linear objectives. We have validated this experimentally, and looked
further into the idealized radial distance between pairs of relaxations, finding an even higher degree
of linear association.

Finally, in the important case a; = a2 = 0, by = by = 1, [SL15] found that the two worst
relaxations have the same volume, and the greatest difference in volume between P, and the (two)
worst relaxations occurs when ag = b3/3. We present results of experiments that clearly show that
these predictions via volume are again borne out on ‘boxcup’ problems.

All in all, we present convincing experimental evidence that volume is a good predictor for
quality of relaxation in the context of sBB. Our results strongly suggest that the theoretical results
of [SL15] are important in devising decompositions of complex functions in the context of factorable
formulations and therefore our results help inform both modelers and implementers of sBB.

1.5 Literature review

Computing the volume of a polytope is well known to be strongly #P-hard (see [BW91]). But in
fixed dimension, or, in celebrated work, by seeking an approximation via a randomized algorithm
(see [DFK9I1]), positive results are available. Our work though is motivated not by algorithms for
volume calculation, but rather in certain situations where analytic formulae are available.

Besides [LM94] and [SL15] (and the follow-on [SL16]), there have been a few papers on analytic
formulae for volumes of polytopes that naturally arise in mathematical optimization; see [KLS97],
[Ste94], BDLO13], [ABD10], [Sta86]. But none of these works has attempted to apply their ideas to
the low-dimensional polytopes that naturally arise in sBB, or even to apply their ideas to compare
relaxations. One notable exception is [CLL10], which is a mostly computational precursor to [SL15],
focusing on quadrilinear functions (i.e., f = z1x9x314).

There are many implementations of sBB. E.g., Baron [Sah15], Couenne [BLL™09|, Scip [VG16]
and Antigone [MET14]. Both Baron and Antigone use the complete linear-inequality description of
Pr, while Couenne and SCIP use an arbitrary double-McCormick relaxation. Our results indicate
that there are situations where the choice of Baron and Antigone is too heavy, and certainly even
restricting to double-McCormick relaxations, Couenne and SCIP do not choose the best one.

There is a large literature on convexification of multilinear functions. Most relevant to our
work are: the polyhedral nature of the convexification of the graphs of multilinear functions on box



domains (see [Rik97]); the McCormick inequalities describing giving the complete linear-inequality
description for bilinear functions on a box domain (see [McC76]); the complete linear-inequality
description of Py, (see [ME04b] and [ME04al).

2 Preliminaries

2.1 Convexifications

Without loss of generality, we can relabel the three variables so that
albzbg + blagag S b1a2b3 + albgag S b1b2a3 + alagbg. (Q)

is satisfied by the variable bounds. Given f := zjxox3 satisfying , there are three choices
of double-McCormick convexifications depending on the bilinear sub-monomial we convexify first.
We could first group x1 and x2 and convexify w = x1x9; after this, we are left with the monomial
f = wxs which we again convexify using McCormick. Alternatively, we could first group variables
r1 and x3, or variables x5 and z3.

To see how to perform these convexifications in general, we exhibit the double-McCormick
convexification that first groups the variables z; and x;. Therefore we have f = z;z;7), and we
let w;; = x;x, so f = w;jxy. Convexifying w;; = x;x; using the standard McCormick inequalities,
and then convexifying f = w;jx, again using the standard McCormick inequalities, we obtain the
8 inequalities:

wij — ajT; — a;x; + aa; > 0, [ — arwi; — a;a;x + aza;ar > 0,
—w;j + bjx; + a;x; — a;bj >0, — [ + bpwij + ajajxr — ajajby > 0,
—w;j + ajr; + bjx; — bjaj >0, — [ + agpwi; + bibjay — bibjar, > 0,

wij — bjxi — bixj + bib; = 0, f = bywij — bibjzy + bibjby, > 0.

Using Fourier-Motzkin elimination (i.e., projection), we then eliminate the variable w;; to obtain
the following system in our original variables f,x;, z; and xy.

T — a; >0, (1)
xj — aj >0, (2)
[ —ajapx; — aapr; — aa;x, + 2a,a;a; >0, (3)
[ —ajbpx; — abpr; — bibjxy + azajby + bibjby >0, (4)
— T + bj >0, (5)
—x; + b; >0, (6)
[ —bjapx; — bjagr; — aa;x, + a;aja, + bibjay >0, (7)
F— bibys — bibpr; — bibjy, + 2b;b;b >0, (8)
— [+ bjbrz; + asbpzj + aza;xy — aza;by — a;bjby >0, (9)
— [+ ajbgz; + bibrzj + aza;x, — aza;by — biajby >0, (10)
—x + by >0, (11)
— [+ bjagzr; + ajarxj + bibjry, — azbjar, — bibjay >0, (12)
— [+ ajapz; + bjarxj + bibjry, — bjajar — bibjay >0, (13)
Tp — Qk >0, (14)
[ —aa;xy, >0, (15)
— f+bibjxy > 0. (16)



It is easy to see that the inequalities and are redundant: is a; ak —i—aiak + (3],
and is bjak@ + aiak + .

We use the following notation in what follows. For i = 1,2,3, system i is defined to be the
system of inequalities obtained by first grouping the pair of variables z; and xj, with j and k
different from i. P; is defined to be the solution set of this system.

2.2  Volumes of convexifications

For a convex body C C R?, we denote its volume (i.e., Lebesgue measure) by vol(C). The main
results of [SL15] are as follows.

Theorem 1 ([SL15])

VOl(Ph) = (b1 — al)(bg — ag)(bg — a3) X
(b1(5bab3 — aghbs — baaz — 3agasz) + ai(5azaz — beaz — azbz — 3babs)) /24.

Theorem 2 ([SL15])

VOI(’P1) = VOl(Ph) + (bl — al)(bg — a2)2(b3 — a3)2 X
3(b1b2a3 — a1bsag + bragbs — alazbg) + 2(a1b2b3 — blazag)
24(bzb3 — a2a3)

Theorem 3 ([SL15])

(bl — al)(bg — a2)2(b3 — a3)2 (5(a1b1b3 — alblag) + 3(()%@3 — a%bg))
24(b1bs — ajag) )

vol(Pz) = vol(Pp) +

Theorem 4 ([SL15])

(b1 — al)(bg — a2)2(53 — a3)2 (5(a1b1b2 — a1b1a2) + 3(()%@2 — a%bz))
24(()152 — a1a2)

vol(P3) = vol(Py,) +

Corollary 1 ([SL15])
vol(Pp) < vol(Ps) < vol(Pz) < vol(Py).

Corollary 2 ([SL15]) For the special case of a; = az =0, by = by = 1, and fized bz, the greatest
difference in volume for Ps(= Py ) and Py (or Py) occurs when as = bs/3.
2.3 From volumes to gaps

Volume seems like an awkward measure to compare relaxations, when typically we are interested
in objective-function gaps. Following [LM94], the idealized radius of a convex body C' C R? is

p(C) := (vol(C) /vol(Ba))

where By is the (Euclidean) unit ball in R%. p(C) is simply the radius of a ball having the same
volume as C. The idealized radial distance between convex bodies Cy and Cy is simply [p(C1) —
p(C2)|. If C; and Cy are concentric balls, say with C; C Cy, then the idealized radial distance
between them is the (radial) height of Cy above C;. The mean semi-width of C' is simply

1 .
- max cz — mincx | di,
2 llell=1 zeC zeC



where 1 is the (d — 1)-dimensional Lebesgue measure on the boundary of B, normalized so that
1 on the entire boundary is unity. If C is itself a ball, then (i) its idealized radius is in fact its
radius, and (ii) its width in any unit-norm direction c¢ is constant, and so (iii) its (idealized) radius
is equal to its mean semi-width.

Key point: What we can hope is that our relaxations are round enough so that choosing one
of small volume (which is proportional to the idealized radius) is a good proxy for choosing the
relaxation by mean width (which is the same as mean objective-value range).

3 Computational Experiments

3.1 Box cubic programs and 4 relaxations

Our experiments are aimed at the following natural problem which is concerned with optimizing a
linear function on trinomials. Let H be a 3-uniform hyper-graph on n vertices. Each hyper-edge
of H is a set of 3 vertices, and we denote the set of hyperedges by F(H). If H is complete, then
|E(H)|= (g) We associate with each vertex i a variable x; € [a;, b;], and with each hyper-edge
{i,4,k} the trinomial z;x;z;, and a coefficient g, (1 < i < j < k < n). We now formulate the
associated bozxcup (‘box cubic problem’):

min Z Qijk TiTj T @ Tj € [ai,bi], 1=1,2,....n ;. (BCUP)
zeR?
{ig, ke B(H)

The name is in analogy with the well-known boxgp, where just two terms (rather than three) are
multiplied (‘box’ refers to the feasible region and ‘qp’ refers to ‘quadratic program).

is a difficult nonconvex global-optimization problem. Our goal here is not to solve
instances of this problem, but rather to solve a number of different relazations of the problem and
see how the results of these experiments correlate with the volume results of [SL15]. In this way,
we seek to determine if the guidance of [SLI15| is relevant to modelers and those implementing sBB.

We have seen how for a single trilinear term f = x;x;7}, we can build four distinct relaxations:
the convex hull of the feasible points, Py, and three relaxations arising from double McCormick:
P1, Po and Ps3. To obtain a relaxation of , we choose a relaxation Py, for some £ =1,2,3,h
and apply this same relaxation method to each trinomial of . We therefore obtain 4 distinct
linear relaxations of the form:

min > kL

(@f)eZe {i.j,k}EE(H)

where &y, £ = 1,2,3,h is the polytope in dimension (g) + n arising from using relaxation Py
on each trinomial. This linear relaxation is a linear inequality system involving the n variables x;
(i=1,2,...,n), and the (g) new ‘function variables’ f;;i. These ‘function variables’ model x; x; xy.

For our experiments, we randomly generate box bounds [a;, b;] on x;, for each ¢ = 1,...,n
independently, by choosing (uniformly) random pairs of integers 0 < a; < b; < 10. With each
realization of these bounds, we get relaxation feasible regions Py, for £ = 1,2, 3, h.

3.2 3 scenarios for ()

We have 3 scenarios for the hypergraph H of (BCUP)), all with |E(H )|= 20 monomials:



e Our dense scenario has H being a complete 3-uniform hypergraph on n = 6 vertices ((g) =
20). We note that each of the n = 6 variables appears in (g:}) = 10 of the 20 monomials, so
there is considerable overlap in variables between trinomials.

e Our sparse scenario has hyperedges: {1,2,3}, {2,3,4}, {3,4,5} ...{18,19,20}, {19,20, 1},
{20, 1,2}. Here we have n = 20 variables and each variable is in only 3 of the trinomials.

e Our very sparse scenario has n = 30 variables and each variable is in only 2 of the trinomials.

For each scenario, we generate 30 sets of bounds [a;, b;] on z; (i = 1,...,n). To control the variation
in our results, and considering that the scaling of @) is arbitrary, we generate 100,000 random @
with |E(H)| entries, uniformly distributed on the unit sphere in RIEWEI Then, for each Q, we both
minimize and maximize ) ;_ <k Qijk fijk over each &y, ¢ =1,2,3, h and each set of bounds.

3.3 Quality of relaxations

For each Q we take the difference in the optimal values, i.e. the maximum value minus the minimum
value; this can be thought of as the width of the polytope in the direction (). We then average these
widths for each &, £ = 1,2,3, h, across the 100,000 realizations of () (which results in very small
standard errors), and we refer to this quantity w(%) as the quasi mean width of the relaxation. It
is not quite the geometric mean width, because we do not have objective terms for all variables in
(BCUP) (i.e., we have no objective terms > ;" | ¢;x;).

We seek to investigate how well the volume formulae of [SL15|], comparing the volumes of the
polytopes Py (¢ =1,2,3,h), can be used to predict the quality of the relaxations & (¢ =1,2,3,h)
as measured by their quasi mean width.

Figure[I] consists of a plot for each scenario: dense, sparse, and very sparse. Each plot illustrates
the difference in quasi mean width between 273 (using the ‘best’ double McCormick) and each of
the other relaxations. Each point represents a choice of bounds and the instances are sorted
by w(Z1) — w(Z,). In all three plots w(Z),) — w(#3) is non-positive, which is to be expected
because &7, is contained in each of the three double-McCormick relaxations. Furthermore the
plots illustrate that the general trend is for w(%2) —w(Z3) and w(F1) —w(H3) to be positive and
also for w(21) —w(Z3) to be greater than w(P2) —w(S3). This agrees with Corollary |1 and gives
strong validation for the use of volume to measure the strength of different relaxations. It confirms
that given a choice of the double-McCormick relaxations, #5 is the one to choose.

However, there are a few exceptions to the general trend and these exceptions are most apparent
in the very sparse case. In both the dense case and the sparse case we only see a deviation from the
trend on a small number of occasions when &5 is very slightly better than £75. In each of these
cases, the difference seems to be so small that we can really regard &3 and &% as being equivalent
from a practical viewpoint. In the very sparse case, the general trend is still followed, but we see
a few more cases where & is slightly better than 3. We also see that in a few instances, & is
better than £ and occasionally even slightly better than &25.

However it is important to note that when we consider the sparse and very sparse cases, the
differences in quasi mean width between any two of the relaxations is much smaller than these
differences in the dense case. If we were to take the sparsity of H to the extreme and run our
experiments with n = 60 and each variable only in one trinomial, the difference in quasi mean
width between any two of the polytopes will become zero for these boxcup problems. Therefore, it
is not surprising that our results diverge from the general trend as H becomes sparser.

Using the common technique of ‘performance profiles’ (see [DMO02]), we can illustrate the differ-
ences in quasi mean width of the three double-McCormick relaxations in another way. We obtained



the matlab code “perf.m” which was adapted to create these plots from the link contained in
[SMM™15]. Figure [2 shows a performance profile for each of the dense, sparse and very sparse
scenarios. For each choice of bounds, &), gives the least quasi mean width (because it is contained
in each of the other relaxations). Our performance profiles display the fraction of instances where
the quasi mean width of &, is within a factor a of the mean width of %, for £ = 1,2,3. The
plots are natural log plots where the horizonal axis is 7 := In(«). Using this measure, we see that
the trend in all cases is that &3 dominates & which in turn dominates &?;. In the very sparse
case, we see that &3 and 5 are very close for small factors a. In general, all three relaxations
are within a small factor of the hull. Displaying the results in this manner gives us a way to see
quickly which relaxation performs best for the majority of instances. Again, we see agreement with
the prediction of Corollary [I] and confirmation that &5 is the best double-McCormick relaxation.

3.4 Validating the relationship between volume and mean width

Using the [SL15] formulae, we calculate the volume of the relaxation for each individual trinomial,
Py. We then we take the fourth root of these volumes and sum over all |E(H)| trinomials to obtain
a kind of ‘aggregated idealized radius’ for each relaxation and each set of bounds. Restricting our
attention to the dense scenario, in Figure 3|, we compare these aggregated idealized radii with quasi
mean width, across all relaxations 2y, ¢ = 1,2,3,h and each set of bounds (each point in each
scatter plot corresponds to a choice of bounds). We see a high R? coefficient in all cases, so we
may conclude that volume really is a good predictor of relaxation width.

We also compute the difference in width between polytope pairs: &, and P35, HP3 and Hs,
Py and &7 for each direction (). We then average these width differences for each polytope and
each set of bounds, across the 100,000 realizations of ). We refer to this result as the quasi mean
width difference of the pair of polytopes. In Figure |4 we similarly compare aggregated idealized
radial differences with quasi mean width differences. We see even higher R? coefficients, validating
volume as an excellent predictor of average objective gap between pairs of relaxations.

3.5 A worst case

Our final set of experiments relate to a ‘worst case’ as described in [SL15]. In the important special
case of a1 = a9 = 0 and b; = by = 1, the two ‘bad’ double-McCormick relaxations have the same
volume and the ‘good’ double McCormick is exactly the hull. In addition, the greatest difference
in volume between the hull and the bad relaxations occurs when ag = %3.

We compute the same results as we have discussed before (i.e. the differences in quasi mean
width between the relaxations) with n = 6, but now instead of using random bounds, we fix
a1 = as = 0 and by = by = 1. We also fix b3 and run the experiments for ag = 1,2,...,b3— 1. Here,
we only consider the (g) = 10 trinomials that have the form x;xxe.

Figure [5] displays a plot of these results for bs = 30,60,90,120 and 150. From the inequality
systems we know that &7, is exactly &3, therefore we are interested in the comparison between:
Py and H3, and P and Z1. From the plots of these differences, we see exactly what we would
expect given the volume formulae. The difference in mean width between &% and & is very small;
from a practical standpoint it is essentially zero. The difference in mean width between &9 and &5
is always positive, indicating again that Ps is the best choice of double-McCormick relaxation. In
addition, we observe that the maximum difference falls close to ag = %3 in all cases, demonstrating

again that volume is a good predictor of how well a relaxation behaves.
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11




References

[ABD10]

[ADFN9g]

[BDLO13]

[BLLT09]

[BW91]

[CLL10]

[DFK91]

[DM02]

[DMW15]

[KLS97]

[Lee0T]

[LM94]

[McC76]

[MF04a)

[MF04b]

F. Ardila, C. Benedetti, and J. Doker. Matroid polytopes and their volumes. Discrete
& Computational Geometry, 43(4):841-854, 2010.

C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimization
method, aBB, for general twice-differentiable constrained NLPs: I. Theoretical ad-
vances. Computers € Chemical Engineering, 22(9):1137-1158, 1998.

K. Burggraf, J. De Loera, and M. Omar. On Volumes of Permutation Polytopes, pages
55—77. Springer International Publishing, Heidelberg, 2013.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wéchter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods & Software, 24(4-
5):597-634, 2009.

G. Brightwell and P. Winkler. Counting linear extensions is #p-complete. In Proceedings
of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC 91,
pages 175-181, New York, NY, USA, 1991. ACM.

S. Cafieri, J. Lee, and L. Liberti. On convex relaxations of quadrilinear terms. Journal
of Global Optimization, 47:661-685, 2010.

M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approx-
imating the volume of convex bodies. J. ACM, 38(1):1-17, January 1991.

D. Elizabeth Dolan and J. Jorge Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201-213, 2002.

Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with
sparse inequalities. Mathematical Programming, 154(1):329-352, 2015.

C.-W. Ko, J. Lee, and E.. Steingrimsson. The volume of relaxed Boolean-quadric and
cut polytopes. Discrete Mathematics, 163(1-3):293-298, 1997.

J. Lee. Mixed integer nonlinear programming: Some modeling and solution issues. IBM
Journal of Research and Development, 51(3/4):489-497, 2007.

J. Lee and W. Morris. Geometric comparison of combinatorial polytopes. Discrete
Applied Mathematics, 55:163-182, 1994.

G.P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I. Convex underestimating problems. Mathematical Programming, 10:147-175,
1976.

C.A. Meyer and C.A. Floudas. Trilinear monomials with mixed sign domains: Facets of
the convex and concave envelopes. Journal of Global Optimization, 29:125-155, 2004.

C.A. Meyer and C.A. Floudas. Trilinear monomials with positive or negative domains:
Facets of the convex and concave envelopes. Frontiers in Global Optimization, pages
327-352, 2004.

12



[MF14]

[Rik97]

[RS96]

[Sah15]

[SL15]

[SL16]

[SMM*15]

[SP99]

[Sta86]

[Ste94]

[VG16]

R. Misener and C. A. Floudas. ANTIGONE: Algorithms for coNTinuous / Integer
Global Optimization of Nonlinear Equations. Journal of Global Optimization, 2014.
DOI: 10.1007/s10898-014-0166-2.

A. Rikun. A convex envelope formula for multilinear functions. Journal of Global
Optimization, 10:425-437, 1997.

H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global optimization.
Journal of Global Optimization, 8(2):107-138, 1996.

N.V. Sahinidis. BARON 15.6.5: Global Optimization of Mized-Integer Nonlinear Pro-
grams, User’s Manual, 2015.

E. Speakman and J. Lee. Quantifying double McCormick. arXiv:1508.02966v2, http:
//arxiv.org/abs/1508.02966, 2015.

E. Speakman and J. Lee. On sBB branching for trilinear monomials. GOW ’16 (4
pages) https://umich.box.com/s/ase34hd2jpb91tk2ugbl7ozoytqvhz2c, 2016.

A.M. Sofi, M. Mamat, S.Z. Mohid, M.A.H. Ibrahim, and N. Khalid. Performance profile
comparison using matlab. In Proceedings of International Conference on Information
Technology & Society 2015, 2015.

E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical
Engineering, 23:457-478, 1999.

R.P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9-23,
1986.

E. Steingrimsson. A decomposition of 2-weak vertex-packing polytopes. Discrete Com-
putational Geometry, 12(4):465-479, 1994.

S. Vigerske and A. Gleixner. Scip: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Technical Report 16-24, ZIB, Takustr.7,
14195 Berlin, 2016.

13


http://arxiv.org/abs/1508.02966
http://arxiv.org/abs/1508.02966
https://umich.box.com/s/ase34hd2jpb91tk2uqb17ozoytqvhz2c

	1 Introduction
	1.1 Measuring relaxations via volume in mathematical optimization
	1.2 Spatial branch-and-bound
	1.3 Using volume to guide decompositions for spatial branch-and-bound
	1.4 Our contribution
	1.5 Literature review

	2 Preliminaries
	2.1 Convexifications
	2.2 Volumes of convexifications
	2.3 From volumes to gaps

	3 Computational Experiments
	3.1 Box cubic programs and 4 relaxations
	3.2 3 scenarios for Q
	3.3 Quality of relaxations
	3.4 Validating the relationship between volume and mean width
	3.5 A worst case


