Skip to main content

Dual-Mode Cryptosystem Based on the Learning with Errors Problem

  • Conference paper
  • First Online:
  • 1253 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10343))

Abstract

The existing LWE-based dual-mode scheme could not fit the framework of dual-mode cryptosystem very well. In this paper, we give two solutions of constructing “full-fledged” dual-mode cryptosystems based on LWE. In our first construction, we give a modified “dual version” of Peikert et al.’s (Crypto’08) construction, in which the simulated public keys can be uniformly and randomly chosen just like the real ones, thus it can fit the framework of dual-mode cryptosystem very well. Then, our second construction gets rid of the lattice trapdoor, which is known as lacking of efficiency and is used in our first construction as well as Peikert et al.’s construction.

This research is supported by the National Nature Science Foundation of China (No. 61572495, No. 61379137 and No. 61502484), and the National Basic Research Program of China (973 project) (No. 2013CB338002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We do not require that \(\mathsf {SK}_\sigma \approx _s\mathsf {SK}',\sigma \in \{0,1\}\) as in [12]. As Wee mentioned in [15] that the decryption mode is used in the case of a corrupted sender. And the corrupted sender sees only \(\mathsf PK\) and not \(\mathsf SK_0\) or \(\mathsf SK_1\). As long as \(\mathsf SK_0\) and \(\mathsf SK_1\) can decrypt properly, we can extract both of its inputs. Therefore, this relaxed property is also sufficient for UC-secure OT.

References

  1. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  2. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_20

    Chapter  Google Scholar 

  3. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  6. Berkoff, A., Liu, F.-H.: Leakage resilient fully homomorphic encryption. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 515–539. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_22

    Chapter  Google Scholar 

  7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  8. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Innovations in Computer Science (ICS 2010), Beijing, China, January 5–7, 2010, Proceedings, pp. 230–240. Tsinghua University (2010)

    Google Scholar 

  9. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_26

    Chapter  Google Scholar 

  10. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  11. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2009)

    Google Scholar 

  12. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)

    Google Scholar 

  14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 159–179. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenpan Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

He, J., Jing, W., Li, B., Lu, X., Jia, D. (2017). Dual-Mode Cryptosystem Based on the Learning with Errors Problem. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59870-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59869-7

  • Online ISBN: 978-3-319-59870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics