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Abstract. In this paper, we introduce a new technique for change detection in
urban environment based on the comparison of 3D point clouds withf-sign
icantly different density characteristics. Our proposed approaclaagtmov-
ing objects and environmental changes from sparse and inhomageimstant
3D (i3D) measurements, using as reference background modss ded regular
point clouds captured by mobile laser scanning (MLS) systems. Thealinteal
workflow consist of consecutive steps of point cloud classificatiomsstnodal
measurement registration, Markov Random Field based changetwmxiracthe
range image domain and label back projection to 3D. Experimental ¢izalua
is conducted in four different urban scenes, and the advantage pfdpesed
change detection step is demonstrated against a reference voxe:bppseach.
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1 Introduction

The progress of real time Lidar sensors, such as rotating-tmesim (RMB) Lidar scan-
ners, open several new possibilities in comprehensive@mvient perception for au-
tonomous vehicles (AV) and mobile city surveillance platfis. On one hand, RMB
Lidars directly provide instant 3D (i3D) information faitélting the detection of mov-
ing street objects and environmental changes. On the otret, lwith registering the
i3D measurements to a detailed 3D city map, the detecteatsbimd changes can be
accurately localized and mapped to a geo-referred glolmatiomate system.

Using new generation Geo-Information Systems, severalincijes maintain from
their entire road network dense and accurate 3D point cloodefs obtained by Mo-
bile Laser Scanning (MLS) technology. As a possible futuikzation, these MLS
point clouds can be efficiently considered by the AV’s onlba8D environment sens-
ing modules as highly detailed reference background mottekhis context,change
detection between the instantly sensed RMB Lidar measurements andltBebased
reference environment model appears as a crucial taskhwidacates a number of key
challenges.

Particularly, there is a significant difference in the giyedind the density character-
istics of the i3D and MLS point clouds, due to a trade-off bextw temporal and spatial
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resolution of the available 3D sensors. RMB Lidar scanrsersh as the Velodyne HDL-
64 provide sequences of full-view point cloud frames with1BJps, and the size of the
transferable data is also limited enabling real time prsiogs As a consequence the
measurements have a low spatial density, which quicklyedesas as a function of the
distance from the sensor, and the point clouds may exhilticpéar patterns typical to
sensor characteristic, such as the ring patterns of thedyet®sensor (see Fig. 1(c)).
Although the 3D measurements are quite accurate (up to fesy ienthe sensor’s local
coordinate system, the global positioning error of the elelsimay reach several meters
in city regions with poor GPS signal coverage.

Recent MLS system such as the Riegl VMX450 are able to pravétese and ac-
curate point clouds from the environment with homogenecassing of the surfaces
(Fig. 1(a)-1(b)) and a nearly linear increase of points agatfon of the distance. The
point density of MLS point clouds is with 2-3 orders of magdi¢ higher than the
density of i3D scans which makes direct point-by-point cangon inefficient. On the
other hand, due to the sequential environment scanninggsothe result of MLS is a
static environment model, which can be updated typicalthaiperiod of 1-2 years in
large cities. Therefore, apart from the changes caused byngobjects we must ex-
pect various differences caused by environmental changésus altering the buildings
and street furniture, or seasonal changes of the tree-srombushes etc.
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Fig. 1. Overview on the proposed approach: based on reference MLSajhjathe goal is sepa-
ration of static scene elements and moving objects/changes on instant RistBriames (c)
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2 PreviousWork

In the recent years various techniques have been publishetidnge detection in point
clouds, however, the majority of the approaches rely onel&rsestrial laser scanning
(TLS) data recorded from static tripod platforms [1, 2]. Apkained in [1], classifica-
tion based on calculation of point-to-point distances mayubeful for homogeneous
TLS and MLS data, where changes can be detected directly.ii8@ever, the point-
to-point distance is very sensitive to varying point densiausing degradation in our
addressed i3D/MLS cross-platform scenario. Instead,dligws a ray tracing and oc-
cupancy map based approach with estimated normals foregifiocclusion detection,
and point-to-triangle distances for more robust calcataf the changes. Here the
Delaunay triangulation step may mean a critical point, eigtlg in noisy and cluttered
segments of the MLS point cloud, which are unavoidably preisea city-scale project.
[2] uses a nearest neighbor search across segments of fagery point of a seg-
ment they perform a fixed radius search of 15 cm in the referetoud. If for a certain
percentage of segment points no neighboring points coulfbined for at least one
segment-to-cloud comparison, the object is labeled themaving entity. A method
for change detection between MLS point clouds and 2D teiabghages is discussed
in [3]. An approach dealing with purely RMB Lidar measureitses presented in [4],
which use a ray tracing approach with nearest neighbor lseAreoxel based occu-
pancy technique is applied in [5], where the authors focusetacting changes in point
clouds captured with different MLS systems. However, thitedénces in data quality
of the inputs are less significant than in our case.

3 Proposed Change Detection Method

We assume that the reference MLS data is accurately geoaéfeind the i3D Lidar
platform also has a coarse estimation of its position up teimam 10 m translational
error. Initially, the orientation difference between tha’s local and the MLS point
cloud’s global coordinate systems may be arbitrarily lgigge Fig. 2). The proposed
approach consists of four main steps: ground removal bytpddud classification,
i3D-MLS point cloud registration, change detection in th2 range image domain,
and label backgrojection to the 3D point cloud.

Theground removal step separates terrain and obstacle regions using a lackfy
tive terrain modeling approach, expecting inhomogeneddB Ridar point clouds with
typically non-planar ground. First we fit a regular 2D gridthwfixed rectangle side
length onto the horizontaP,_, plane, using the Lidar sensor’s vertical axis as the
direction. We assign eaghpoint of the point cloud to the corresponding cell, which
contains the projection ofto P,—,. After excluding the sparse grid cells, we use point
height information for assigning each cell to the corresiog cell class. All the points
in a cell are classified as ground, if the difference of theiméh and maximal point
elevations in the cell is smaller than an elevation thrasiiesed 25cm), moreover the
average of the elevations in neighboring cells does notesiscan allowed height range.
The result of ground segmentation is shown in Fig. 1(b) a)l, ¥hich confirms that
our technique handles robustly the various i3D and MLS Ljztznt cloud types.
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For point cloud registration we adopt our latest technique [6] for matching point
cloud measurements with significantly different densitpreleteristics. The registra-
tion process includes three stepstst, following the removal of ground points, we
search for distinct groups of close points in the remainibgtacles cloud, and assign
each group to an abstract object. For handling difficult ades with several nearby ad-
jacent objects, we adopted a hierarchical 2-level modehjiijch separates first large
objects or object groups at a coarse grid level with largks cilen in the refinement it
can efficiently separate the individual objects within egobup.Second, we coarsely
align the two point clouds by considering only the centempobf the previously ex-
tracted abstract objects. We apply here the generalizedlidtvansform to extract the
best similarity transformation in the sense that when dpglthe transformation to the
object centers in the first frame as many of these points astpe®verlap with the ob-
ject centers in the second frame [Bhird, we run a point-level refinement on the above
approximate global transform, applying the Normal Disitibn Transform (NDT) for
all object points. The success of the registration proagess &n extremely weak initial
point cloud alignment is demonstrated in Fig. 2.

Color codes: -

Fig. 2. Demonstration of the proposed point cloud registration stefakDer, Budapest). Blue
and red points represent the i3D and MLS point clouds, respectively.

The change detection module receives a co-registered pair of i3D and and MLS
point clouds, where the terrain is already removed (seeZright image). Our pro-
posed solution extracts changes in the range image domegati@y a range image
I;3p from the RMB Lidar’s point stream is straightforward as #asér emitter and re-
ceiver sensors are vertically aligned, thus every meagquoied has a predefined vertical
position in the image, while consecutive firings of the ldsmams define their horizon-
tal position. Geometrically, this mapping is equivalenptojecting the 360 obstacle
point cloud to a cylinder surface, whose main axis is equahéovertical axis of the
RMB Lidar scanner. Using Velodyne HDL-64 sensor with 15 Hation frequency, the
typical size of thisl;3» range image i$4 x 1024. Since the the above projection only
concerns the obstacle cloud (without the ground), and akfiezd laser beams do not
produce reflections at all (such as those from the directicheosky), several pixels of
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the range map will be assigned to zero (i.e. invalid) depthes Moreover, such holes
may also appear in the range maps due to noise or quantizatiors of the rotation
angles. On account of this artifact we interpolate the piaéles which have in their 8-
neighborhood at least four valid (non-zero) neighboringtdealues, as demonstrated
in Fig. 3. A sample full-view i3D range image is shown in Figay

(a) Raw i3D range image (b) Interpolated range image

Fig. 3. Range image segment from the Velodyne i3D sensor

The reference background range image is generated fronDXtL3 point cloud
with ray tracing, exploiting that that the current positiand orientation of the RMB
Lidar platform are available in the reference coordinaey as a result of the point
cloud registration step. Thereafter simulated rays ardétethinto the MLS cloud from
the moving platform’s center position with the same vettarad horizontal resolution
as the RMB Lidar scanner. To handle minor registration issural sensor noise, each
range image pixel value is determined by examining mulfiples points lying inside a
pyramid around the simulated RMB Lidar ray. For a given pofdhe MLS range map
the depth values of the corresponding points are weightddansigmoid function:
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where K7 is the number of MLS points in thé&, j) pyramid, D}’ is distance of
the k-th point from the ray origin, and the Weighté;j are calculated using a sigmoid
function ( = 0.5 andm = 5 parameters were empirically set). This calculation foranul
ensures that the nearest points within the pyramid recbhadighest weights, but due
to the smoothing effect of weighted averaging, the presehoetlier points, or highly
scattered regions (such as vegetation) do not cause sartifictifacts. A sample MLS
range image generated by the above process is shown in B)g. 4(

In the next step, the calculated RMB Lidar-badeg,, and MLS-basedy s range
images are compared using a Markov Random Field (MRF) maedgth classifies
each pixel of the range image lattice as foreground (FG) okdraund (BG). Fore-
ground pixels represent either moving/mobile objects@&RIMB Lidar scan, or various
environmental changes appeared since the capturing déte LS point cloud.

Two sigmoid functions are used to define fithess scores fdr elass:

1 1

FBG(17.7)=1—W7 FFG(Zaj):l_mv 2)
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(c) MRF based change mask in the range image domain
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(d) Back projection of the change mask to the Velodyne point cloud

Fig. 4. Demonstration of the proposed MRF based change detection processrante image
domain, and result of label back projection to the 3D point cloud
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(a) Voxel based method(b) Proposed method

Fig.5. Comparison of the voxel based reference and the proposed raage imased approach:
a sample bike shed from a magnified image part of the scene in Fig. 4.
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whered'J = I;3p (i, j) anda™ = Iyis(i, 5).

To formally define the range image segmentation task, wegmssieach(, ;) pixel
of the pixel latticeS al; ; € {F'G, BG} class label so that we aim to minimize the
following energy function:

E= Y Vpdi)+ > > B-Ulij#lna}, (3)

(i,5)€S (i,5)€S (m,n) €N, ;

wherej > 0 is a smoothness parameter for the label map (#sed0.5), and.N; ; the
four-neighborhood of pixefi, j). Vp(d*’|l; ;) denotes the data term, derived as:

Vp(d“|l;; = BG) = —log(Fpa(i,j)), Vo(d™|l;; = FG) = —log(Fra(i, j))

The MRF energy (3) is minimized via the fast graph-cut bagathzation algorithm
[8], which process results in a binary change mask in thee@mgge domain, as shown
in Fig. 4(c). The final step ikabel backprojection from the range image to the 3D point
cloud (see Fig. 4(d)), which can be performed in a straigiwhod manner, since in our
i3D range image formation process, each pixel represefyooe Velodyne point.

4 Experiments

We have evaluated the proposed change detection techniferitest scenarios. Each
test sequence contaifi® consecutive time-frames from the RMB Lidar sensor, where
each i3D frame has a GPS-based coarse location estimatitrefpoint cloud centers,
with maximum few meters position error. The MLS referenaaudlis accurately geo-
referred, and we assume that it only contains the staticeseEsments such as roads,
building facades, and street furniture. For each RMB Lidamie, we execute the com-
plete workflow of the proposed algorithm.

The Ground Truth (GT) labeling of the RMB Lidar’s i3D poinbecids was done in a
semi-automatic manner. First, using the registered i3DNAh8 frames, we applied an
automated nearest neighbor classification with a smatudégt threshold (3 cm), there-
after the labeling of the changed regions was manually eevids evaluation metrics,
we calculated the Precision, Recall and F score values afdtection output at point
level, based on comparison to the GT.

Since we have not found any similar i3D-MLS crossmodal cleatigtection ap-
proach in the literature, we adopt a voxel based techniguagseference, which was
originally constructed for already registered MLS/TLSngailouds. Therefore by test-
ing both the proposed and the reference models, we apphathe segistration work-
flow introduced in Sec. 3, and only compare the performandieeofoxel based and the
proposed range image based change detection steps. Thenoeferoxel based tech-
nique fits a regular 3D voxel grid to the registered point dguhereafter a given RMB
Lidar point is classified as foreground if and only if its esponding voxel does not
contain any points in the MLS cloud. We tested this methotl witiltiplew voxel sizes,
which parameter naturally affects both the detection parémce and the computational
time. With larger voxels, we cannot detect some changesitteckd regions, where the
objects can be close to each other and to various streetfterglements. On the other
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Table 1. Quantitative comparison of the Voxel based (VOX) and the proposeB-kéiRge image
based (MRF) methods on the four test scenes, considering all réggfthsand only the crowded
sidewalk areas (right)

Overall test set Sidewalk areas only

Scenes |PrecisionRecallF scorgPrecisionRecallF score
Deak VOX| 099 |0.87| 093 | 0.81 |0.71| 0.76
MRF| 099 | 0.90 | 0.94 0.87 | 089 | 0.88
VOX| 1.00 |0.94| 0.97 0.88 | 0.81| 0.84
MRF| 0.95 | 0.98 | 0.97 0.84 | 1.00 | 091
VOX| 100 |[094| 097 | 089 |0.96| 0.92
MRF| 1.00 | 0.97 | 0.98 0.87 | 099 | 093
VOX| 098 |0.70| 0.82 | 084 |0.64]| 0.73
MRF| 0.94 | 0.83 | 0.88 0.81 | 097 | 0.88

Astorial

Kalvin

Févam

hand, maintaining and processing a fine 3D grid structurh wiitall voxels requires
more memory and processing time. The results shown in themipg comparative
experiments correspond to the voxel size= 30 cm, since we observed with this
parametrization approximately the same running speediag osir proposed MRF-
range image based model: the change detection step in eank fakes here around
80 msec on a desktop computer, with CPU implementation. Mateby decreasing
the w parameter t®0 cm and10 cm, respectively, the calculation time of the voxel
based model starts to rapidly increase (120 msec and 510frasee, resp.), without
significant performance improvements.

(a) Voxel based method (b) Proposed method

Fig. 6. Results for a sample region captured &v&m €r, Budapest, by (a) the voxel based ap-
proach, (b) the proposed method. Red and blue points representtérted! background and
foreground points respectively. Differences are marked with gedgses.

The comparative results considering the complete datasshawn in Table 1 (left
section), which confirms that the proposed method has ameefficverall performance,
and it outperforms the voxel based method in general witBalF6scores in the differ-
ent scenes. We have experienced that the main advantage pfdaposed technique
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is the high accuracy of change detection in cluttered steggbns, such as sidewalks
with several nearby moving and static objects. As shown biera (right section), if
we restrict the quantitative tests to the sidewalk areasp@ihod surpasses the voxel
approach with 7-15% gaps in three scenes. Similar trenddeavbserved from the
qualitative results of Fig. 5. and 6, which show successétiéction samples of small
object segments and fine changes with our proposed methdd;caresponding lim-
itations of the voxel based approach. As shown in Fig. 6. tieelibased technique
results in many falsely ignored moving object segments airigularly in the regions
were people were standing next to static objects. On the bidwed, vehicles on the
roads with relatively large distances from the street funei elements can be well sep-
arated even with large voxels, therefore the differencevben the two methods is less
significant in the road regions of the test scenes. Fig. 7 slemether test scene.

We display in Fig. 8 synthesized view, visualizing the pailauds of moving ob-
jects detected by the i3D RMB Lidar over the geo-referred NbaSkground data

(a) MLS scan from RKlvin tér (b) Detected changes a8lin tér

Fig. 7. Left: MLS laser scan of a tram stop inalvin tér, BudapestRight: Detected changes at
the tram stop. Red, blue and green points represent backgroundsolfgeeground objects and
ground regions, respectively.

5 Conclusion and Future Work

We introduced a new method for change detection betweeerélift laser scanning
measurements captured at street level. The results showewba small and detailed
changes can be observed with the proposed method, whiclotcharachieved with
voxel based techniques. Future work will present a deepestigation of various back-
ground change classes, and tests with lower resolutiorr kietasors.
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Fig. 8. Synthesized view for demonstrating geo-referred moving object tilgteobject point
clouds (tram, car, pedestrians) detected on two subsequent i3D ¥elddymes (marked with
blue) are put in and displayed in the MLS reference point cloud
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