Skip to main content

An Empirical Analysis of Deep Feature Learning for RGB-D Object Recognition

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

Conventional deep feature learning methods use the same model parameters for both RGB and depth domains in RGB-D object recognition. Since the characteristics of RGB and depth data are different, the suitability of such approaches is suspicious. In this paper, we empirically investigate the effects of different model parameters on RGB and depth domains using the Washington RGB-D Object Dataset. We have explored the effects of different filter learning approaches, rectifier functions, pooling methods, and classifiers for RGB and depth data separately. We have found that individual model parameters fit best for RGB and depth data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, there are 207.920 images in total, but 258 of them do not have object mask.

References

  1. Bai, J., Wu, Y., Zhang, J., Chen, F.: Subset based deep learning for RGB-D object recognition. Neurocomputing 165, 280–292 (2015)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Blum, M., Springenberg, J.T., Wülfing, J., Riedmiller, M.: A learned feature descriptor for object recognition in RGB-D data. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1298–1303. IEEE (2012)

    Google Scholar 

  4. Bo, L., Ren, X., Fox, D.: Depth kernel descriptors for object recognition. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 821–826. IEEE (2011)

    Google Scholar 

  5. Bo, L., Ren, X., Fox, D.: Unsupervised feature learning for RGB-D based object recognition. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics, pp. 387–402. Springer, Cham (2013)

    Chapter  Google Scholar 

  6. Cheng, Y., Zhao, X., Huang, K., Tan, T.: Semi-supervised learning for RGB-D object recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 2377–2382. IEEE (2014)

    Google Scholar 

  7. Cheng, Y., Zhao, X., Huang, K., Tan, T.: Semi-supervised learning and feature evaluation for RGB-D object recognition. Comput. Vis. Image Underst. 139, 149–160 (2015)

    Article  Google Scholar 

  8. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. Ann Arbor 1001(48109), 2 (2010)

    Google Scholar 

  9. Guo, Q., Wang, F., Lei, J., Tu, D., Li, G.: Convolutional feature learning and Hybrid CNN-HMM for scene number recognition. Neurocomputing 184, 78–90 (2016)

    Article  Google Scholar 

  10. Jarrett, K., Kavukcuoglu, K., Lecun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)

    Google Scholar 

  11. Jhuo, I.-H., Gao, S., Zhuang, L., Lee, D.T., Ma, Y.: Unsupervised feature learning for RGB-D image classification. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 276–289. Springer, Cham (2015). doi:10.1007/978-3-319-16865-4_18

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)

    Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30 (2013)

    Google Scholar 

  16. Socher, R., Huval, B., Bath, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3D object classification. In: Advances in Neural Information Processing Systems, pp. 665–673 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Caglayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Caglayan, A., Can, A.B. (2017). An Empirical Analysis of Deep Feature Learning for RGB-D Object Recognition. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics