
Fast Spectral Clustering
Using Autoencoders and Landmarks

Ershad Banijamali1 and Ali Ghodsi2

1 School of Computer Science, University of Waterloo, Canada
2 Department of Statistics and Actuarial Science, University of Waterloo, Canada

Abstract. In this paper, we introduce an algorithm for performing spec-
tral clustering efficiently. Spectral clustering is a powerful clustering al-
gorithm that suffers from high computational complexity, due to eigen
decomposition. In this work, we first build the adjacency matrix of the
corresponding graph of the dataset. To build this matrix, we only con-
sider a limited number of points, called landmarks, and compute the
similarity of all data points with the landmarks. Then, we present a def-
inition of the Laplacian matrix of the graph that enable us to perform
eigen decomposition efficiently, using a deep autoencoder. The overall
complexity of the algorithm for eigen decomposition is O(np), where n
is the number of data points and p is the number of landmarks. At last,
we evaluate the performance of the algorithm in different experiments.

1 Introduction

Clustering is a long-standing problem in statistical machine learning and data
mining. Many different approaches have been introduced in the past decades
to tackle this problem. Spectral clustering is one of the most powerful tools for
clustering. The idea of spectral clustering originally comes from the min-cut
problem in graph theory. In fact, if we represent a dataset by a graph where the
vertices are the data points and edges are the similarity between them, then the
final clusters of spectral clustering are the cliques of the graph that are formed
by cutting minimum number of the edges (or minimum total weight in weighted
graphs).

Spectral clustering is capable of producing very good clustering results for
small datasets. It has application in different fields of data analysis and machine
learning [4, 10, 12, 15]. However, the main drawback of this algorithm comes
from the eigen decomposition step, which is computationally expensive (O(n3),
n being the number of data points). To solve this problem, many algorithms have
been designed. These algorithms are mainly based on sampling from the data
(or the affinity matrix), solving the problem for the samples, and reconstruction
of the solution for the whole dataset based on the solution for the samples. In
[16, 6, 9], Nystrom method has been used to sample columns from affinity matrix
and the the full matrix is approximated using correlation between the selected

ar
X

iv
:1

70
4.

02
34

5v
1

 [
cs

.L
G

]
 7

 A
pr

 2
01

7

2

columns and the remaining columns. In [2], a performance guarantee for these
approaches has been derived and a set of conditions have been discussed under
which this approximation performs comparable to the exact solution. [7] suggests
an iterative process for approximating the eigenvector of the Laplacian matrix.
In [17], k-means or random projection is used to find centroids of the partitions
of the data. Then, they perform spectral clustering on the centroid, and finally,
assign each data point to the cluster of their corresponding centroids.

The most relevant work to ours, however, is by Chen et al. [1]. The authors
proposed a method for accelerating the spectral clustering based on choosing p
landmarks in the dataset and computing the similarities between all points and
these landmarks to form a p×n matrix. Then the eigenvectors of the full matrix
is approximated by the eigendecomposition of this p × n matrix. The overall
complexity of this method is O(np2 +p3). The results of the method are close to
the actual spectral clustering on n data points, but with much less computation
time.

Multi-layer structures have been used for spectral clustering in some recent
works [13, 14]. Training deep architectures is done much faster than eigendecom-
position, since it can be easily parallelized over multiple cores. However, in the
mentioned works, the size of input layer of the network is equal to the number of
data points, i.e. n, and consequently the whole network is drastically enlarged as
n grows. Therefore, it will be infeasible to use these structures for large datasets.
In this paper, we combine the idea of landmark selection and deep structures to
achieve a fast and yet accurate clustering. The overall computational complexity
of the algorithm, given the parallelization of the network training, is O(np).

2 Background:

2.1 Spectral Clustering

Mathematically speaking, suppose we have a dataset X with n data points,
{x1,x2, ...,xn}. We want to partition this set to k clusters. To do spectral clus-
tering, we first form the corresponding graph of the dataset, where the vertices
are the points, and then obtain the adjacency matrix of the graph, denoted by
W . Each entry of W shows the similarity between each pair of points. So W is a
symmetric matrix. The degree matrix of the graph, denoted by D, is a diagonal
matrix and its nonzero elements are summation over all the elements of rows (or
columns) of W , dii =

∑
j wij .

Based on D and W , the Laplacian matrix of the graph, denoted by L, is
obtained. There are different ways for defining the Laplacian matrix. The un-
normalized Laplacian matrix is defined as: L = D−W . To do spectral clustering,
we can get the final clusters of the dataset, by running k-means on the k eigen-
vectors of L, corresponding to the k smallest eigenvalues (the smallest eigenvalue
of L is 0 and its corresponding eigenvector, which is constant, is discarded). The
are some normalized versions of L, which usually yield a better clustering re-
sults. One of them is defined as Lnorm = D−1/2LD−1/2 [3]. We can also use the

3

k eigenvectors corresponding to the k smallest eigenvalues of Lnorm (or equiva-
lently k largest eigenvalues of Lnorm = D−1/2WD−1/2, according to [11]).

2.2 Autoencoders and eigendecomposition

The relation between autoencoder and eigendecomposition was first revealed
in Hinton and Salakhutdinov’s paper [8]. Consider the Principal Component
Analysis (PCA) problem. We would like to find a low-dimensional representation
of data, denoted by Z, which preserves the variation of the original data, denoted
by X, as much as possible. Suppose U is the linear transformation for PCA
problem, which projects the data points in a low-dimensional space, Z = U>X.
To keep the maximum variation of the data, it is known that, the basis of the low-
dimensional space (or columns of matrix U) are the eigenvectors of the covariance
matrix, CovX = XX>, corresponding to the largest eigenvalues. PCA can also
interpreted as finding a linear transformation that minimizes the reconstruction
loss, i.e.

min
U
‖ X − UZ ‖2 (1)

The above objective function is exactly used in conventional autoencoders.
In fact, a single layer autoencoder with no nonlinearity spans the same low-
dimensional space as its latent space. However, deep autoencoders are capable
of finding better low-dimensional representations than PCA.

Training an autoencoder using backpropagation is much faster than solving
the eigen decomposition problem. In [14], the authors used autoencoders for
graph clustering. Instead of using an actual data point as the input of the au-
toencoder, they use vector of similarity of that point with other points. Their
results show benefit of the model compared to some rival model, in terms of
Normalized Mutual Information (NMI) criterion. However, since the length of
the similarity vector is equal to the number of data points, n, extending the idea
of this work for large datasets, with hundred of thousands or even million data
points, is not feasible.

Inspired by these works, we introduce a simple, but fast and efficient algo-
rithm for spectral clustering using autoencoders. In the next section we describe
the model.

3 Model Description

As described in the previous section, spectral clustering can be done by de-
composing the eigenvalues and eigenvectors of Lnorm = D−1/2WD−1/2. In our
work, we do this decomposition using an autoencoder. Instead of original fea-
ture vectors, we represent each data point by its similarity to other data points.
However, instead of calculating the similarity of a given data point with all other

4

data points and forming a vector of length n, we only consider some landmarks
and compute the similarity of the points with these landmarks. Lets denote the
p selected landmarks (p� n) by {`1, `2, ..., `n}. Then we compute the similarity
of all data points with those landmarks and form a p×n matrix W . In this work,
we used Gaussian kernel as the similarity measure between the points, i.e.:

wij = exp(−‖ `i − xj ‖2

σ
) (2)

where σ is the parameter of the model. To make the model more robust, we
always set σ to be the median of the distance between data points and landmarks.

σ = median{‖ `i − xj ‖2}p,ni,j=1 (3)

This way, we also guarantee that the value of similarities are well spread in [0, 1]
interval. Each column of matrix W , denoted by wi’s, represents a data point in
the original set X based on its similarity to the landmarks. Constructing matrix
W takes O(npd) (d being the number of features), which is inevitable in all sim-
ilar algorithms. However, our main contribution is in decreasing computational
cost in decomposition step.

Next, we have to form the Laplacian matrix. We should notice that Lnorm =
D−1/2WD−1/2 is no longer a valid matrix, since W is p×n. Now, we are looking
for a Laplacian matrix that can be written in the form of Lnorm = SS>, so that
we can use S as the input to our autoencoder in order to eigen decomposition.
To do so, we define another matrix M = W>W . Based on this definition, M is
also a similarity matrix over the data points. However, since mij = w>i wj , M is
a more local measure than W , which is a good property for spectral clustering.

The diagonal matrixD can be obtained by summing over elements in columns
of M . However, since our goal in this work is to minimize the computational
cost of the algorithm, we would like to avoid computing M , directly, which has
a computation cost of O(n2p). Instead, we compute D another way. In fact, we
know dii =

∑
imij =

∑
i w
>
i wj . We can write this as follows:

dii =
n∑

j=1

mij =
n∑

j=1

w>i wj = w>i
n∑

j=1

wj = w>i w
s (4)

where ws is a p × 1 vector and its kth elements is a sum over elements in the
kth row of W . Therefore, D can be written as:

D = diag(W>ws) (5)

Note that calculation of ws and D this way has complexity of O(np) +O(np) =
O(np), which is a significant improvement compared to O(n2p).

We can then obtain the Laplacian matrix:

 Lnorm = D−1/2MD−1/2 = D−1/2W>WD−1/2 (6)

5

2/1-=WDS

input to the
k-means

~
S

Fig. 1: Input to the network is WD−1/2 and k-means is performed in the latent
space

By putting S = WD−1/2 as the input of our autoencoder, we can start
training the network. The objective function for training the autoencoder is
minimizing the error of reconstructing S. After training the network, we obtain
the representation of all data points in the latent space and run k-means on the
latent space. Again, instead of computing WD−1/2, we can simply multiply each

diagonal element of D−1/2 by the corresponding column of W , i.e. si = d
−1/2
ii wi.

This operation also has computational complextiy O(np).

Figure 1 shows the proposed model. The objective function for training the
autoencoder, as described above, is to minimize the euclidean distance between
the input and the output of the network, i.e. S and S̃. Training a network can
be done very efficiently using backpropagation and mini-batch gradient descent,
if the number of hidden units in each layer be in order of p, which is the case.
Furthermore, in contrast to eigen decomposition problem, the training phase can
be easily distributed over several machines (or cores). These two facts together
helps us to keep the computational complexity of decomposition step in O(np).

Algorithm 1 describes the steps of the proposed method. Note that the p
landmarks can be obtained in different ways. They can be randomly sampled
from the original dataset or be the centroids of p clusters of the dataset by
running k-means or be picked using column subset selection methods, e.g. [5].

Algorithm 1 Spectral Clustering using Autoencoders and Landmarks

Input: Dataset X with n samples {x1,x2, ...,xn}
Output: k clusters of the dataset
1: Select p landmarks
2: Compute the similarities between data points and landmarks and store

them in matrix W
3: Compute the degree matrix: D = diag(W>ws)

4: Compute S, the input to the autoencoder: si = d
−1/2
ii wi

5: Train an autoencoder using S as its input
6: Run k-means on the latent space of the trained autoencoder

6

4 Experiment Results

In the following two subsections, we present the results of applying our clustering
algorithm on different sets of data. In all of these experiments, the autoencoder
has 5 hidden layers between input and output layer. Only number of units in
the layers changes for different datasets. The activation function for all hidden
layer is ReLU, except the middle layer that has linear activation. The activation
for output layer is sigmoid.

4.1 Toy Datasets

To demonstrate the performance of the proposed method, we first show the
results for some small 2-dimensional datasets. Figure 3 shows the performance
of the algorithm on four different datasets. As we can see in this figure, the
natural clusters of the data have been detected by a high accuracy. Number of
landmarks for all of these experiments is set to 200, and they are drawn randomly
from the datasets. For all of these experiments, number of units in the hidden
layers is: 64, 32, 2, 32, and 64, respectively.

(a) (b) (c)
#

(d)

Fig. 2: Clustering using the proposed method: (a) Two-moon dataset, n = 4000
(b) Two-circle dataset n = 4500 (c) Moon-circle dataset n = 4000 (d) Concentric
rings n = 3000

4.2 Real-World Datasets

In this section we evaluate the proposed algorithm with more challenging and
larger datasets. To measure the performance here, we use Clustering Purity (CP)
criterion. CP is defined for a labeled dataset as a measure of matching between
classes and clusters. If {C1, C2, ..., CL} are L classes of a dataset X of size n, then
a clustering algorithm, A, which divides X into K clusters {X1, X2, ..., XK} has
CP(A, X) as:

CP(A, X) =
1

n

K∑
j=1

max
i
|Ci ∩Xj |. (7)

Table 1 contains a short description about each of the datasets.

In table 2, we can compare the performance of our proposed algorithm, SCAL
(Spectral Clustering with Autoencdoer and Landmarks), with some other clus-
tering algorithms. SCAL has two variants: 1) SCAL-R where landmarks are se-
lected randomly, 2) SCAL-K where landmarks are centroids of k-means. LSC-R
and LSC-K are methods from [1], which also uses landmarks for spectral cluster-
ing. Based on this table, SCAL-K outperforms SCAL-R in almost all cases. As

7

Dataset size (n) # of classes Description

MNIST 60000 10 28 × 28 grayscale images of digits
Seismic 98528 3 Types of moving vehicle in a wireless sensor network
CIFAR-10 50000 10 32 × 32 colored images of 10 different objects
LetterRec 20000 26 Capital letters in English alphabet

Table 1: Specification of the datasets

we increase the number of landmarks, the performance improves, and in some
cases we get better result than original spectral clustering, which is an interest-
ing observation. This may suggest that deep autoencoders are able to extract
features that are more useful for clustering, compared to shallow structures. An-
other observation is that when we increase p, gap between SCAL-R and SCAL-K
becomes smaller. This suggests that if we choose p to be large enough (but still
much smaller than n), even random selection of the landmark does not degrade
the performance too much.

Algorithm MNIST Seismic CIFAR-10 LetterRec
Spectral Clustering 71.54 66.68 60.13 33.19
k-means 57.31 62.82 40.12 30.01
LSC-R (p = 500) 62.94 66.19 47.16 29.44
LSC-K (p = 500) 68.10 67.71 50.40 31.59
SCAL-R (p = 500) 64.13 64.41 49.41 29.52
SCAL-K (p = 500) 69.14 68.43 54.64 32.88
SCAL-R (p = 1000) 70.61 67.55 56.19 33.94
SCAL-K (p = 1000) 72.98 68.61 58.02 34.70

Table 2: Performance of different clustering algorithms in terms of CP. p shows
the number of landmarks. For all of these result we used 10 epochs of data.

Figures below show the performance and runtime of the algorithm versus
LSC-R and LSC-K methods, as a function of number of landmarks.

number of landmarks
200 400 600 800 1000

C
lu

st
er

in
g

 P
u

ri
ty

 (
%

)

50

55

60

65

70

75

LSC-R
LSC-K
SCAL-R
SCAL-K

(a)
number of landmarks

200 400 600 800 1000

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

0

20

40

60

80

100

SCAL-R
LSC-R

(b)

Fig. 3: Performance of different methods versus number of landmarks (a) cluster-
ing purity (b) normalized run time; SCAL-K and LSC-K have similar behavior,
since they just have an additional overhead

8

5 Conclusion
We introduced a novel algorithm using landmarks and deep autoencoders, to
perform spectral clustering efficiently. The complexity of the algorithm is O(np),
which is much faster than the original spectral clustering algorithm as well as
some other approximation methods. Our experiment shows that, despite the gain
in computation speed, there is no or limited loss in clustering performance.

References

[1] Chen, X., Cai, D.: Large scale spectral clustering with landmark-based represen-
tation. In: Twenty-fifth AAAI Conference on Artificial Intelligence (2011)

[2] Choromanska, A., Jebara, T., Kim, H., Mohan, M., Monteleoni, C.: Fast spectral
clustering via the nyström method. In: International Conference on Algorithmic
Learning Theory. pp. 367–381. Springer (2013)

[3] Chung, F.R.: Spectral graph theory, vol. 92. American Mathematical Soc. (1997)
[4] Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph

partitioning. In: Proceedings of the seventh ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. pp. 269–274. ACM (2001)

[5] Farahat, A.K., Elgohary, A., Ghodsi, A., Kamel, M.S.: Greedy column subset
selection for large-scale data sets. Knowledge and Information Systems 45(1), 1–
34 (2015)

[6] Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nys-
trom method. IEEE transactions on pattern analysis and machine intelligence
26(2), 214–225 (2004)

[7] Gittens, A., Kambadur, P., Boutsidis, C.: Approximate spectral clustering via
randomized sketching. Ebay/IBM Research Technical Report (2013)

[8] Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

[9] Li, M., Lian, X.C., Kwok, J.T., Lu, B.L.: Time and space efficient spectral cluster-
ing via column sampling. In: Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. pp. 2297–2304. IEEE (2011)

[10] Ng, A.Y., Jordan, M.I., et al.: On spectral clustering: Analysis and an algorithm.
In: Advances in neural information processing systems. p. 849856 (2002)

[11] Ng, A.Y., et al.: On spectral clustering: Analysis and an algorithm. In: Advances
in Neural Information Processing Systems (2002)

[12] Paccanaro, A., Casbon, J.A., Saqi, M.A.: Spectral clustering of protein sequences.
Nucleic acids research 34(5), 1571–1580 (2006)

[13] Shao, M., Li, S., Ding, Z., Fu, Y.: Deep linear coding for fast graph clustering. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

[14] Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for
graph clustering. In: Twenty-Eighth AAAI Conference on Artificial Intelligence
(2014)

[15] White, S., Smyth, P.: A spectral clustering approach to finding communities in
graphs. In: Proceedings of the 2005 SIAM international conference on data mining.
pp. 274–285. SIAM (2005)

[16] Williams, C.K., Seeger, M.: Using the nyström method to speed up kernel ma-
chines. In: Proceedings of the 13th International Conference on Neural Informa-
tion Processing Systems. pp. 661–667. MIT press (2000)

[17] Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 907–916. ACM (2009)

	Fast Spectral Clustering Using Autoencoders and Landmarks
	1 Introduction
	2 Background:
	2.1 Spectral Clustering
	2.2 Autoencoders and eigendecomposition

	3 Model Description
	4 Experiment Results
	4.1 Toy Datasets
	4.2 Real-World Datasets

	5 Conclusion

