
Quantum algorithms for computing short discrete

logarithms and factoring RSA integers

Martin Eker̊a∗, † Johan H̊astad∗

February 2, 2017

Abstract

In this paper we generalize the quantum algorithm for computing short
discrete logarithms previously introduced by Eker̊a [2] so as to allow for
various tradeoffs between the number of times that the algorithm need be
executed on the one hand, and the complexity of the algorithm and the
requirements it imposes on the quantum computer on the other hand.

Furthermore, we describe applications of algorithms for computing
short discrete logarithms. In particular, we show how other important
problems such as those of factoring RSA integers and of finding the order
of groups under side information may be recast as short discrete logarithm
problems. This immediately gives rise to an algorithm for factoring RSA
integers that is less complex than Shor’s general factoring algorithm in
the sense that it imposes smaller requirements on the quantum computer.

In both our algorithm and Shor’s algorithm, the main hurdle is to
compute a modular exponentiation in superposition. When factoring an n
bit integer, the exponent is of length 2n bits in Shor’s algorithm, compared
to slightly more than n/2 bits in our algorithm.

1 Introduction

In a groundbreaking paper [5] from 1994, subsequently extended and revised
in a later publication [6], Shor introduced polynomial time quantum computer
algorithms for factoring integers over Z and for computing discrete logarithms
in the multiplicative group F∗

p of the finite field Fp.
Although Shor’s algorithm for computing discrete logarithms was originally

described for F∗
p, it may be generalized to any finite cyclic group, provided the

group operation may be implemented efficiently using quantum circuits.

1.1 Recent work

Eker̊a [2] has introduced a modified version of Shor’s algorithm for computing
short discrete logarithms in finite cyclic groups.

Unlike Shor’s original algorithm, this modified algorithm does not require
the order of the group to be known. It only requires the logarithm to be short;
i.e. it requires the logarithm to be small in relation to the group order.
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The modified algorithm is less complex than Shor’s general algorithm when
the logarithm is short. This is because the main hurdle in both algorithms is to
compute a modular exponentiation in superposition.

In the case where the group order is of length n bits and the logarithm sought
is of length m≪ n bits bits, Eker̊a’s algorithm exponentiates two elements to
exponents of size 2m bits and m bits respectively. In Shor’s algorithm, both
exponents are instead of size n≫ m bits.

This difference is important since it is seemingly hard to build and oper-
ate large and complex quantum computers. If the complexity of a quantum
algorithm may be reduced, in terms of the requirements that it imposes on the
quantum computer, this may well mean the difference between being able to
execute the algorithm and not being able to execute the algorithm.

1.2 Our contributions in this paper

In this paper, we generalize the algorithm of Eker̊a for computing short discrete
logarithms by considering the setting where the quantum algorithm is executed
multiple times to yield multiple partial results. This enables us to further reduce
the size of the exponent to only slightly more than m bits.

We then combine these partial results using lattice-based techniques in a
classical post-processing stage to yield the discrete logarithm. This allows for
tradeoffs to be made between the number of times that the algorithm need
be executed on the one hand, and the complexity of the algorithm and the
requirements that it imposes on the quantum computer on the other hand.

Furthermore, we describe applications of algorithms for computing short
discrete logarithms. In particular, we show how other important problems such
as those of factoring RSA integers and of finding the order of groups under
side information may be recast as short discrete logarithm problems. By RSA
integer we mean an integer that is the product of two primes of similar size.

This immediately gives rise to an algorithm for factoring RSA integers that
is less complex than Shor’s original general factoring algorithm in terms of the
requirements that it imposes on the quantum computer.

When factoring an n bit integer using Shor’s algorithm an exponentiation
is performed to an exponent of length 2n bits. In our algorithm, the exponent
is instead of length ( 1

2 + 1
s )n bits where s ≥ 1 is a parameter that may assume

any integer value. As we remarked in the previous section, this reduction in
complexity may well mean the difference between being able to execute and not
being able to execute the algorithm.

1.3 Overview of this paper

In section 2 below we introduce some notation and in section 3 we provide a
brief introduction to quantum computing.

In section 4 we proceed to describe our generalized algorithm for computing
short discrete logarithms and in section 5 we discuss interesting applications for
our algorithm and develop a factoring algorithm for RSA integers. We conclude
the paper and summarize our results in section 6.
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2 Notation

In this section, we introduce some notation used throughout this paper.

• u mod n denotes u reduced modulo n and constrained to the interval

0 ≤ u mod n < n.

• {u}n denotes u reduced modulo n and constrained to the interval

−n/2 ≤ {u}n < n/2.

• | a+ ib | =
√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a+ ib

which is equivalent to the absolute value of a when b is zero.

• If ~u = (u0, . . . , un−1) ∈ Rn is a vector then

| ~u | =
√
u20 + . . .+ u2n−1

denotes the Euclidean norm of ~u.

3 Quantum computing

In this section, we provide a brief introduction to quantum computing. The
contents of this section is to some extent a layman’s description of quantum
computing, in that it may leave out or overly simplify important details.

There is much more to be said on the topic of quantum computing. However,
such elaborations are beyond the scope of this paper. For more information, the
reader is instead referred to [1]. The extended paper [6] by Shor also contains
a very good introduction and many references to the literature.

3.1 Quantum systems

In a classical electronic computer, a register that consists of n bits may assume
any one of 2n distinct states j for 0 ≤ j < 2n. The current state of the register
may be observed at any time by reading the register.

In a quantum computer, information is represented using qubits; not bits. A
register of n qubits may be in a superposition of 2n distinct states. Each state
is denoted | j 〉 for 0 ≤ j < 2n and a superposition of states, often referred to as
a quantum system, is written as a sum

|Ψ 〉 =

2n−1∑
j=0

cj | j 〉 where cj ∈ C and

2n−1∑
j=0

| cj |2 = 1

that we shall refer to as the system function.
Each complex amplitude cj may be written on the form cj = aje

iθj , where
aj ∈ R is a non-negative real amplitude and 0 ≤ θj < 2π is a phase, so the
system function may equivalently be written on the form

|Ψ 〉 =

2n−1∑
j=0

aje
iθj | j 〉 where

2n−1∑
j=0

a2j = 1.
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3.2 Measurements

Similar to reading a register in a classical computer, the qubits in a register may
be observed by measuring the quantum system.

The result of such a measurement is to collapse the quantum system, and
hence the system function, to a distinct state. The probability of the system
function |Ψ 〉 collapsing to | j 〉 is | cj |2 = a2j .

3.3 Quantum circuits

It is possible to operate on the qubits that make up a quantum system using
quantum circuits. Such circuits are not entirely dissimilar from the electrical
circuits used to perform operations on bit registers in classical computers.

Given a quantum system in some known initial state, the purpose of a quan-
tum circuit is to amplify the amplitudes of a set of desired states, and to sup-
press the amplitudes of all other states, so that when the system is observed,
the probability is large that it will collapse to a desired state.

3.4 The quantum Fourier transform

In Shor’s algorithms, that are the focus of this paper, the discrete quantum
Fourier transform (QFT) is used to to achieve amplitude amplification by means
of constructive interference.

The QFT maps each state in an n qubit register to

| j 〉 QFT−−−→ 1√
2n

2n−1∑
k=0

e2πi jk/2
n

| k 〉

so the QFT maps the system function

|Ψ 〉 =

2n−1∑
j=0

cj | j 〉
QFT−−−→ 1√

2n

2n−1∑
j=0

2n−1∑
k=0

cj e
2πi jk/2n | k 〉 .

3.4.1 Constructive interference

If the above system is observed, the probability of it collapsing to k is

1

2n
·

∣∣∣∣∣∣
2n−1∑
j=0

cj e
2πi jk/2n

∣∣∣∣∣∣
2

.

Perceive the terms in the sum as vectors in C. If the vectors are point in
approximately the same direction, then the norm of their sum is likely to be
great giving rise to a large probability. For k such that this is indeed the case,
constructive interference is said to arise.

The claim below summarizes the notion of constructive interference that we
use in this paper.

Claim 1. Let θj for 0 ≤ j < N be phase angles such that | θj | ≤ π
4 . Then∣∣∣∣∣∣

N−1∑
j=0

eiθj

∣∣∣∣∣∣
2

≥ N2

2
.
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Proof. ∣∣∣∣∣∣
N−1∑
j=0

eiθj

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N−1∑
j=0

(cos θj + i sin θj)

∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣
N−1∑
j=0

cos θj

∣∣∣∣∣∣
2

≥ N2

2

since for j on the interval 0 ≤ j < N we have | θj | ≤ π
4 which implies

1√
2
≤ cos θj ≤ 1

and the claim follows. �

4 Computing short discrete logarithms

In this section, we describe a generalization of the algorithm for computing short
discrete logarithms previously introduced by Eker̊a [2].

To describe the algorithm we first formally define the discrete logarithm
problem and introduce some associated notation.

4.1 The discrete logarithm problem

Let G under � be a group of order r generated by g, and let

x = [d] g = g � g � · · · � g � g︸ ︷︷ ︸
d times

.

Given x, a generator g and a description of G and � the discrete logarithm
problem is to compute d = logg x.

The bracket notation that we have introduced above is commonly used in
the literature to denote repeated application of the group operation regardless
of whether the group is written multiplicatively or additively.

4.2 Algorithm overview

The generalized algorithm for computing short discrete logarithms consists of
two stages; an initial quantum stage and a classical post-processing stage.

The initial quantum stage is described in terms of a quantum algorithm, see
section 4.3, that upon input of g and x = [d] g yields a pair (j, k). The classical
post-processing stage is described in terms of a classical algorithm, see section
4.4, that upon input of s ≥ 1 “good” pairs computes and returns d.

The parameter s determines the number of good pairs (j, k) required to
successfully compute d. It furthermore controls the sizes of the index registers
in the algorithm, and thereby the complexity of executing the algorithm on a
quantum computer and the sizes of and amount of information on d contained
in the two components j, k of each pair.

In the special case where s = 1 the generalized algorithm is identical to the
algorithm in [2]. A single good pair then suffices to compute d.

By allowing s to be increased, the generalized algorithm enables a tradeoff
to be made between the requirements imposed by the algorithm on the quantum
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computer on the one hand, and the number of times it needs to be executed
and the complexity of the classical post-processing stage on the other hand.

We think of s as a small constant. Thus, when we analyze the complexity
of the algorithm, and in particular the parts of the algorithm that are executed
classically, we can neglect constants that depend on s.

4.3 The quantum algorithm

Let m be the smallest integer such that 0 < d < 2m and let ` be an integer
close to m/s. Provided that the order r of g is at least 2`+m+2`d, the quantum
algorithm described in this section will upon input of g and x = [d] g compute
and output a pair (j, k).

A set of such pairs is then input to the classical algorithm to recover d.

1. Let

|Ψ 〉 =
1√

22`+m

2`+m−1∑
a=0

2`−1∑
b=0

| a 〉 | b 〉 | 0 〉 .

where the first and second registers are of length `+m and ` qubits.

2. Compute [a] g � [−b]x and store the result in the third register

|Ψ 〉 =
1√

22`+m

2`+m−1∑
a=0

2`−1∑
b=0

| a, b, [a] g � [−b]x 〉

=
1√

22`+m

2`+m−1∑
a=0

2`−1∑
b=0

| a, b, [a− bd] g 〉 .

3. Compute a QFT of size 2`+m of the first register and a QFT of size 2` of
the second register to obtain

|Ψ 〉 =
1√

22`+m

2`+m−1∑
a=0

2`−1∑
b=0

| a, b, [a− bd] g 〉 QFT−−−→

1

22`+m

2`+m−1∑
a, j=0

2`−1∑
b, k=0

e 2πi (aj+2mbk)/2`+m

| j, k, [a − bd] g 〉 .

4. Observe the system in a measurement to obtain (j, k) and [e] g.

4.3.1 Analysis of the probability distribution

When the system above is observed, the state | j, k, [e] g 〉, where e = a − bd, is
obtained with probability

1

22(2`+m)
·

∣∣∣∣∣∑
a

∑
b

exp

[
2πi

2`+m
(aj + 2m bk)

] ∣∣∣∣∣
2
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where the sum is over all pairs (a, b) that produce this specific e. Note that the
assumptions that the order r ≥ 2`+m + 2`d imply that no reduction modulo r
occurs when e is computed.

In what follows, we re-write the above expression for the probability on a
form that is easier to use in practice.

1. Since e = a− bd we have a = e+ bd so the probability may be written

1

22(2`+m)
·

∣∣∣∣∣∑
b

exp

[
2πi

2`+m
((e+ bd)j + 2mbk)

] ∣∣∣∣∣
2

.

where the sum is over all b in { 0 ≤ b < 2` | 0 ≤ a = e+ bd < 2`+m }.

2. Extracting the term containing e yields

1

22(2`+m)
·

∣∣∣∣∣∑
b

exp

[
2πi

2`+m
b(dj + 2mk)

] ∣∣∣∣∣
2

.

3. Centering b around zero yields

1

22(2`+m)
·

∣∣∣∣∣∑
b

exp

[
2πi

2`+m
(b− 2`−1)(dj + 2mk)

] ∣∣∣∣∣
2

.

4. This probability may be written

1

22(2`+m)
·

∣∣∣∣∣∑
b

exp

[
2πi

2`+m
(b− 2`−1){dj + 2mk}2`+m

] ∣∣∣∣∣
2

.

since adding or subtracting multiples of 2`+m has no effect; it is equivalent
to shifting the phase angle by a multiple of 2π.

4.3.2 The notion of a good pair (j, k)

By claim 1 the sum above is large when | {dj + 2mk}2`+m | ≤ 2m−2 since this
condition implies that the angle is less than or equal to π/4.

This observation serves as our motivation for introducing the below notion
of a good pair, and for proceeding in the following sections to lower-bound the
number of good pairs and the probability of obtaining any specific good pair.

Definition 1. A pair (j, k), where j is an integer such that 0 ≤ j < 2`+m and
is said to be good if

| {dj + 2mk}2`+m | ≤ 2m−2.

Note that j uniquely defines k as k gives the ` high order bits of dj modulo
2`+m.
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4.3.3 Lower-bounding the number of good pairs (j, k)

Lemma 1. There are at least 2`+m−1 different j such that there is a k such
that (j, k) is a good pair.

Proof. For a good pair

| {dj + 2mk}2`+m | = | {dj}2m | ≤ 2m−2 (1)

and for each j that satisfies (1) there is a unique k such that (j, k) is good.
Let 2κ be the greatest power of two that divides d. Since 0 < d < 2m it must

be that κ ≤ m − 1. As j runs through all integers 0 ≤ j < 2`+m, the function
dj mod 2m assumes the value of each multiple of 2κ exactly 2`+κ times.

Assume that κ = m − 1. Then the only possible values are 0 and 2m−1. Only
zero gives rise to a good pair. With multiplicity there are 2`+κ = 2`+m−1

integers j such that (j, k) is a good pair.

Assume that κ < m−1. Then only the 2 ·2m−κ−2+1 values congruent to values
on [−2m−2, 2m−2] are such that | {dj}2m | ≤ 2m−2. With multiplicity 2`+κ there
are 2`+κ · (2 · 2m−κ−2 + 1) ≥ 2`+m−1 integers j such that (j, k) is a good pair.

In both cases there are at least 2`+m−1 good pairs and so the lemma follows. �

4.3.4 Lower-bounding the probability of a good pair (j, k)

To lower-bound the probability of a good pair we first need to lower-bound the
number of pairs (a, b) that yield a certain e.

Definition 2. Let Te denote the number of pairs (a, b) such that

e = a− bd

where a, b are integers on the intervals 0 ≤ a < 2`+m and 0 ≤ b < 2`.

Claim 2.

| e = a− bd | < 2`+m

Proof. The claim follows from 0 ≤ a < 2`+m, 0 ≤ b < 2` and d < 2m. �

Claim 3.

2`+m−1∑
e=−2`+m

Te = 22`+m.

Proof. Since a, b may independently assume 2`+m and 2` values, there are 22`+m

distinct pairs (a, b). From this fact and claim 2 the claim follows. �

Claim 4.

2`+m−1∑
e=−2`+m

T 2
e ≥ 23`+m−1.

8



Proof. The claim follows from the Cauchy–Schwarz inequality and claim 3 since

22(2`+m) =

 2`+m−1∑
e=−2`+m

Te

2

≤

 2`+m−1∑
e=−2`+m

12

 2`+m−1∑
e=−2`+m

T 2
e

 .

�

We are now ready to demonstrate a lower-bound on the probability of obtaining
a good pair using the above definition and claims.

Lemma 2. The probability of obtaining any specific good pair (j, k) from a
single execution of the algorithm in section 4.3 is at least 2−m−`−2.

Proof. For a good pair∣∣∣∣ 2π

2`+m
(b− 2`−1) {dj + 2mk}2`+m

∣∣∣∣ ≤ 2π

2`+2

∣∣ b− 2`−1
∣∣ ≤ π

4

for any integer b on the interval 0 ≤ b < 2`. It therefore follows from claim 1
that the probability of observing (j, k) and [e] g is at least

1

22(2`+m)
·

∣∣∣∣∣∑
b

exp

[
2πi

22`
(b− 2`−1) {dj + 2mk}2`+m

] ∣∣∣∣∣
2

≥ T 2
e

2 · 22(2`+m)

Summing this over all e and using claim 4 yields

2`+m−1∑
e=−2`+m

T 2
e

2 · 22(2`+m)
≥ 2−m−`−2

from which the lemma follows. �

We note that by Lemma 1 and Lemma 2 the probability of the algorithm
yielding a good pair as a result of a single execution is at least 2−3. In the next
section, we describe how to compute d from a set of s good pairs.

4.4 Computing d from a set of s good pairs

In this section, we specify a classical algorithm that upon input of a set of s
distinct good pairs {(j1, k1), . . . , (js, ks)}, that result from multiple executions
of the algorithm in section 4.3, computes and outputs d.

The algorithm uses lattice-based techniques. To introduce the algorithm, we
first need to define the lattice L.

Definition 3. Let L be the integer lattice generated by the row span of
j1 j2 · · · js 1

2`+m 0 · · · 0 0
0 2`+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2`+m 0

 .
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The algorithm proceeds as follows to recover d from {(j1, k1), . . . , (js, ks)}.

1. Let ~v = ( {−2mk1}2`+m , . . . , {−2mks}2`+m , 0) ∈ Zs+1.

For all vectors ~u ∈ L such that

| ~u− ~v | <
√
s/4 + 1 · 2m

test if the last component of ~u is d. If so return d.

This test may be performed by checking if x = [d] g.

2. If d is not found in step 1 or the search is infeasible the algorithm fails.

As s is a constant, all vectors close to ~v can be found efficiently. We return to
the problem of there possibly being many close vectors in Lemma 3 below.

4.4.1 Rationale and analysis

For any m1, . . . , ms ∈ Z the vector

~u = ({dj1}2`+m +m12`+m, . . . , {djs}2`+m +ms2
`+m, d) ∈ L.

The above algorithm performs an exhaustive search of all vectors in L at distance
at most

√
s/4 + 1 · 2m from ~v to find ~u for some m1, . . . , ms. It then recovers

d as the second component of ~u. The search will succeed in finding ~u since

| ~u− ~v | =

√√√√ d2 +

s∑
i=1

({dji}2`+m +mi 2`+m − {−2mki}2`+m)
2

=

√√√√ d2 +

s∑
i=1

({dji + 2mki}2`+m)
2
<
√
s/4 + 1 · 2m

since 0 < d < 2m and |{dj+ 2mk}2`+m | ≤ 2m−2 by the definition of a good pair,
and since m1, . . . , ms may be freely selected to obtain equality.

Whether the search is computationally feasible depends on the number of
vectors in L that lie within distance

√
s/4 + 1 · 2m of ~v. This number is related

to the norm of the shortest vector in the lattice.
Note that the determinant of L is 2(`+m)s ≈ 2m(s+1). As the lattice is s+ 1-

dimensional we would expect the shortest vector to be of length about 2m. This
is indeed true with high probability.

Lemma 3. The probability that L contains a vector ~u = (u1, . . . us+1) with
|ui | < 2m−3 for 1 ≤ i ≤ s+ 1 is bounded by 2−s−1.

Proof. Take any integer ~u with all coordinates strictly bounded by 2m−3.
If 2κ is the largest power of two that divides us+1 then ui must also be

divisible by 2κ for ~u to belong to any lattice in the family. By family we mean
all lattices on the same form and degree as L, see definition 3. If it this is true
for all i then ~u belongs to L for 2sκ different values of (ji)

s
i=1.

There are 2(m−2−κ)(s+1) vectors ~u with all coordinates divisible by 2κ and
bounded in absolute value by 2m−3. We conclude that the total number of
lattices L that contain such a short vector is bounded by∑

κ

2(m−2−κ)(s+1)2κs ≤ 21+(m−2)(s+1).
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As the number of s tuples of good j is at least 2s(`+m−1), the lemma follows. �

Lemma 3 shows that with good probability the number of lattice points
that | ~u− ~v | <

√
s/4 + 1 is a constant that only depends on s and thus we can

efficiently find all such vectors.

4.5 Building a set of s good pairs

The probability of a single execution of the quantum algorithm in section 4.3
yielding a good pair is at least 2−3 by Lemma 1 and Lemma 2. Hence, if we
execute the quantum algorithm t = 8s times, we obtain a set of t pairs that we
expect contains at least s good pairs.

In theory, we may then recover d by executing the classical algorithm in
section 4.4 with respect to all

(
t
s

)
subsets of s pairs selected from this set. Since

s is a constant, this approach implies a constant factor overhead in the classical
part of the algorithm. It does not affect the quantum part of the algorithm. We
summarize these ideas in Theorem 1 below.

In practice, however, we suspect that it may be easier to recover d. First of
all, we remark that we have only established a lower bound on the probability
that a good pair is yielded by the algorithm. This bound is not tight and we
expect the actual probability to be higher than is indicated by the bound.

Secondly, we have only analyzed the probability of the classical algorithm in
section 4.4 recovering d under the assumption that all s pairs in the set input
are good. It might however well turn out to be true that the algorithm will
succeed in recovering d even if not all pairs in the input set are good.

4.6 Main result

In this subsection we summarize the above discussion in a main theorem. Again,
we stress that the approach outlined in the theorem is conservative.

Theorem 1. Let d be an integer on 0 < d < 2m, let s ≥ 1 be a fixed integer,
let ` be an integer close to m/s and let g be a generator of a finite cyclic group
of order r ≥ 2`+m + 2`d.

Then there exists a quantum algorithm that yields a pair as output when
executed with g and x = [d] g as input. The main operation in this algorithm is
an exponentiation of g in superposition to an exponent of length `+m bits.

If this algorithm is executed O(s) times to yield a set of pairs S, then there
exists a polynomial time classical algorithm that computes d if executed with all
unordered subsets of s pairs from S as input.

The proof of Theorem 1 follows from the above discussion.
Note that the order r of the group need not be explicitly known. It suffices

that the above requirement on r is met. Note furthermore that it must be
possible to implement the group operation efficiently on a quantum computer.

4.7 Implementation remarks

We have described the above algorithm in terms of it using two index registers.
Similarly, we have described the algorithm in terms of the quantum system

being initialized, of a quantum circuit then being executed and of the quantum
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system finally being observed in a measurement. However, this is not necessarily
the manner in which the algorithm would be implemented in practice on a
quantum computer.

For example, Mosca and Ekert [4] have described optimizations of Shor’s
general algorithm for computing discrete logarithm that allow the index registers
to be truncated. These optimizations, alongside other optimizations of Shor’s
original algorithm for computing discrete logarithms, may in many cases be
applicable also to our algorithm for computing short discrete logarithms. This
is due to the fact that the quantum stages are fairly similar.

Depending on the specific architecture of the quantum computer on which
the algorithm is to be implemented, it is likely that different choices will have
to be made with respect to how the implementation is designed and optimized.

In this paper we therefore describe our algorithm in the simplest possible
manner, without taking any of these optimizations into account.

5 Applications

In this section, we describe applications for the generalized algorithm for com-
puting short discrete logarithms introduced in the previous section.

5.1 Computing short discrete logarithms

Quantum algorithms for computing short discrete logarithms may be used to
attack certain instantiations of asymmetric cryptographic schemes that rely on
the computational intractability of this problem.

A concrete example of such an application is to attack Diffie-Hellman over
finite fields when safe prime groups are used in conjunction with short exponents.

The existence of efficient specialized algorithms for computing short discrete
logarithms on quantum computers should be taken into account when selecting
and comparing domain parameters for asymmetric cryptographic schemes that
rely on the computational intractability of the discrete logarithm problem.

For further details, the reader is referred to the extended rationale in [2] and
to the references to the literature provided in that paper.

5.2 Factoring RSA integers

In this section we describe how the RSA integer factoring problem may be recast
as a short discrete logarithm problem by using ideas from H̊astad et al. [3], and
the fact that our algorithm does not require the group order to be known.

This immediately gives rise to an algorithm for factoring RSA integers that
imposes smaller requirements on the quantum computer than Shor’s general
factoring algorithm.

5.2.1 The RSA integer factoring problem

Let p and q 6= p be two random odd primes such that 2n−1 < p, q < 2n. The
RSA integer factoring problem is then to factor N = pq into p and q.

The RSA integer factoring problem derives its name from Rivest, Shamir
and Adleman who proposed to base the widely deployed RSA cryptosystem on
the computational intractability of the RSA integer factoring problem.
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5.2.2 The factoring algorithm

Consider the multiplicative group Z∗
N to the ring of integers modulo N . This

group has order φ(N) = (p− 1)(q − 1). Let G be some cyclic subgroup to Z∗
N .

Then G has order φ(N)/t for some t | φ(N) such that t ≥ gcd(p− 1, q − 1).
In what follows below, we assume that φ(N)/t > (p+ q − 2)/2.

1. Let g be a generator of G. Compute x = g(N−1)/2. Then x ≡ g(p+q−2)/2.

2. Compute the short discrete logarithm d = (p+ q − 2)/2 from g and x.

3. Compute p and q by solving the quadratic equation

N = (2d− q + 2)q = 2(d+ 1)q − q2

where we use that 2d+ 2 = p+ q. This yields

p, q = c±
√
c2 −N where c = d+ 1.

We obtain p or q depending on the choice of sign.

To understand why we obtain a short logarithm, note that

N − 1 = pq − 1 = (p− 1) + (q − 1) + (p− 1)(q − 1)

from which it follows that (N − 1)/2 ≡ (p+ q− 2)/2 mod φ(N)/t provided that
the above assumption that φ(N)/t > (p+ q − 2)/2 is met.

The only remaining difficulties are the selection of the generator in step 1
and the computation of the short discrete logarithm in step 2.

5.2.3 Selecting the generator g

We may pick any cyclic subgroup G to Z∗
N for as long as its order φ(N)/t is

sufficiently large. It suffices that φ(N)/t > (p + q − 2)/2 and that the discrete
logarithm can be computed, see section 5.2.4 below for more information.

This implies that we may simply select an element g uniformly at random
on the interval 1 < g < N − 1 and use it as the generator in step 1.

5.2.4 Computing the short discrete logarithm

To compute the short discrete logarithm in step 2, we use the algorithm in
section 4. This algorithm requires that the order

φ(N)/t ≥ 2`+m + 2`d ⇒ φ(N)/t ≥ 2`+m+1

where we have used that 0 < d < 2m. We note that

2n ≤ d = (p+ q − 2)/2 < 2n+1 ⇒ m = n+ 1.

Furthermore, we note that φ(N) = (p− 1)(q − 1) ≥ 22(n−1) which implies

φ(N)/t ≥ 22(n−1)/t ≥ 2`+m+1 = 2`+n+2 ⇒ t < 22(n−1)−(n+`+2) = 2n−`−4.

Recall that ` = m/s = (n + 1)/s where s ≥ 1. For random p and q, and a
randomly selected cyclic subgroup to Z∗

N , the requirement t < 2n−`−4 is hence
met with overwhelming probability for any s > 1.

We remark that further optimizations are possible. For instance the size of
the logarithm may be reduced by computing x = g(N−1)−2n since p, q > 2n−1.
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5.2.5 Generalizations

We note that the algorithm proposed in this section can be generalized.
In particular, we have assumed above that the two factors are of the same

length in bits as is the case for RSA integers. This requirement can be relaxed.
As long as the difference in length between the two factors is not too great, the
above algorithm will give rise a short discrete logarithm that may be computed
using our generalized algorithm in section 4.

5.3 Order finding under side information

In this section, we briefly consider the problem of computing the order of a
cyclic group G when a generator g for the group is available and when side
information is available in the form of an estimate of the group order.

5.3.1 The algorithm

Let G be a cyclic group of order r. Let r0 be a known approximation of the order
such that 0 ≤ r − r0 < 2m. The problem of computing the order r under the
side information r0 may then be recast as a short discrete logarithm problem:

1. Let g be a generator of G. Compute x = g−r0 . Then x ≡ gr−r0 .

2. Compute the short discrete logarithm d = r − r0 from g and x.

3. Compute the order r = d+ r0.

6 Summary and conclusion

In this paper we have generalized the quantum algorithm for computing short
discrete logarithms previously introduced by Eker̊a [2] so as to allow for various
tradeoffs between the number of times that the algorithm need be executed
on the one hand, and the complexity of the algorithm and the requirements it
imposes on the quantum computer on the other hand.

Furthermore, we have described applications for algorithms for computing
short discrete logarithms. In particular, we have shown how other important
problems such as those of factoring RSA integers and of finding the order of
groups under side information may be recast as short discrete logarithm prob-
lems. This immediately gives rise to an algorithm for factoring RSA integers
that is less complex than Shor’s general factoring algorithm in the sense that it
imposes smaller requirements on the quantum computer.

In both our algorithm and Shor’s algorithm, the main hurdle is to compute
a modular exponentiation in superposition. When factoring an n bit integer,
the exponent is of length 2n bits in Shor’s algorithm, compared to slightly more
than n/2 bits in our algorithm. We have made essentially two optimizations
that give rise to this improvement.

First, we gain a factor of two by re-writing the factoring problem as a short
discrete logarithm problem and solving it using our algorithm for computing
short discrete logarithms. One way to see this is that we know an approximation
N of the order φ(N). This gives us a short discrete logarithm problem and our
algorithm for solving it does not require the order to be known beforehand.
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Second, we gain a factor of two by executing the quantum algorithm multiple
times to yield a set of partial results. We then recover the discrete logarithm
d from this set in a classical post-processing step. The classical algorithm uses
lattice-based techniques. It constructs a lattice L and a vector ~v from the set
of partial results and recovers d by exploring vectors in L close to ~v.

6.1 Remarks on generalizations of these techniques

The second optimization above may seemingly be generalized and applied to
other quantum algorithms such as for example Shor’s algorithm for factoring
general integers. This allows a factor two to be gained.

We have not yet analyzed this case in detail but the idea is basically to
exponentiate a random group element to an exponent of length ` + m bits in
superposition, where the order r of the element is such that r < 2m and ` = m/s.

The quantum algorithm is executed multiple times to yield partial results in
the form of integers j1, j2, . . . that are such that | {ji r}2`+m | ≤ 2m−2.

In the classical post-processing step lattice-based techniques are then used
to extract the order. The lattice L is on the same form as in our algorithm, but
~v is now the zero vector, and we hence seek a short non-zero vector in L. The
last component of this vector is r.
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