Skip to main content

Improved Decomposition of Multiple-Control Ternary Toffoli Gates Using Muthukrishnan-Stroud Quantum Gates

  • Conference paper
  • First Online:
Reversible Computation (RC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Included in the following conference series:

Abstract

In conventional binary reversible circuit synthesis, reversible gates are decomposed into quantum gates using some standard quantum gate library. In recent years there has been increased attention in synthesis using ternary reversible gates since it leads to a reduction in the number of lines. However, very few works exist that address the problem of decomposing ternary reversible gates based on some ternary quantum gate library. Most of these works use Muthukrishnan-Stroud (M-S) gates for decomposition of ternary Toffoli gate, and they use a naive approach that requires an exponential (in number of control lines) number of M-S gates. Also the number of ancilla lines required is (\(c-1\)), where c is the number of control lines. The present paper proposes a method for decomposing ternary Toffoli gates to M-S gates that requires less number of ancilla lines, and also requires a number of M-S gates that is linear in c. A template-based post-decomposition optimization step has also been used to further reduce the number of M-S gates required. Decomposition results for up to 16 control lines have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu, S., Mandal, S.B., Chakrabarti, A., Sur-Kolay, S.: An efficient synthesis method for ternary reversible logic. In: International Symposium on Circuits and Systems (ISCAS), pp. 2306–2309 (2016)

    Google Scholar 

  2. Bennett, C.: Logical reversibility of computation. J. IBM Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  4. Khan, M.H.A.: Design of reversible/quantum ternary multiplexer and demultiplexer. In: Engineering Letters, pp. 174–178 (2006)

    Google Scholar 

  5. Khan, M.H.A., Perkowski, M.A., Khan, M.R., Kerntopf, P.: Ternary GFSOP minimization using Kronecker decision diagrams and their synthesis with quantum cascades. J. Multi Valued Logic Soft Comput. 11, 567–602 (2005)

    MATH  Google Scholar 

  6. Khan, M.H.A.: GFSOP-based ternary quantum logic synthesis. In: Proceedings of the SPIE 7797, Optics and Photonics for Information Processing IV, pp. 1–15 (2010)

    Google Scholar 

  7. Landauer, R.: Irreversibility and heat generation in the computing process. J. IBM Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Yang, G., Zheng, D.: Logic synthesis of ternary quantum circuits with minimal qutrits. J. Comput. 8(3), 1941–1946 (2013)

    Google Scholar 

  9. Lucac, M., Perkowski, M.A., Goi, H., Pivtoraiko, M., Yu, C.H., Chung, K., Jeech, H., Kim, B.G., Kim, Y.D.: Evolutionary approach to quantum and reversible circuits synthesis, artificial intelligence in logic design. Artif. Intell. Rev. 20(3), 361–417 (2003)

    Article  Google Scholar 

  10. Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(3), 436–444 (2008)

    Google Scholar 

  11. Miller, D.M., Dueck, G., Maslov, D.: A synthesis method for MVL reversible logic. In: 34th International Symposium on Multiple-Valued Logic (ISMVL), pp. 74–80 (2004)

    Google Scholar 

  12. Miller, D., Sasanian, Z.: Lowering the quantum gate cost of reversible circuits. In: Proceedings of the International Midwest Symposium on Circuits and Systems, pp. 260–263 (2010)

    Google Scholar 

  13. Muthukrishnan, A., Stroud Jr., C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62(5), 052309/1-8 (2000)

    Google Scholar 

  14. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Proceedings of the Design Automation Conference, pp. 36–41 (2012)

    Google Scholar 

  15. Yang, G., Song, X., Perkowski, M., Wu, J.: Realizing ternary quantum switching networks without ancilla bits. J. Phys. A: Math. Gen. 38, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, G., Xie, F., Song, X., Perkowski, M.: Universality of 2-qudit ternary reversible gates. J. Phys. A: Math. Gen. 39, 7763–7773 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rani, P.M.N., Kole, A., Datta, K., Sengupta, I. (2017). Improved Decomposition of Multiple-Control Ternary Toffoli Gates Using Muthukrishnan-Stroud Quantum Gates. In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics