

Vrije Universiteit Brussel

Efficient Matching in Heterogeneous Rule Engines
Kambona, Kennedy; Renaux, Thierry; De Meuter, Wolfgang

Published in:
Advances in Artificial Intelligence

DOI:
10.1007/978-3-319-60042-0_44

Publication date:
2017

License:
Unspecified

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Kambona, K., Renaux, T., & De Meuter, W. (2017). Efficient Matching in Heterogeneous Rule Engines. In M. Ali,
S. Benferhat, & K. Tabia (Eds.), Advances in Artificial Intelligence: From Theory to Practice - 30th International
Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017,
Proceedings (Vol. 10350, pp. 394-406). (Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10350 LNCS). Springer.
https://doi.org/10.1007/978-3-319-60042-0_44

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 24. Apr. 2024

https://doi.org/10.1007/978-3-319-60042-0_44
https://cris.vub.be/en/publications/efficient-matching-in-heterogeneous-rule-engines(cc2c0ac0-c8b8-4dc8-86ad-f0b8fd39826d).html
https://doi.org/10.1007/978-3-319-60042-0_44

Efficient Matching in Heterogeneous Rule Engines

Kennedy Kambona, Thierry Renaux?, and Wolfgang De Meuter

Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
{kkambona,trenaux,wdmeuter}@vub.ac.be

Abstract. Modern institutions seeking more complex software solutions
to represent knowledge in the Cloud are using rule-based systems that
serve several applications or clients. Rule-based systems hosted in the
Cloud are thus required to support its heterogeneous nature. However,
current systems only focus on techniques that isolate instances of rule
engines. This paper builds upon earlier work on scoped rule engines that
provide mechanisms for supporting shared heterogeneous contexts. We
present the scope-based hashing algorithm (SBH) that enables efficient
matching in scoped rule engines based on the Rete algorithm. SBH in-
troduces scoped hash tables in alpha memories that help in avoiding
unnecessary join tests that hamper performance. Our experimental re-
sults show that SBH offers significant improvements in efficiency during
the matching process of a heterogeneous rule engine. Consequently, SBH
significantly decreases the response time of rule engines in heterogeneous
environments having entities sharing the same knowledge base.

Keywords: Heterogeneity, rule engines, Rete algorithm, scoping

1 Introduction

As the Internet matures, modern institutions are seeking more complex software
solutions for their operations in cloud service providers. One area that is gaining
momentum is in the provision of complex services for knowledge representation
using rule-based definitions, e.g., IBM ODM Decision Server [6] and Amazon
IoT Rules [2]. Such rule-based systems (or RBS) are known to use complex
event processing for reasoning about events of interest to business applications.
A rule-based language is often used for programming definitions of event patterns
because rules are intuitively appealing to express [3].

Rule engines were fundamentally designed in the era where isolated com-
puting was prevalent: at the time, rule engines were programmed to encode a
localised set of rules and to work on homogeneous data [13]. Rule engines were
therefore characterised by a flat design space where activations could be observed
from all data without discriminating their sources. When deployed to hybrid or
heterogeneous environments, RBS need manual interventions to enforce rule and
data isolation [13]. Previously, the concept of isolation in modern rule engines
? Supported by a doctoral scholarship of the Agency for Innovation by Science and

Technology in Flanders (IWT), Belgium

2 IEA/AIE 2017

was manually enforced through the use of separate rule engines using rulebooks
or rule modules to separate instances of rulesets from different clients or event
sources. Recent work has provided a solution by introducing scoping in the rule
engine through the use of scoped rules [12]. Scoped rules support heterogeneous
RBS by exposing formalised mechanisms in which applications can perform data
isolation in rule definitions for different clients. Scoped rules keep isolation logic
cleanly separated from the application logic: the basic purpose of the rule is not
mixed with the logic required for distinguishing client data. The result is that
the logical intent of a rule becomes easier to understand by rule creators.

In this work we propose a novel improvement in rule engines that improves
matching efficiency in scope-aware RBS. Our technique involves an inventive op-
timisation to the popular Rete algorithm during the matching process, identified
as the most computationally-intensive execution phase of any Rete-based rule
engine [7]. The scope-based hashing (SBH) approach utilises the scoped hash
tables and fact metadata to exclusively and efficiently compute compatible data
that is relevant for computing joins in heterogenous environments.

The contributions of this work are as follows. We extend the work on scoped
inference engines with a novel algorithm that provides an optimisation to the
underlying Rete algorithm. In particular, our approach extends the Rete net-
work within an inference engine with scoped hash tables in the alpha memories
that are used to efficiently determine compatible data in heterogeneous contexts.
We further justify our scheme by performing an evaluation using a representa-
tive heterogeneous application backed by a rule engine utilising our approach,
comparing the results with the state-of-the-art.

2 Motivating Example

To motivate the concepts that this work proposes we present a practical scenario
of a security monitoring system deployed to serve a number of departments across
universities. A sample computer labs policy is defined below:

“All main campus master’s thesis students in the science faculty are

allowed extended access to computer labs in their own departments until

10pm weekdays while in the final stages of their theses (in the months

between March and August). Students in the department of computer

science are additionally allowed on the weekends between 10-16h.”

A typical structure of a university is depicted in Figure 1a. The structure
shows various entities as groups and users are connected to one or more groups in
the hierarchy. Staff and students are issued readable ID cards and are required to
scan their IDs on devices strategically placed at access points to gain entry. Every
access request on a device is relayed to a central server that logs and processes
the request according to the defined policies. Any granted accesses according
to the defined security policies should be promptly shown on the dashboard of
the security team’s interface. In this scenario, we have articulated around 40
such policies across different faculty and departments of universities. A service
provider can support several of such universities with their own policies.

Efficient Matching in Heterogeneous Rule Engines 3

physical

main+
campus

labs

classrooms

parking

medical+
campus+

research

science+
faculty

computer+
science

software+
engineering

biology

arts+
faculty

web+info+
systems

bioinformatics

(a)

Pattern'Matcher

Agenda

Rule'base Fact'base

Inference'Engine

(b)
Fig. 1: (a) Typical university group hierarchy – Represented as acyclic graphs of hier-
archies of departments for students and physical locations for scanning devices
(b) Rule engine architecture – Rules from clients are added to the global rule base and
event data as facts in the global fact base.

3 Reactive Rule Engine Architecture

The motivating example represents a typical reactive application that exposes
services to clients contributing data intermittently. It quickly becomes apparent
that the policies can be suitably captured in traditional rule-based syntax, and
the intermittent access requests from different student entities can be easily
captured and processed by a rule engine.

In this work we focus on the most computationally expensive phase in an
RBS, the matching process. Because the system reacts when the data is sent,
the approach should provide a data-driven mechanism for reasoning through
forward-chaining. In this work we therefore employ the most efficient algorithm
used in forward-chaining RBS, the Rete algorithm [9]. In a typical Rete-based
system (Figure 1b), rules are added into the rule base and event data from other
client devices such as sensors are constructed as facts and added into the fact
base. The inference engine contains the pattern matcher and the agenda which
employ Rete to determine which rule to fire given the current state of the engine.
A Rete inference engine converts rules into an acyclic graph with intermediate
memories that cache intermediate results. This eliminates extra work that would
otherwise need to be performed during each matching cycle.

4 Heterogeneity in Rule-Based Systems

This work proposes efficient matching in heterogeneous rule engines. Using the
motivating example we illustrate how current rule-based systems deal with het-
erogeneity and contrast it with recent work involving scoped engines.

4.1 Classic vs. Scoped Rule-based Systems

The lab access rule definition. The policy for science faculty students can
be represented in classic rules syntax as shown in Listing 1.1 and using scoped
rules in Listing 1.2.

They show a customised JSON Rules [10] syntax sent by a client (which
can be built intuitively using a graphical interface). The conditions capture the

4 IEA/AIE 2017

access request, the student making the request and the device scanned. The
test expressions confirm the time constraints of the policy. A separate rule can
be similarly designed to determine the second part of the policy specifically for
computer science students.

In classic rules there is need to determine if the student and device orig-
inate from the same department, to ensure the rule will not cause unintended
activations. This will avoid students from other faculties having access to the
labs they are not a member of (e.g., a student from the arts faculty gaining
access to a bioinformatics lab). Because the student can belong to any of the
sub-departments, the check needs to confirm if the student or device’s group is
a descendant of a faculty group. Classical approaches use compatibility checks
such as those in Line 6 and 7 of Listing 1.1 through relation facts that show a
group is related to a particular parent group.

Listing 1.1: Classic rule for lab access
1 {rulename: "MastersStudentsLabAccess",
2 conditions:[
3 {type:"accessreq", id: "?reqid", badge: "?badgid", time: "?t", device: "?devid"},
4 {$s: {type:"student", name: "?nam", badge: "?badgid", level: "master", group:"?stugrp"}},
5 {$d: {type:"accessdevice", id: "?devid", group:"?devgrp"}},
6 {type:"belongsTo" grp:"?devgrp", parent:"?pgrp"},
7 {type:"belongsTo" grp:"?stugrp", parent:"pgrp"},
8 {type:"$test", expr:"(month(?t) > 1 && month(?t) < 9 && hour(?t) > 10 && hour(?t) < 16 && isWeekend(?t)"}
9],

10 actions:[
11 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}
12]
13 }

Listing 1.2: Scoped rule for lab access
1 {rulename: "MastersStudentsLabAccess-Scoped",
2 conditions:[
3 {type:"accessreq", id: "?reqid", badge: "?badgid", time: "?t", device: "?devid"},
4 {$s: {type:"student", name: "?nam", badge: "?badgid", level: "master"}},
5 {$d: {type:"accessdevice", id: "?devid"}},
6 {type:"$test", expr:"(month(?t) > 1 && month(?t) < 9 && hour(?t) > 10 && hour(?t) < 16 && isWeekend(?t)"},
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}

10],
11 scopes: ["($s & $d) subgroupof science", "$d private labs"]
12 }

In contrast, scoped rules [12] extend rule syntax to support the definition of
flexible constructs that ensure data compatibility between instances of data from
different entities during matching. Listing 1.2 shows the same rule as Listing 1.1,
but with s special scopes construct in line 11 instead of conditions with relation
facts. The first scope definition specifies that the data for the rule to be matched
should be captured from the science group and any of its children or subgroups.
The second scope definition specifies that only device data from the group labs
should privately be matched.

Rete graph for lab access rule. The MasterStudentsLabAccess rule is de-
signed by a security staff member and sent to the server. The server builds a
Rete graph [9] from the rule, which we show in Figures 2 and 3. The graph per-
forms both intra-condition checks such as student, device etc. It also performs
inter-condition tests, e.g., in node 1 that makes sure that an access request is
matched with the student that made the request, propagating compatible data
as tokens to its children. Node 2 checks the same for the device.

Efficient Matching in Heterogeneous Rule Engines 5

Algorithm 1 Beta node left activation

function betanodeLeftReceive(node:n,token:

t)
facts n.alphaMemory.getFacts()
for each fact f in facts do

if n.joinTestPassed(t, f) then

tnew n.createNewToken(t, f)
n.sendTokenToChildren(tnew)

end if

end for

end function

1

s.badger.badge

2
r.dev d.devid

Alpha node
Alpha memory
Beta node
Beta memory

root

access
request student access

device belongsTo

3

4

b.grps.group

b.grpd.group

r.monthbetween323and38,3
r.time between3103and316,
isWeekend

5

terminal

Alpha Network

Beta Network

Fig. 2: Left activation and classic Rete graph for lab rule – Relation facts can distinguish
between entities in heterogeneous RBS.

Matching in the Rete graph. When a token is received at the left input of
any join node, a left activation is triggered that issues a request for all the items
in its right alpha memory to perform its inter-condition tests – this process is
also known as matching and the test is called a join. A similar process happens
on a right activation. The beta test nodes before the terminal node perform
processing to check for the time constraints of the policy on the accessrequest
fact. If a token passes the tests it reaches the terminal node and is added to the
agenda for activation of the policy rule, granting access to the student.

For a classic RBS (Figure 2), left-activating beta node 3 results in a need
to access all the items in the belongsTo alpha memory to find relation facts with
groups same as its student’s group. A similar process happens in beta node 4
for devices. This method and other similar approaches for finding compatible
data with heterogeneous users sharing the same knowledge base is inefficient
and quickly becomes cumbersome: the rule logic becomes difficult to follow and
processing is dominated by expensive join computations that are necessary to
distinguish incompatible facts from different users or user groups – like during
matching in nodes 3 and 4.

In a scoped RBS an internal representation of physical or logical organisa-
tions of clients is first precomputed, stored and maintained efficiently as an en-
coding that will be used to expeditiously process constraints used to enforce reen-
trancy within the inference engine. This is done by constructing a bit-vector en-

coding that allows for near-constant time scope checks during matching, thereby
reducing the processing overhead when isolating compatible data matches in het-
erogeneous contexts. The university group hierarchy in Figure 1a is converted
into the matrix encoding M

#

shown in Figure 4a through a process that is based
on Ait Kaci’s method in [1]. In the encoding, there is an entry at M

#(a,b) iff b
is an ancestor of a. The engine also automatically adds metadata to all facts
added to a client. For instance, if a device sends an access request, the fact is
automatically tagged with the device’s group when inserted to the rule engine.

6 IEA/AIE 2017

Algorithm 2 Betanode Left Activation with
Scopes

function scopedBetanodeLeftReceive(node :
n, token : t)

facts n.alphaMemory.getFacts()
for each fact f in facts do

if this.scopeCheckPassed(n,t,f) then

if n.joinTestPassed(t, f) then

tnew = n.createNewToken(t, f)
n.sendTokenToChildren(tnew)

end if

end if

end for

end function

1

s.badger.badge

2

r.dev d.devid

Alpha node
Alpha memory
Beta node
Beta memory

root

access
request

access
devicestudent

r.monthbetween121and18,1
r.time between1101and116,
isWeekend

3

terminal

Alpha Network

Beta Network

<s1private1'labs’1>
<s1subgroupof 'science'1>

<d1subgroupof 'science'1>

Fig. 3: Scoped left activation and scoped Rete graph – Scoped approach adds scope
checks to beta nodes at opportune node locations.

� physical research main- medical science arts labs class park compsci biology soft websys bioinfo �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
physical 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
research 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
main 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

medical 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
science 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
arts 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
labs 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
clas 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
park 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

compsci 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0
biology 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
soft 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0

websys 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
bioinfo 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a)

websys 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0

science 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 &
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 (science)

(b)

Fig. 4: (a) Matrix encoding M# – The rows and columns refer to groups in a hierarchy.
(b) Example of a bitwise scope check operation – The operation confirms that websys
is a part of the science faculty.

Figure 3 shows the Rete graph built from the scoped rule. In the graph of a
scoped engine, scope checks or guards are added to beta nodes 1 and 2. The <s
subgroupof science> guard can be interpreted as check for any bound fact for a
student (in the alpha node for the condition in line 4 of rule Listing 1.2) that is a
member of any subgroup of the science faculty in the university. When an access
request is made its token is received in beta node 1 through the accessrequest
alpha node and a left activation is triggered. The algorithm follows the steps
shown in Algorithm 2. The main difference with Algorithm 1 is that before
performing the join test, the node first runs a near constant-time scope check
in each fact from the alpha memory using the matrix encoding M

#

illustrated
in Figure 4a. For example, when a student from websys requests access on the
entrance of the compsci labs, the <s subgroupof science> check performs a
bitwise AND for the row encodings of the two groups and compares the result to
the row encoding of the science group as shown in Figure 4b. If the scope check
fails then the data is incompatible and computation moves onto the next fact.

In essence, the processing outlined in Algorithm 2 using scopes is more adept
compared to the relation fact technique or other current approaches due to the
fast encoded binary tests. However, it is clear that with each left activation, of
a beta node scope checks are still performed on every fact in the alpha

Efficient Matching in Heterogeneous Rule Engines 7

memory, regardless. This makes the approach inefficient. To this end, we present
an approach that makes join computations in Rete networks more efficient using
the scope-based hashing algorithm (SBH).

5 The Scope-based Hashing Algorithm

Alpha Memory Hashing via Groups. Alpha memories in Rete can be sim-
ply viewed as nodes that store facts of a particular type, e.g., the memories of
student and device nodes in figure 3. The purpose of alpha memories is to sup-
ply beta nodes with fact items. As event data is added to the engine the cached
dataset increases especially in heterogeneous rule engines since multiple users
and their devices all contribute data. The result is that although scope-based
rule engines offer a reasonable improvement when computing joins, the rule en-
gines still suffer when performing scope checks for every data item added in the
alpha memory.

We propose an approach that improves this scope-checking process. Our tech-
nique constructs a hash table that dynamically assigns buckets based on user
groups in the group hierarchy (e.g. the groups in Figure 1a). Each bucket points
to a list that holds a set of facts of that group. As facts are added to the system
SBH assigns each fact to the correct bucket dynamically. For instance, for a de-
vice located at the entry point of the science department the fact will be added
to the science bucket of the student SBH hash table.

Matching with Scope-based Hashing. The matching process stage is
where any rule engine performs most of its computation. Matching in scopeful
engines involves updating the beta network with scope guards that check com-
patibility of left and right inputs. SBH introduces a way to efficiently determine
which fact items are compatible with an incoming token at a beta node to be
subsequently used in the join test of the node.

Take an example of an access request made by a student in web info systems
on a device located at the computer scicience labs. This is a valid access re-
quest that should be granted (assuming it is made in the correct timeline). Using
the Rete graph of the same policy (figure 5), the fact will trickle down to beta
node 1 causing a left activation. A left activation with the SBH technique is
shown in Algorithm 3, where this refers to the SBH instance.

We describe the algorithm using the scope guard <$s subgroupof science>
in beta node 1. In this case, s is bound to the fact representing the websys
student. Instead of performing the check with every student fact in the alpha
memory, SBH retrieves the matrix codes for all the subgroups of science via
calculateCodeFromScopeGuards.

Let n be the total number of elements of a row in the encoding matrix M
#

(Figure 4a). calculateCodeFromScopeGuards constructs a bit vector V
n

with all
elements having a 0. Conceptually, the V

n

represents all groups in the hierarchy.
At this point, no groups have passed the scope check (all have 0s as entries in
V
n

). SBH then performs operations that assign a group element 1 iff it satisfies
the scope guard <s subgroupof science>. In this case, the method retrieves

8 IEA/AIE 2017

Algorithm 3 BetaNode Left Activation w. SBH

function scopedBetanodeLeftReceive(node : n,
token : t)
groupsCode this.calculateCodeFromScope

Guards(n.scopeTests, t)
groups this.getGroupsFromCode(groupsCode)
scopeFacts n.alphaMemory.getFacts(groups)

for each fact f in scopeFacts do

if n.joinTestPassed(t, f) then

tnew n.createNewToken(t, f)
n.sendTokenToChildren(tnew)

end if

end for

end function

1

s.badger.badge

2

r.dev d.devid

Alpha node
Alpha memory
Beta node
Beta memory

root

access
request

access
devicestudent

r.monthbetween121and18,1
r.time between1101and116,
isWeekend

3

terminal

Alpha Network

Beta Network

<s1private1'labs’1>
<s1subgroupof 'science'1>

<d1subgroupof 'science'1>

Fig. 5: SBH algorithm and scoped Rete graph with SBH – The alpha memories are
replaced with SBH alpha memories that make scope-based computations more efficient

the column vector M
#(⇤,science)= [0000010000111111] which represents all the

subgroups of science.
The next step in Algorithm 3 is to retrieve the corresponding groups in

method getGroupsFromCode which will then be used to retrieve the items per
group in the alpha memory. The method getGroupsFromCode retrieves the group
names or labels which have a 1 in V

n

excluding ?, which in this case V
g

=[science,
compsci,biology,soft,websys,bioinfo]. Retrieving V

g

should be relatively
easy since the groups have direct mappings to the labels in the matrix.

Next, the getFacts method of the alpha memory now accepts V
g

as an ar-
gument. The method uses the student alpha memory’s internal SBH table (in-
troduced in Section 5) to efficiently access the fact items that are pertinent to
the child beta node, node 1. The alpha memory will thus retrieve the facts re-
siding each of the named groups in V

g

from its buckets. Essentially, the facts
retrieved are a local subset of all the items in the alpha memory and as such the
join computation of node 1 will be performed on a these rather than all the fact
items residing in the student alpha memory. The rest of the code in Algorithm 3
iterates through all the retrieved items and performs the normal join tests for
the node.

Additionally, in reality a number of nodes will have multiple scope expres-
sions in one node: a good example is node 1 which not only has <s subgroupof
science> but also <s private labs>. Furthermore, scope tests can contain com-
plex expressions – to specify “an access device that is in the classrooms of the
computer science and biology department or the arts faculty,” the expression
becomes <$d subgroupof (science & biology) | $d private arts>

One option to compute such expressions is to repeatedly call calculateCode
FromScopeGuards on each scope test, store multiple vectors of V

g

and send these
to the alpha memory to retrieve the items needed for a beta node’s join compu-
tations. A more efficient way that SBH uses is that it performs reductions using
bitwise operations given every V

n

i

bit vector result of each scope test i of a beta
node. This is used by method calculateCodeFromScopeGuards to construct V

n

for the scope test,

Efficient Matching in Heterogeneous Rule Engines 9

<d subgroupof (science & biology) | d private arts>
= <(d subgroupof science & d subgroupof biology)

| d private arts >
= [(0000010000111111 & 0000000000010011) | 0000001000000000]
= 0000000000010011 | 0000001000000000
= 0000001000010011

Note that the vector V
n

i

of a scope <private u> is the unit vector of u. The
result V

n

is returned from the method calculateCodeFromScopeGuards. Next
V
g

is computed which in this case evaluates to [arts,bio,bioinfo]. The SBH
algorithm proceeds normally as outlined in Algorithm 3, retrieving the scope
facts of groups in V

g

and preforming the join tests if the scope check succeeds.

6 Experimental Evaluation

For the evaluation we focus on investigating whether a rule engine with SBH
experiences significant improvements in efficiency compared to the current al-
ternative techniques available in contemporary rule engines. The evaluation was
based on the complete university security monitoring application staged in an
experimental setup as introduced in Section 2.

Setup & Methodology. We performed our evaluation in an experimental
setup consisting of a web server running a rule engine based on the Rete algo-
rithm. The server hardware was configured with a AMD Opteron Processor 6272
at 2.1Ghz. The server processes were assigned a maximum of 20GB RAM. To
model a practical real-world scenario we designed a user hierarchy of 60 groups
in total and 40 typical access policies modelled as rules serving 70 clients con-
currently. To simulate practical delays in access requests clients were configured
to generate access requests intermittently at intervals of 1-5 seconds and devices
received reactive feedback, with a security console receiving push-based updates
of accesses to entry points. Each access request was randomised, with a random
client belonging to any group(s) making an access request at a device from a
random location in the university hierarchy.

We split the experiment into three categories. The first category was running
a traditional rule engine without scopes, the second was running a scoped rule
engine and the third had a rule engine running the scope-based hashing algo-
rithm. For each category a total of 62 sessions were performed with one session
running for a duration of 12 hours. The total experiment therefore spanned 186
sessions and 2332 hours runtime.

Results & Discussion. During the experiment the activation times (com-
parable to response time) and the memory used were logged and compared. We
graphically chart the results using bean charts that show the quartiles as well
as the density estimates.

Figure 6a shows the results of the activation times of the unscoped, scoped
and SBH rule engines. Rule activation time is the time it takes the engine to per-
form a matching process, between assertion and rule activation. The chart shows
that, on average, the scoped rule engine showed slightly less activation times than

10 IEA/AIE 2017

Unscoped Scoped SBH

0.5

1.0

1.5

2.0

2.5

3.0

Ac
tiv

at
io

n
tim

e
(s

)

(a)

Unscoped Scoped SBH

800

1000

1200

1400

M
em

or
y

R
SS

 u
se

d
(M

B)

(b)
Fig. 6: Bean plots of the results – Results of over 60 runs of random 12-hour sessions
show that the SBH approach offers faster activation times than both the scoped and
typical unscoped engines. SBH still exhibits less memory usage than traditional un-
scoped engines, but consumes more memory than a plain scoped approach.

the unscoped engine. Comparing the first two with the SBH approach, it is clear
that SBH exhibits an advantage with reduced activation times of up to 80% in
some cases. Figure 6b shows the results of the recorded memory consumption
(measured by resident set size) averages of each category. The classical approach
of managing heterogeneity in rule engines leads to a much higher memory con-
sumption, due to redundant information and inefficiencies brought about by the
complexity of enforcing reentrancy. The scoped engine showed a lesser amount
of memory consumed by reducing and optimising redundant information used
for computing scopes. When we compared the memory usage of the three, the
SBH approach is seen to consume up to 30% more than using a pure scoped
engine on average, but uses 35% less than a classic unscoped engine. The alpha
memory hashing of SBH leads to a more complex node memory structure that
needs more space than the conventional structures of node memories.

From the results we observe that for a rule engine in a heterogeneous envi-
ronment, adopting the SBH algorithm leads to faster execution of the engine’s
matching process resulting in less activation times. This improves the respon-
siveness of the RBS as a whole while still having lower space requirements than
in unscoped RBS. We therefore find that SBH offers significant efficiency bene-
fits for heterogeneous rule engines over both traditional and purely scoped ap-
proaches.

Efficient Matching in Heterogeneous Rule Engines 11

7 Related Work

Rule engines based on the Rete algorithm optionally employ a variety of hash-
ing techniques for faster execution. The approach of beta node indexing in [16]
describes creating node indexes for beta nodes to be used in beta memories to
improve engine performance. In [15] the double-hash method that creates hash
maps for various attribute constraints or types improves the speed of filtering
facts within the alpha network. These and other similar techniques [14] are or-
thogonal to the approach we present here and their approaches can thus be
implemented together with with SBH. The SBH algorithm presented delegates
to the normal execution of the rule engine once a scope check passes, therefore
the basic semantics of the rule engine execution is preserved.

There exists research that introduce multitenancy to conventional DBMSes
since they do not offer mechanisms to support extensibility and data sharing
required in the heterogeneous multitenant context. Work in the multitenacy do-
main has mapped multiple single logical database schemas to one multitenant
physical database schema with shared tables [8, 11]. Most of these approaches
utilise structures such as pivot tables that index and map logical multitenant
schemas onto physical ones. Additionally, advanced techniques for the multi-
tenant setup such as Chunk Folding [4] and XOR Delta [5] also exist. All these
approaches only focus on statically optimising data schemas of largely persistent
or static data sets of multiple tenants and do not employ advanced techniques
for efficient reactive incremental processing at runtime.

8 Conclusions and Future Work

Modern rule engines are increasingly deployed to support heterogeneous multi-
tenant setups and other similar multiuser environments. We have described the
scope-based hashing algorithm SBH, which is a novel optimisation to the popular
Rete algorithm in forward-chaining rule engines. SBH extends the Rete network
within a scoped engine with scoped hash tables in the alpha memories that are
used to efficiently optimise the expressions that compute the compatibility of
inputs of a join node in a heterogeneous RBS. From the evaluation we conclude
that SBH offers a significant improvement in efficiency during the matching pro-
cess for heterogeneous data in the rule engine. The cost that comes with this
is a relatively higher memory consumption compared to scoped engines without
SBH. As future work we would like to extend the SBH algorithm to right activa-
tions of beta nodes during the matching process. This intrinsically implies that
the beta memories should be hashed and brings about research questions about
the semantics of hashing token compositions.

References

1. Aït-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst. 11(1), 115–146 (Jan 1989), http:
//doi.acm.org/10.1145/59287.59293

12 IEA/AIE 2017

2. Amazon Web Services, Inc: Rules for AWS IoT. http://docs.aws.amazon.
com/iot/latest/developerguide/iot-rules.html (Apr 2015), (Accessed on
12/10/2016)

3. Anderson, J.R.: The architecture of cognition. Psychology Press (2013)
4. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant

databases for software as a service: schema-mapping techniques. In: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data. pp.
1195–1206. ACM (2008)

5. Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: Extensibility and data sharing
in evolving multi-tenant databases. In: 2011 IEEE 27th International Conference
on Data Engineering. pp. 99–110. IEEE (2011)

6. Dettori, P., Frank, D., Seelam, S.R., Feillet, P.: Blueprint for business middleware
as a managed cloud service. In: Cloud Engineering (IC2E), 2014 IEEE International
Conference on. pp. 261–270. IEEE (2014)

7. Doorenbos, R.B.: Production matching for large learning systems. Ph.D. thesis,
University of Southern California (1995)

8. Fiaidhi, J., Bojanova, I., Zhang, J., Zhang, L.J.: Enforcing multitenancy for cloud
computing environments. IT Professional 14(1), 16–18 (Jan 2012)

9. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial intelligence 19(1), 17–37 (1982)

10. Giurca, A., Pascalau, E.: JSON rules. Proceedings of the Proceedings of 4th Knowl-
edge Engineering and Software Engineering, KESE 425, 7–18 (2008)

11. Grund, M., Schapranow, M., Krueger, J., Schaffner, J., Bog, A.: Shared table
access pattern analysis for multi-tenant applications. In: Advanced Management
of Information for Globalized Enterprises, 2008. AMIGE 2008. IEEE Symposium
on. pp. 1–5 (Sept 2008)

12. Kambona, K., Thierry, R., De Meuter, W.: Reentrancy and scoping in multitenant
inference engines. In: 13th International Conference on Web Information Systems
and Technologies (WEBIST) (2017)

13. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: International Con-
ference on Artificial Intelligence and Soft Computing. pp. 598–605. Springer (2010)

14. Scales, D.J.: Efficient matching algorithms for the SOAR/OPS5 production system.
Tech. rep., DTIC Document (1986)

15. Tianyang, D., Jing, F., ZHANG, L.: An improved rete algorithm based on double
hash filter and node indexing for distributed rule engine. Transactions on Informa-
tion and Systems 96(12), 2635–2644 (2013)

16. Xiao, D., Zhong, X.: Improving rete algorithm to enhance performance of rule en-
gine systems. In: Computer Design and Applications (ICCDA), 2010 International
Conference on. vol. 3, pp. V3–572. IEEE (2010)

