1702.07193v1 [cs.Al] 23 Feb 2017

arxXiv

Ontologies in System Engineering: a Field Report

Marco Menapace and Armando Tacchella
DIBRIS - Universita degli Studi di Genova - Viale F. Causa 13, 16145 Genova

marco.menapace@edu.unige.it|-larmando.tacchella@Qunige.it

September 18, 2018

Abstract

In recent years ontologies enjoyed a growing popularity outside specialized Al
communities. System engineering is no exception to this trend, with ontologies
being proposed as a basis for several tasks in complex industrial implements, in-
cluding system design, monitoring and diagnosis. In this paper, we consider four
different contributions to system engineering wherein ontologies are instrumental
to provide enhancements over traditional ad-hoc techniques. For each application,
we briefly report the methodologies, the tools and the results obtained with the
goal to provide an assessment of merits and limits of ontologies in such domains.

1 Introduction

Ontologies are witnessing an increasing popularity outside specialized AI communi-
ties. While this is mostly due to Semantic Web applications [1]], we must also credit
their ability to cope with taxonomies and part-whole relationships, to handle heteroge-
neous attributes, and their provision for various automated reasoning services — see,
e.g., [2]. These features have been recognized since long time in system engineering,
the community encompassing all areas of research devoted to design, implementa-
tion, monitoring and diagnosis of technical processes. For instance, in the operations
and maintenance sub-community, the use of ontologies is explicitly advocate(ﬂ Also
standards like ISO 13374 (Condition monitoring and diagnostics of machines — Data
processing, communication and presentation) suggest the use of ontologies for several
tasks, mostly related to data conceptualization. However, the adoption of ontologies
faces some challenges, mostly due to speed and reliability constraints imposed by in-
dustrial settings.

Here we investigate this issue by considering four contributions of ours to applica-
tion domains wherein ontologies provide key capabilities in system engineering. The
first case study is about an on-board rolling-stock condition analyzer, i.e., a system to
perform fault detection and classification [3]. The second one is about monitoring an
intermodal logistic system [4]. The third one is about an ontology-based framework
to generate diagnostic-decision support systems [S]. Finally, a fourth case study is an

ISee, e.g., the MIMOSA open standard architecture at www . mimosa . orgl

marco.menapace@edu.unige.it
armando.tacchella@unige.it
www.mimosa.org

application to computer-automated design of elevator systems. In the following, we
briefly introduce each case study, giving details about its context, underlying motiva-
tion and intended objectives. The ultimate goal of the paper is to discuss and compare
the results obtained to assess the effectiveness of ontologies in such application do-
mains.

Ontologies for condition analysis. We introduced an ontology-based condition ana-
lyzer (CA) [3] in the context of the EU project Integraiﬂ Our CA collects signals
from control logic installed on locomotives, and it leverages an ontology to correlate
observed data, symptoms and faults. The CA must mate two competing needs: () rail-
way regulations require hardware which is highly reliable, and whose performances are
thus far even from desktop workstations; (i¢) ontology-related tools, e.g., description
logic reasoners, have relatively large memory, processor and storage footprints. In this
experience, the main goal was thus to check whether reasoning with ontologies can
provide useful diagnostic feedback in a resource-restricted scenario.

Ontologies for system monitoring. In [4] we provided strong evidence of practical
uses for ontologies in complex systems engineering by implementing a monitor for
Intermodal Logistics Systems (ILSs), i.e., systems supporting the movement of con-
tainerized goods. In particular, we considered combination of rail and road transport,
where rail transport is provided by short-distance shuttle trains, and network coverage
is achieved through connections at specialized terminals. In this experience, the main
goal was to gather data about terminal operations and compute global performances
indicators, where access to data is mediated by an ontology — ontology-based data
access (OBDA) [6]. Here, unlike the CA case study, the ability to handle large amount
of data is crucial, but reasoning is limited to SPARQL query answering.

Ontologies for diagnostic support system generation. Diagnostic Decision Support
Systems (DDSSs) help humans to infer the health status of physical systems. In [5] we
introduced DiSeGnO — for “Diagnostic Server Generation through Ontology” — to
generate customized DDSSs. As in the ILS monitoring case study, since it is expected
that large quantities of data should be handled, the ontology language is restricted to
those designed for tractable reasoning — see, e.g., [6]. In this case, ontology-based
reasoning is not leveraged, as DiSeGnO generates relational databases from the domain
ontology and then computes diagnostic rules with PTOLEMY II [7], an open-source
software simulating actor-based models.

Ontologies for computer-automated design. As mentioned in [§]], the first scientific
report of intelligent computer-automated design (CautoD) is the paper by Kamentsky
and Liu [9], who created a computer program for designing character-recognition logic
circuits satisfying given hardware constraints. In mechanical design — see, e.g., [10]
— the term usually refers to techniques that mitigate the effort in exploring alternative
solutions for structural implements. In our LIFTCREATE CautoD program for elevator
systemﬂ ontologies support intelligent design creation and optimization by managing
detailed part-whole taxonomies, wherein different relations among components can be
expressed. This case study provides thus yet another application of ontologies, mostly
oriented to intelligent computation and data persistency.

2More details about Integrail at http: //www.integrail.eu/
3Part of the AILIFT software suite www.ailift.it!

http://www.integrail.eu/
www.ailift.it

TractionNoMissionimpactSymptom

— - JractionPartialMissionimpactSymptom
: TractionHighTemperatureObservation |
| TractionTotalMissionimpactSymptom

TractionHighTemperatureSymptom

il

NonPriorityFault
— Traction1Temperature

y

:

Figure 1: A portion of the E414 ontology regarding traction faults. Concepts are nodes
and object properties are edges: white nodes are SP3A concepts, grey ones are E414-
specific concepts.

Overall, the case studies considered witness the great flexibility that ontologies pro-
vide in handling diverse application scenarios, from condition analysis of locomotives,
to automated design of elevators, considering both cases wherein they provide the basis
for logic reasoning services, or just advanced data-modeling capabilities. The rest of
the paper is structured as follows. In Sections 2] [3] {f] and [5] we sketch the design, the
implementation and the results obtained in the case studies described above. Section[6]
concludes the paper by summarizing the results and providing some discussion thereof.

2 Rolling stock condition analysis

The CA prototype described in [3]] focuses on fault detection on Trenitalia E414 loco-
motive. The main task of the CA is to perform fault classification according to priority
for maintenance, and impact on mission-related and safety-related aspects. Here, we
focus on traction groups as an example of subsystem that can generate a faulty condi-
tion. Our ontology for the E414 locomotive is written in OWL 2 language and it builds
on the SP3A core ontology — see [3] for details. In particular, the E414 ontology
leverages the SP3A concepts of OBSERVATIONDATA, i.e., process variables, and OB-
SERVATION, i.e., sequences of observation data from which individuals of class SYMP-
TOM and FAULT arise. SYMPTOM individuals are related to OBSERVATION individuals
via the REFERSTOOBSERVATION property and to FAULT individuals via the REFER-
STOFAULT property. FAULT is a concept whose individuals are defined in terms of the
necessary HASSYMPTOM relationship with SYMPTOM individuals. Two subclasses of
FAULT are defined: PRIORITYFAULT and NONPRIORITYFAULT, with obvious mean-
ing. In Figure [T] we show a portion of the E414 ontology related to traction faults,
where concepts have been specialized in subclasses whose individuals correspond to
actual signals and subsystems. Fault and symptom classification is obtained by a De-
scription Logic (DL) reasoner considering the patterns observed. For instance, in the
case of TRACTIONHIGHTEMPERATUREOBSERVATION, three ranges of temperatures
are defined that correspond to “interesting” patterns: from 70 to 80 degrees, from 80
to 130 degrees, and over 130 degrees. It is postulated that observations falling in the

Table 1: Results with (a) lazy and (b) eager implementations of the CA.

Scenario

Memory C

ion [MB]

CPU Time [ms]

Amortized CPU Time [ms]

la
2a
3a
4a

38
74
106

OUT OF MEMORY

90
25373
1053656
3253637

ND
25373
210731
191390

b
2b
3b
4b

37
72
104
105

90
21506
86938

279523

ND
21506
17387
16442

second and in the third ranges are to be considered mission critical, while the ones in
the first category are only maintenance critical.

A detailed description of the CA architecture can be found in [3]. Here we pro-
vide some intuition on how the analyzer works considering high temperatures in the
traction groups. When the temperature of a group is higher than 70 degrees for at
least 3 consecutive samples read from the field bus, the CA starts tracking a potential
anomalous pattern. Once such a pattern is detected, the corresponding individuals in
the classes TRACTIONOBSERVATIONDATA and TRACTIONHIGHTEMPERATUREOB-
SERVATION are recorded. SYMPTOM individuals are built along with all the proper-
ties required by the ontology specification. For example, if an observation of the class
TRACTIONHIGHTEMPERATUREOBSERVATION has been created, a specific individual
TRACTIONHIGHTEMPERATUREOBSERVATION is related to a new SYMPTOM individ-
ual by the REFERSTOOBSERVATION property. FAULT individuals for each SYMPTOM
individual are created together with the CAUSEDBYSYMPTOM property. FAULT as
well as SYMPTOM individuals are built of generic type, leaving their classification to
the DL reasoner. Once the classification is done, the CA publishes the results, trans-
mitting them to external agents. As an example, let us assume that 7 is an individual of
the class TRACTIONHIGHTEMPERATUREOBSERVATION whose property ISAT is set
to the constant _130DEGREES, s is the SYMPTOM individual related to ¢, and f is the
FAULT individual related to s. The E414 ontology postulates that all symptoms such
that the corresponding observation is an instance of TRACTIONHIGHTEMPERATURE-
OBSERVATION related by ISAT to the constant _130DEGREES are also an instance
of TRACTIONTOTALMISSIONIMPACTSYMPTOM, which is a subclass of SYMPTOM.
Therefore, a reasoner can infer that s belongs to MISSIONRELATEDS YMPTOM.

Out of the three sets of experiments performed in [3]], we report just those to ensure
that the CA implementation fits the constraints. To this end, we ran several tests using
different fault scenariosﬂ Table |1 shows the results obtained by running the CA on
four different scenarios — the first includes no fault, the second includes only one
fault, the third includes five contemporary faults, and the last 17 contemporary faults
— using two different configurations. Configuration (a) is “lazy”, i.e., it keeps all the
individuals, while configuration (b) is “eager”, i.e., it deletes individuals as soon as
possible. As we can see in Table [I] the eager version results in a great improvement

4Sets of multidimensional time series (3600 samples at 1Hz) corresponding to 52 process variables are
generated. Simulations run on EN50155-compliant embedded devices with 1GHz Socket 370 FC-PGA
Celeron Processor with 256MB of main memory and a 1GB SSD running Linux Blue Cat (kernel 2.6) and
Sun Java Virtual Machine implementation (JRE 1.6). The DL reasoner is PELLET [11].

hasScheduledTime

isa isa

Figure 2: ILS ontology describing the design of the OBDA solution. Ellipses denote
concepts with datatype properties; directed edges are object properties; dotted edges
are concept inclusions.

over the lazy one, both in terms of memory consumption and in terms of computation
time. In particular, in the second column of Table[T|we can notice that the eager version
performs reasonably well, even in the fourth test case (worst-case scenario). In the
same scenario, the lazy version exceeds the amount of available memory. As we can
see in the rightmost column of Table [I] the amortized computation time over a single
scenario decreases with the number of concurrent observations detected in the round.
Managing a round of samples without detected observations takes only 90 ms, which
leaves enough time for other activities, and allows the CA to process all the incoming
signals in due course.

3 Monitoring of intermodal systems

In [4] we provided evidence that ontology-based data access (OBDA) [6] is of practical
use in the context of Intermodal Logistics Systems (ILSs). The investigation focuses on
the opportunity to build a monitoring information system (MIS) using OBDA instead
of relational databases (RDBs). The application scenario is an ILS relying on a logic
akin to computer networks, i.e., frequent short-distance trains with a fixed composition
and a predefined daily schedule to cover some geographical area. Intermodal Trans-
port Units (ITUs) enter the network at some terminal and travel to their destination
according to a predefined route, usually boarding more than one train along the way.
Terminals collect ITUs from areas of approximately 150Km in radius in order to min-
imize road transport. The MIS is a key enabler to minimize delivery time, maximize
rolling-stock and network utilization and, ultimately, reduce the economic overhead of
transportation for the final customer. The main goal of the MIS is to compute Key Per-
formance Indicators (KPIs) to perform tactical and strategical decision making about

cpu time [millisecond]

Figure 3: Computation time of a KPI with different query processors: SQL (square),
ARQ (circle), PELLET (hourglass), QUEST (triangle). In each plot, the = axis displays
the number of simulation days from 1 to 15, the y axis displays the CPU time (in
milliseconds on a logarithmic scale).

the network.

In Figure[2] we present a graphical outline of the ontology at the heart of our OBDA
solution to monitor the ILS. The ontology — ILS ontology in the following — is com-
pliant with the OWL 2 QL profile described in the official W3C’s recommendation as
“[the sub-language of OWL 2] aimed at applications that use very large volumes of in-
stance data, and where query answering is the most important reasoning task.”. Given
the ILS application domain, OWL 2 QL guarantees that conjunctive query answering
and consistency checking can be implemented efficiently with respect to the size of data
and ontology, respectively. The restrictions that OWL 2 QL implies did not hamper the
modeling accuracy of our ILS ontology. In Figure[2] we can pinpoint classes related to
freight forwarding such as Customer, i.e., companies forwarding their goods through
the network, RequestForWork, i.e., the main document witnessing that a given cus-
tomer has issued a request for transporting a number of ITUs, TransportOrder, i.c.,
the “bill of transit” associated to each ITU, as well as entities related to physical ele-
ments such as ITU, Terminal and Train. Also “logical” entities are modeled such as
Route, i.c., a sequence of terminals and railway connections serviced regularly by one
or more scheduled trains and ScheduledStop, i.e., terminals associated to a given route
with a given schedule. Event is the main monitoring entity, as the calculation of most
KPIs relies on the exact recording of events at specific locations.

To assess OBDA performances, in [4] we obtained different artificial utilization
scenarios by changing the number of ITUs shipped daily from each terminal. Consid-
ering typical usage patterns, we postulated that a provision of 10 to 50 ITUs is to be
shipped daily from each terminal, with 40 to 50 ITUS corresponding to a heavy utiliza-
tion. Scenarios are simulated for an increasing number of days to evaluate scalability,
and all of them share common settings as far as number of train travels, number of
cars per train, and timetabling are concerned. Unexpected delays as well as the number
of customers per terminal follow a probabilistic model — see [4] for more details. In
Figure |3| we display the resultsE] obtained in the case of an heavy utilization scenario

5 All results are obtained on a family of identical Intel-based PCs, featuring a Core2Duo 2.13 GHz CPU,
4GB of RAM and running Ubuntu Linux 10.04 (64 bit edition).

<Qprotége Q
F=E USER

Rules
Model

DiSeGnO
(compiler)

4—
ke myII

Data Stor

Figure 4: Functional architecture and work-flow of DiSeGnO framework.

to compute a specific KPI, namely the average number of ITUs unloaded per hour.
The performance of four different query-answering systems are reported: a SQL query
on a native RDB implementation, and a SPARQL query on the ontology store. The
SPARQL query can be answered by three different systems, namely ARQ (the default
query processor in the JENA library), PELLET (the same DL reasoner that we con-
sider in Section[2) and QUEST [12]]. The latter is the only reasoner exploiting the fact
that SPARQL queries can be compiled on-the-fly into SQL queries for an equivalent
RDB representation of the ontology stored in the main memory. As we can observe
in Figure [3] OBDA-based solutions show higher overall computation times than the
RDB-based solution — from 1 to 2 orders of magnitude — together with an appar-
ently growing trend associated to the time span of the simulation. However, as we have
shown in [4]], a trend test performed on the results obtained with the best OBDA so-
lutions for various KPIs, displays no statistically significant increase in the CPU time
required to answer various queries with respect to the number of days. Considering that
for most KPIs we can adopt an “eager” solution similar to that considered in Section [3]
we can conclude that OBDA is practically feasible for monitoring medium-to-large
scale systems.

4 Diagnostic support systems generation

In [5] we introduced an approach to compile ontology-based descriptions of equip-
ment into diagnostic decision support systems (DDSSs). The tool DiSeGnO, whose
functional architecture and work-flow is sketched in Figure] fulfills this task in three
phases: in the USER phase, a domain ontology and diagnostic rules model are de-
signed by the user; in the DiSeGnO phase, the system reads and analyzes the ontology
and the rules to output the actual DDSS; in the DDSS phase, input web services receive
data from the observed physical system and record them in the generated data store.
According to the ISO 13374-1 standard a DDSS consists of six modules of which DiS-

Figure 5: Domain ontology for HVAC monitoring. Formalism is the same as in
Figure 2]

eGnO implements three: Data Manipulation to perform signal analysis and compute
meaningful descriptors, State Detection to check conformity to reference patterns, and
Health Assessment to diagnose faults and rate the current health of the equipment or
process. As shown in Figure [d the ontology description is created by a system archi-
tect in the USER phase. The ontology must be written using OWL 2 QL languageﬁ
as in the case study shown in Section[3] The diagnostic computation model must be a
sound actor diagram generated by PTOLEMY II [7] which describes the processing to
be applied to incoming data in order to generated diagnostic events — here we focus
on the ontology part, but more details on the rule handling part can be found in [3].
The DiSeGnO phase contains the actual DDSS generation system which consists of
the Data Store Generator, i.e., a piece of software that creates a relational database
by mapping the domain ontology to suitable tables, and the Web Services Gener-
ator, i.e., a module that creates interface services for incoming and outgoing events.
Finally, in the DDSS phase, data is acquired and stored in the internal database, the
rules engine processes data and generates diagnostic events which are then served to
some application.

An example of a DiSeGno-compliant equipment description is shown in Figure 5]
The ontology is related to a Heating Ventilation and Air Conditioning (HVAC) ap-
pliance and it is divided into a static and a dynamic part. In the static part, which
is not updated while monitoring, the ontology contains a description of the observed
physical system. In the HVAC ontology we have System and DataSource, related
by the isInSystem property. hasSubsystem relationship indicates that one System
could be composed by one or more SystemComponent which are themselves sub-
classes of System. Finally, DataSource is the class of elements that can generate
diagnostic-relevant information. The dynamic part describes events, including both the

SWhile this can be accomplished in several ways, the tool PROTEGE [13] is suggested because it is robust,
easy to use, and it provides, either directly or through plug-ins, several add-ons that facilitate ontology design
and testing.

© Elevator
I Pt |

© HydraulicElevator © RopeElevator
T I ot I

© DirectHydraulicElevator © GearlessRopeElevator & GearboxRopeE levator

| @ onep

€ CarDoor‘ c LandingDoor‘ ¢ Ropes| @ CarRails‘ = Eufferl
: a1 o
1 1 N1 p
~ .
o car © shaft & CarFrameHydra k< & HydraulicElevator & Piston
B T >

T /
© Elevator

& OnepistonDirectHydraulicElevator

Figure 6: Ontologies describing the implements handled by LIFTCREATE (top) and
the components of OnePistonHydraulicElevator (bottom). Concepts are rectangles,
concept inclusion is denoted by solid arrows, and HAS-A object properties are denoted
by diamond-based arrows.

ones generated by the observed system and its components, and those output by the
DDSS. An event is always associated to a time-stamp and it can be either incoming
to the DDSS from the observed system, or outgoing from the DDSSﬂ The main con-
cepts in the dynamic part of the HVAC ontology are DDSS which receives instances of
IncomingEvent and sends instances of QOutgoingEvent. Notice that IncomingEvent
instances are connected to DataSource instances by the role generates, denoting that
all incoming events are generated by some data source. Also every QutgoingEvent
instance, i.e., every diagnostic event, relatesTo some instance of DataSource, because
the end user must be able to reconstruct which data source(s) provided information that
caused diagnostic rules to fire a given diagnostic event. OutgoingEvent specializes to
AlarmEvent, FaultEvent and DescriptorEvent. Every OutgoingEvent instance is
connected to one of DiagnosticIndicator instances, i.e. Alarm, Fault and Descrip-
tor sub-concepts, by reports relation, in order to have a reference message about the
diagnostic rules.

5 Computer-automated design of elevators

Our latest ontology-based application is in the field of computer-automated design
(CautoD) which differs from “classical” computer-aided design (CAD) in that it is
oriented to replace some of the designer’s capabilities and not just to support a tradi-
tional work-flow with computer graphics and storage capabilities. Nevertheless, Cau-
toD programs most often include CAD facilities to visualize technical drawings related
to the implements of interest. In particular, our LIFTCREATE program is oriented to

TThis distinction is fundamental, because DiSeGnO must know which events have to be associated with
input and output web services, respectively.

automating design of elevators, taking the designer from the very first measurements
to a complete project which guarantees feasibility within a specific normative frame-
work. LIFTCREATE works in three steps. In the first step, the user is asked to enter
relevant parameters characterizing the project, and an overall “design philosophy” to
be implemented. For instance, if the size of the elevator’s shaft is known and fixed
in advance, LIFTCREATE can generate solutions which maximize payload, door size,
or car size. A design philosophy is just a set of heuristics which, e.g., prioritize door
size over other elements, still keeping into account hard constraints, e.g., payload and
car size should not fall below some threshold. In the second phase, LIFTCREATE re-
trieves components from a database of parts and explores the (combinatorial) space of
potential solutions, either using heuristic search techniques, or resorting to optimiza-
tions techniques — like those suggested, e.g., in [8]. In the third phase, a set of feasible
designs is proposed to the user, sorted according to decreasing relevance considering
the initial design philosophy. For instance, if door size is to be maximized, the first
alternatives shown to the user are those with the widest doors, perhaps at the expense
of payload or car size.

The main issue with LIFTCREATE work-flow is that even simple versions of ele-
vators consists of a large number of components, including car frame, car, doors (car
and landing doors), emergency brakes, pistons or cables, motors and control logic. In
order to explore the space of potential designs, components cannot be solely available
as drawing elements, like in classical CAD solutions, but they must be handled as first
class data inside LIFTCREATE logic. This aspect required us to organize the taxon-
omy related to different kinds of elevators and, for each elevator kind, to structure the
components in a part-whole hierarchy. In Figure [we show a fragment of the taxon-
omy for elevators and an example of part-whole structure for a specific elevator kind.
In particular, in Figure [6] (top), we see that LIFTCREATE classifies Elevator individ-
uals in two main subclasses corresponding to hydraulic-based (HydraulicElevator)
and rope-based (RopeElevator) designs. Both subclasses feature additional partitions
to handle specific design requirements, e.g., rope elevators can be provided with a re-
duction gearbox or not, and the drive can be direct of reeved. For one leaf class of
the taxonomy, namely OnePistonDirectHydraulicElevator, in Figure [6] (bottom) we
show the detailed part-whole diagram, from which we learn that, e.g., the only peculiar
aspects of such subclass is to have only one Piston, whereas the remaining components
are common to HydraulicElevator or Elevator. Also we can see that the car frame is
specific of hydraulic elevators (CarFrameHydra) and it is comprised of several parts,
including CarRails, Buffer and Ropes. The relationships encoded in such part-whole
hierarchy are instrumental to LIFTCREATE when it comes to handle drawing, storage
and retrieval of designs, but also to reason about the various trade-offs of a design when
searching in the space of potential solutions.

6 Conclusions
Considering the experiences herein outlined, we summarize some lessons learned in

applying ontologies for systems engineering. First and foremost, while ontologies pro-
vide an effective tool for conceptualizing scenarios as diverse as those considered, some

10

ontology-based tools, e.g., DL reasoners, are untenable unless small-to-medium scale
systems are considered. In the case of E414 ontology reasoning with an expressive
ontology required us to implement strategies to “forget” data to avoid cluttering the
reasoner. In the ILS ontology, where SPARQL queries for KPIs are the only reasoning
requested and the usage of OWL 2 QL profile banned expressive but hard-to-compute
constructs, scaling still requires discarding data using a recency approach. On the other
hand, in DiSeGnO and LIFTCREATE, ontologies merely provide means for conceptu-
alizing data and, as such, flexibility is gained without sacrificing performances. The
second take-home message is that sublanguages of OWL 2 are adequate for most mod-
eling purposes. With the only exception of E414 ontology, the ones herein considered
fit OWL 2 QL constraints which allowed us to combine in a natural way subclassing
(“IS-A” relationships) with other kind of object properties (including “HAS-A”"). How-
ever, the fact that OWL 2 QL ontologies can be compiled to relational databases — as
in the case of DiSeGnO — or handled trough an object-persistency module — as in
the case of LIFTCREATE — makes their use transparent to other system components.
Third, and final point, with the exception of ILS monitoring, none of our applications
required the integration of different data sources which is indeed one of the main tasks
which ontologies are advocated for. Nevertheless, our experience witnesses that even
in single-source data modeling, ontologies provide an excellent mean to bridge the gap
between domain experts and computer software designers.

References

[1] T. Berners Lee, J. Hendler, and O. Lassila. The Semantic Web. The Scientific
American Magazine, 2001.

[2] Steffen Staab and Rudi Studer. Handbook on ontologies. Springer Science &
Business Media, 2013.

[3] Cristina De Ambrosi, Cristiano Ghersi, and Armando Tacchella. An ontology-
based condition analyzer for fault classification on railway vehicles. In 22nd Int.1
Conference on Industrial, Engineering and Other Applications of Applied Intel-
ligent Systems, IEA/AIE 2009, Tainan, Taiwan, June 24-27, 2009. Proceedings,
pages 449458, 2009.

[4] Matteo Casu, Giuseppe Cicala, and Armando Tacchella. Ontology-based data
access: An application to intermodal logistics. Information Systems Frontiers,
15(5):849-871, 2013.

[5] Giuseppe Cicala, Marco De Luca, Marco Oreggia, and Armando Tacchella. A
multi-formalism framework to generate diagnostic decision support systems. In
30th European Conference on Modelling and Simulation, ECMS 2016, Regens-
burg, Germany, May 31 - June 3, 2016, Proceedings., pages 628—634, 2016.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-
Lite: Tractable Description Logics for Ontologies. In Proceedings of the National

11

(7]

[9]

(10]

(11]

[12]

[13]

Conference on Artificial Intelligence, volume 20, page 602. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity -
the Ptolemy approach. Proceedings of the IEEE, 91(1):127-144, 2003.

Robin T. Bye, Ottar L. Osen, Birger Skogeng Pedersen, Ibrahim A. Hameed,
and Hans Georg Schaathun. A software framework for intelligent computer-
automated product design. In 30th European Conference on Modelling and Simu-
lation, ECMS 2016, Regensburg, Germany, May 31 - June 3, 2016, Proceedings.,
pages 534-543, 2016.

Louis A. Kamentsky and Chao-Ning Liu. Computer-automated design of multi-
font print recognition logic. IBM Journal of Research and Development, 7(1):2—
13, 1963.

R Venkata Rao and Vimal J Savsani. Mechanical design optimization using ad-
vanced optimization techniques. Springer Science & Business Media, 2012.

E.Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):51-53, 2007.

M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL Reasoner for
Ontology-based Data Access. OWLED 2012, 2012.

J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubézy, H. Eriks-
son, N.F. Noy, and S.W. Tu. The Evolution of Protégé: An Environment
for Knowledge-Based Systems Development. International Journal of Human-
Computer Studies, 58(1):89-123, 2003.

12

	1 Introduction
	2 Rolling stock condition analysis
	3 Monitoring of intermodal systems
	4 Diagnostic support systems generation
	5 Computer-automated design of elevators
	6 Conclusions

