
HAL Id: hal-01551395
https://hal.science/hal-01551395

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining the Lattice of Binary Classifiers for Identifying
Duplicate Labels in Behavioral Data

Quentin Labernia, Victor Codocedo, Céline Robardet, Mehdi Kaytoue

To cite this version:
Quentin Labernia, Victor Codocedo, Céline Robardet, Mehdi Kaytoue. Mining the Lattice of Binary
Classifiers for Identifying Duplicate Labels in Behavioral Data. 30th International Conference on
Industrial Engineering and Other Applications of Applied Intelligent Systems, Jun 2017, Arras, France.
pp.40-21, �10.1007/978-3-319-60045-1_2�. �hal-01551395�

https://hal.science/hal-01551395
https://hal.archives-ouvertes.fr

Mining the Lattice of Binary Classifiers for
Identifying Duplicate Labels in Behavioral Data

Quentin Labernia, Victor Codocedo, Céline Robardet, and Mehdi Kaytoue

Université de Lyon, CNRS, INSA-Lyon, LIRIS UMR5205, F-69621, France
Corresponding author: mehdi.kaytoue@insa-lyon.fr

Abstract. Analysis of behavioral data represents today a big issue, as
so many domains generate huge quantity of activity and mobility traces.
When traces are labeled by the user that generates it, models can be
learned to accurately predict the user of an unknown trace. In online
systems however, users may have several virtual identities, or duplicate
labels. By ignoring them, the prediction accuracy drastically drops, as
the set of all virtual identities of a single person is not known beforehand.
In this article, we tackle this duplicate labels identification problem, and
present an original approach that explores the lattice of binary classifiers.
Each subset of labels is learned as the positive class against the others
(the negative class), and constraints make possible to identify duplicate
labels while pruning the search space. We experiment this original ap-
proach with data of the video game Starcraft 2 in the new context of
Electronic Sports (eSport) with encouraging results.

Keywords: binary classification, label duplicate, data quality

1 Introduction

Sensors are nowadays part of our daily life, hidden in our cars, phones or watches
and recording our position, speed, bio-signals, etc. Professional athletes may have
position sensors in their shoes when playing soccer, or in their racket when play-
ing tennis. Alone or combined together, these (mobile) devices generate rich
behavioral data which, properly analyzed by means of data mining, machine
learning and visualization techniques, can help answering several industrial chal-
lenges and inventing new services and applications for the common good.

In this article, we are interested in user identification techniques from behav-
ioral data. Such methods are useful for security applications (fraud detection,
targeted marketing, identity usurpation) and privacy preserving issues (e.g., for
evaluating data anonymization techniques). There are indeed several domains
for which it was established that the user who has generated a trace can be
found through data analysis techniques: only a few points of interest in space
and time uniquely identify a person [2]; typing patterns allow to recognize a
person typing his password [7] or even playing a video game [9], etc.

However, especially on the Web, it often happens that a user has several
identities (called avatar aliases in the remainder of this paper) and that the

mapping between users and aliases is not known beforehand. For example, one
issue for targeted marketing applications is to identify that several Web cook-
ies from different devices (tablet, smart phone, laptop, computer. . .) belong to
the same individual [5]. In this work, we consider behavioral data from video
games, as such data are extremely rich, freely available on the Web and with-
out privacy preserving issues. Moreover, the video game industry is in crucial
need of automatic methods to be able to detect cheaters, that is, users usurping
an avatar [8]; as well as electronic sport structures seek to identify professional
athletes hiding their tactics behind avatars when training on the Internet (more
details are given in [1]).

It was shown in the context of online gaming by [9] that prediction models
learned from particular typing patterns (keyboard usage while playing) can very
accurately identify a player. Accuracy however strongly degrades in presence of
avatar aliases: when individuals use several virtual identities the model hardly
detects that two labels (or more) in the data describe the same user, that is,
these two labels are avatar aliases. We refer in what follows to this problem as
the duplicate labels identification problem: given a set of behavioral traces labeled
by avatars, output groups of avatars that each denotes the same user.

Problem. Consider a set of users U and a set online identities L called avatars,
the duplicate labels identification problem consists in discovering the mapping
f : U → ℘(L) that corresponds to the set of identities assigned to each user.
Note that ℘(L) is the power set of L. The objective is to partition L into a set
of label sets, each label block corresponding to an unknown yet unique user.

Recently, Cavadenti et al. presented an original approach to solve this prob-
lem [1]: it relies on mining the confusion matrix yielded by a supervised classi-
fier, and exploiting the confusion the classifier has in presence of avatar aliases.
Whereas this method has interesting results for identifying avatar aliases, it has
a drawback we propose to address in this paper: it operates as a post-processing
of a unique classification model and under exploits the power of classification
algorithms by considering a static target value. Consequently, some classes, espe-
cially unbalanced ones, cannot be properly learned. Our intuition is that, when
merged with their aliases, these classes should be properly learned.

Consequently, the approach we introduce takes advantage of the power of
classification algorithms by recomputing the model for all target generalizations.
We thus explore the lattice of binary classifiers, where each set of labels (dupli-
cate candidate) is evaluated against all the other labels. For each new generated
subset, the confusion matrix is compared to those of its subsets to tell us either
(a) that the label subsets (i.e. positive examples) belongs to a same user, or (b)
to prune the search space by stopping the enumeration of it supersets. To do
so, we study the evolution of (i) the F1-measure and (ii) the distribution of the
data objects in the positive/negative classes while generalizing label subsets.

2 Method

We propose an original method that considers the lattice of binary classifiers,
where each element is a model learned from positive and negative examples that
are respectively the instances of a subset of labels B and their complementary
instances. This constitutes the search space of our problem and each binary
classifier forms a potential group of avatar duplicate. We propose an efficient
way to traverse the lattice of binary classifier to output the set of duplicate label
sets.

2.1 The lattice of binary classifiers
Prediction

R
ea

li
ty C

ρB + −
+ α++ α+−
− α−+ α−−

Table 1. Confusion ma-
trix of a binary classifier
ρB .

Consider a set of traces T . Each trace is labeled by an
avatar label(t) = l, with t ∈ T, l ∈ L. Consider now an
arbitrary subset of labels B ⊆ L. Its corresponding bi-
nary classifier ρB is learned from positive and negative
examples. The positive class is given by B ⊆ L and
the negative class by B̄ = L\B. The data instances of
the positive class are thus the set traces labeled by any
b ∈ B, i.e. I+(B) = {t ∈ T | label(t) ∈ B}, while the
instances of the negative class are the remaining ones, i.e. I−(B) = T \I+(B) =
{t ∈ T | label(t) ∈ B̄}.

Definition 1 Binary classifier and confusion matrix. For any B ⊆ L,
we define a classifier ρB : T −→ {+,−}. The confusion matrix CρB of this binary
classifier is given in Table 1 where each score αij, with i, j ∈ {+,−}, counts the
number of traces with class i classified as class j. Incidentally, it is easy to
observe that α++ corresponds to true positives, α+− to false negatives, α−+ to
false positives and α−− to true negatives.

Definition 2 Scores of a binary classifier. Given a non-empty subset of
labels B ⊆ L and its binary classifier ρB. From the confusion matrix of the
classification of traces, we compute two scores ϕB ∈ [0, 1] and pB ∈ N such that

ϕB =
2 · α++

(2 · α++) + (α+−) + (α−+)
pB = (α++) + (α+−) + (α−+)

Intuitively, ϕB corresponds to the F1-score or the harmonic mean of the
precision and recall measures associated to the classification of traces. The score
pB counts the number of “similar traces” according to the model, i.e. traces that
are well classified in the positive class as well as the confusion.

Definition 3 Lattice of binary classifiers. L = (℘(L),⊆) constitutes a
Boolean lattice where each element B is associated to a classifier ρB.

Our method relies on the study of the changes of the measures ϕB and pB
while enumerating the search space in a bottom up fashion (from singletons
B = {l}, l ∈ L towards B = L). The main idea is to find out maximal elements
B (the most general) for which a set of constraints holds, such that one can
assume that B is the set of avatar aliases of a single user f(u) = B, u ∈ U .

2.2 Constraining the set of binary classifiers

The general idea is to enumerate the lattice of binary classifiers and evaluate
each element to assess if it represents a set of duplicate labels or not. As the
number of elements is exponential w.r.t the number of labels, it is not acceptable
to enumerate all of them. We introduce two constraints a classifier should respect
so that it represents an actual set of duplicate labels. These constraints rely on
the evolution of the F1-measure and the distribution of the data objects in the
positive and negative classes within its downset. It implies an algorithm with
a bottom-up enumeration (from ∅ to L) of the lattice, which is affordable as
duplicate labels sets are rather small in most of the applications (we could not
find an application where an individual has hundreds of different aliases).

The first constraint relies on the following intuition. If E ⊆ L is set of du-
plicates, its binary classifier ρE should be more robust than any of its subsets.
Rewriting E = C ∪D, if it exists a subset C ⊂ E such that ϕC ≥ ϕE , it means
that merging together C and D must be avoided. More formally, a set E ⊆ L is
valid if it respects Constraint 1.

Constraint 1 Consider a label set E ⊆ L and its associated classifier ρE. E is a
valid set of labels iff it respects the following constraint, ∀C,D ⊆ E, E = C ∪D,
ϕE > max(ϕC , ϕD).

Note that ϕE is not monotone, but Constraint 1 is. However, this constraint
alone is not sufficient. Indeed, we may have robust classifiers merged together
which does not consider similar set of positive and negative examples, that is,
better classifier but which does not merge duplicates labels. Still considering the
sets C,D ⊆ E, we need another constraint to control that indeed the instances
assigned to E are those assigned to C and D. To be more robust, rather than
observing directly the set of instances, we show how the score pE should be
expressed in terms of pC and pD so that the classifier ρE is valid.

For all B ⊂ L, PB is the set of traces well identified to be duplicates (true
positives) along with the traces confused by the classifier ρB (false positives
and false negatives). Two traces confused by the classifier can belong to the
same duplicated labels, but sometimes they can belong to different labels (the
classifier can make a mistake confusing two traces they are not as similar as it
seems w.r.t. other traces). Thus, if the set E = C ∪ D is a set of duplicates,
then we consider that we can reasonably write PE = (PC ∪ PD) ∩ E , where E is
the set of traces that are confused by ρC or ρD but not by ρE . Intuitively, this
property we defined considers that if the set E is a set of duplicates, the merging
between two of its subsets C and D results in that PE does not contain traces
that are not in PC or PD, i.e., PE is a subset of (PC ∪ PD). So, it gives that
|PE | ≤ |PC ∪ PD|, with |PE | = pE . The formula |PE | = |PC |+ |PD| − |PC ∩ PD|
always holds and enables us to estimate the upper bound of the validity interval
of pE . Also, it is clear that the set PE contains at least the elements within PC
or PD: the lower bound of the validity interval is |PE | ≥ max(|PC |, |PD|).

Constraint 2 We introduce µ : ℘(P)2 −→ N and θ ∈ [0, 1] such that

|PC ∩ PD| = µ(PC , PD) · θ (1)

where θ represents the overlapping factor between PC and PD given a arbitrary
measure µ. We have then naturally the following constraint, ∀C,D ⊂ E, E =
C ∪D,

max(|PC |, |PD|) 6 |PE | 6 |PC |+ |PD| − µ(PC , PD) · θ (2)

µ(PC , PD) 6 min(|PC |, |PD|) (3)

We can choose for example µ(PC , PD) = min(|PC |, |PD|) and θ = min(ϕC , ϕD)
as a way to estimate its value.

In Equation 1, rewriting the upper bounds allows us to control a minimal
overlapping factor between the instances of C and D: when this overlapping fac-
tor is zero, it means that pC and pD do not have to overlap. On the flip side, the
more the overlapping factor, the stronger the similarity constraint. In practice,
it is required to set an increasing similarity constraint because experience has
shown that the confusion of singleton classifier ρ{l};l∈L is less accurate than that
of a classifier ρB with B a set of a higher cardinality. This is why we choose to
express θ in function of ϕ.

In the end, we introduce the two mappings C1 : L → {true, false} and
C2 : L→ {true, false} telling if a subset of labels verifies respectively Constraint
1 and Constraint 2. A subset B ⊆ L is valid iff C1(B) = true and C2(B) = true.

2.3 Characterizing the result

Remembering that our goal is to discover the avatar set f : U → ℘(L) for any
user u ∈ U . As we have no information about the users, our output shall be a set
of label sets, each one belonging to a unique and unknown user. It means that we
are looking at a partition of L. We construct our result as follows. Firstly, the set
of all valid label sets is given by V = { B ⊆ L | C1(B) = true ∧ C2(B) = true}.

The final result we are looking for is the set of maximal elements of V w.r.t.
set inclusion: R = {v ∈ V| 6 ∃v′ ∈ V s.t. v ⊆ v′}. R is an anti-chain of the lattice
(℘(L),⊆), hence it is not necessarily a partition of the label set. R is here a
tolerance relation, that is a set of sets that covers L but that can overlap (as
opposed to a partition or equivalence relation where parts cannot overlap). We
could as such enforce the fact that our result is a partition, e.g. by choosing
some elements to remove, or adding constraints in the definition of the set V.
However, given our initial hypothesis and the choice of our constraints we should
observe in practice that R is a partition as (i) only duplicates labels should be
merged together (no intersecting parts), (ii) the singletons cannot be pruned by
the constraints by definition (parts covering L). The only possible explanation
for not having a partition is the case an avatar would be shared between several
users: it shall be pruned early and not joined with another set respecting C1

and C2, we check this assumption in the experiments. Finally, note that it could
be shown that L = ((V ∪ ∅ ∪ L),⊆) is a lattice, and that R is the anti-chain
composed of all co-atoms.

2.4 Algorithm

The theoretical search space is the power set of labels (℘(L),⊆). We explore
this lattice in a level-wise manner. Firstly, “singleton” classifiers ρ{l},l∈L are
generated. These singletons are pairwise combined to generate the next level,
and so on. The new model is learned and tested to be valid or not. If the new
classifier is valid, it will be used to generate the next level. If the classifier is
not valid, the set is marked as irrelevant and none of its super sets shall be
considered. The algorithm continues until there is no more possible merging.
The worst-case complexity is O(h · 2|L|) where h depends on the classification
method ρ used.

3 Experiments

This section reports an evaluation of our approach through both quantitative
and qualitative experiments. As we study the video game Starcraft 2 and seek
to identify groups of avatars belonging to the same player, we consider the same
data of [1]. All experiments were performed on a 2,5 GHz Intel Core i7 with 8
GB main memory running OSX. The basic enumeration algorithm was coded in
python. We used the Weka’s implementations of several supervised classification
methods to build the models ρB⊆L ([4]).

3.1 Data and experimental settings

Replay collections. There are two collections of replays: C1 and C2. A replay
is a game record which contains all actions made by the players, hence several
behavioral traces each labeled by an avatar. The first collection is composed
of the 955 games made by 171 expert players during the 2014 World Champi-
onship Series. The rules of this tournament ensure us that there is no avatar
aliases in this collection. We use this collection to build a ground truth, that
is, inserting avatars aliases. The second collection is composed of 10, 108 one-
versus-one games taken on a specialized website entailing 3, 805 players. We use
this collection as real-world settings.

Features and classification models. We use the same features than two
previous works to train the classifiers ρB⊆L. We briefly recall them and refer
the interested reader to the work of [1] and [9]. The game allows the player
to customize its usage of the keyboard in a limited way (change the function
associated to keys 0 to 9). There are three ways to use a key given the current
state of the game which implies 30 features counting the frequency of the different
key usage by the player. A few other features were also added, such as the number
of actions per minutes made by a player (up to 300 for expert players). When
there is no avatar duplicates in the replay collection under study, it was indeed
shown that these features allows to predict the avatar with an accuracy over 95%.
Although our method is independent of the choice of a classification method, we
report with several techniques (knn, J48, Multilayer Perceptron, Naive Bayes,

RandomForest and SMO) and their basic Weka implementations ([4]). In the
end, we learn the model ρB,B⊆L from a set of traces with positive (a set of
avatars) and negative (the other avatars) examples and use a using 10-cross
validation for building the confusion matrices. Then, the scores ϕB and pB are
computed. Note that a unique classification method is used for each full run
of our algorithm (we do not “mix” classification models while enumerating the
lattice).

Parameters. Concerning the avatar aliases identification problem, we consider
three additional parameters also used the previous work of [1]. We consider only
the τ first seconds of a game when computing the features as it was show to have
an impact in the learning phase (the best being between 10 and 20 seconds).
Second, there are labels with a very few instances which leads to bad average
accuracy: we consider a trace in the dataset if its associated avatar has at least
Θ ∈ N examples, i.e. ∀` ∈ L, |T{`}| > Θ. It was previously shown that good
predictions require Θ ≥ 10. Finally, a threshold Λ ∈ [0; 1] permits the selection
of R ∈ R iff. ϕR > Λ. This cut on R is able to increase precision introduced
now.

Ground-truth and evaluation. Given a set of labels, our method aims at
finding the set of label sets R for which each part R ∈ R represents duplicate
labels (avatar aliases of an unknown, yet unique user). As there exists no ground-
truth (for privacy preserving issues the mapping between users and their avatars
is not available), we build one. For that matter, we consider datasets built from
the collection C1, where there is no duplicate labels. First, we choose the γ first
labels that have the more instances. For each of such labels, we split their set
of instances into several parts, each part being an avatar alias. In other words,
we replace each of these γ labels by p new labels (`i)i∈[1;p] and a family or

proportions (ri)i∈[1;p] such that ∀i ∈ [1; p], |T{`i}| =
ri·|T{`}|∑
j∈[1;p] rj

. We will use the

following notation to explain a split: 1 1 2 means that each label l (with at least
γ instances) is replaced by three labels: having respectively 25%, 25% and 50% of
the instances of l (randomly distributed). This allow us to study balance issues.

To evaluate a result R w.r.t. the ground truth G, we proceed as follows. The
powerset of labels ℘(L) is cut into positive and negative examples : G+ = {X ⊆
G,∀G ∈ G} while G− = ℘(G)\G+ and this is our ground truth. We operate
similarly to partition the observed result : R+ = {X ⊆ R,∀R ∈ R} while
R− = ℘(R)\R+. We can thus compare the ground truth w.r.t. the observed
results : TP, FP and FN (resp. standing for true positives, false positives and
false negative) can be defined as usual, as well as the classical evaluation metrics
of precision, recall and F1-measure.

This evaluation roughly consists in comparing two partitions. However, R
is not necessarily a partition but may be a tolerance. As explained before, this
should not happen. Moreover, a null precision and recall penalize these cases in
the experiments.

3.2 Experimental results

Parameter selection. Before giving our first results, we explain how the main
parameters were chosen. We use the collection C1. The parameter γ is fixed to
10, Θ = 15 and all classifiers were used (except SMO that has bad results). This
experiment sets the value of parameter Λ as threshold over the elements of R.
This choice is based on the third quantile of false positive series, i.e., elements of
R which are false positives. It ensures to drop 75% of these false positives. The
true positive dropped elements rate can be shown on Figure 1 as a function of τ .
The best result is for τ = 200 matching with Λ = 0.78. Figure 2 illustrates the FP
and TP distribution for this final setting. These two figures gives distributions
that have been aggregated for all classifiers (without SMO).

θ Precision Recall

null 0.76 ± 0.28 0.69 ± 0.28
min 0.50 ± 0.50 0.22 ± 0.28
mean 0.39 ± 0.49 0.17 ± 0.26
max 0.35 ± 0.48 0.16 ± 0.26

Finally, four ways are explored to calculate θ
as a function of ϕC , ϕD, C,D ⊆ L. These are:
θ = 0 (null), min, mean and max. The table on the
right side shows aggregated results with parame-
ters Γ = 10, Θ = 20, τ = 200 and all classifiers
used. Although the results have a low mean/high
variance (as aggregated results between good and bad classifiers), it clearly ap-
pears that θ = 0 draws the best result. Some classification methods perform
particularly well (we have indeed a 97%-precision and 61%-recall for the Naive
Bayes classification algorithm with θ = 0, while SMO is an outlier).

Run-time and memory analysis. Given the chosen parameters, we build
several ground truth G with different proportions, some fully balanced other
unbalanced. Recall that, e.g., (1 1 1 1) means that an original class was cut into
4 subclasses, each with the same amount of instances, while (1 4) means that
a class was cut into two, with an unbalanced distribution of 20% vs. 80%. For
all classification method we used, the number of generated nodes in the lattices
of binary classifiers was less than a thousand which is insignificant w.r.t. the
size of the theoretical search space 2171. This means that our constraints allows
very early pruning which makes the method possible in practice: Except for the
method SMO, all run times were below 50 seconds.

Efficiency analysis. Still with the same parameters, we show some aspects
on how efficient the method is. Figure 3 plots the precision and recall of our
method when comparing the obtained results R with the ground truth G. The
main result is that the Naive Bayes implementation gives the best results, favors
precision over recall, and is robust with unbalanced classes. Actually, as our
method requires that the two constraints C1 and C2 are valid for any subset,
our method favors precision in general. In an unreported experiment, we observed
that the method favors recall if we set the restriction to the existence of only at
least two different direct subsets that respect the two constraints. However, the
goal in user identification is generally to favor precision.

Qualitative experiment. Until now, the goal of the experiments was to study
how our method can retrieve a ground truth: traces of Collection C1 had no
duplicate, we inserted some in a controlled way and observed how they can be

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
0.2

0.4

0.6

10 100 1000
Parameter τ

D
ro

pp
ed

 T
P

ra
te

precision
●

●

●

0.498

0.500

0.502

Fig. 1. % of dropped TP as a function of
parameter τ when setting Λ as the third
quantile of each FP series. The dashed line
shows the best solution τ = 200.

0.
6

0.
8

1.
0

Measure ϕ of resulting sets

D
is

tr
ib

ut
io

n

Resulting sets

FP

VP

Fig. 2. TP and FP distribution for τ =
200. The dashed line shows the third quan-
tile of FP serie. This solution implies
around only 6% of dropped TP.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

1_
1

2_
3

1_
4

1_
1_

1

1_
1_

2

1_
2_

3

1_
1_

1_
1

1_
1_

2_
2

1_
2_

3_
4

Proportions

P
re

ci
si

on

classifier
●

●

●

●

●

●

IBk
J48
MultilayerPerceptron
NaiveBayes
RandomForest
SMO

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

1_
1

2_
3

1_
4

1_
1_

1

1_
1_

2

1_
2_

3

1_
1_

1_
1

1_
1_

2_
2

1_
2_

3_
4

Proportions

R
ec

al
l

Fig. 3. Precision and recall with different ground truths (label distributions)

retrieved. In this last experiment, we run our method on the collection C2 which
corresponds to real-world settings. We ran our algorithm with several parameters
and report here only our first results. The settings were the following: we choose
the Naive Bayes classification algorithm as it experimentally favors precision over
recall, and behaves the better for imbalanced classes that we suspect to occur
in C2. We set τ = 200 and θ = mean(ϕC , ϕD) and Λ = 0 after several trials.
We order the label sets of the result w.r.t. the robustness of their classifier,
i.e. R = 〈R1, ..., Rn〉, where ϕRi ≥ ϕRi+1 , for 1 ≤ i ≤ n − 1. After a run of
1, 017 seconds, out of the |L| = 58 initial avatars labeling |T | = 5, 883 traces, we
find 7 aliases of size 2, i.e. |R| = 51. For four of the found pairs, we have that
the avatars share a same ID, so we are sure that it is the same user account:
we omitted that information when building the dataset, and we kept only the
avatar names. For example, we found the avatar names EGStephanoRC, a famous
ex-professional player associated with the avatar name lIlIlIllIIII (a name not
recognizable on purpose). One pair of avatars share a same name (pro-player
LiquidHero), but not the same ID: we can assume with high confidence that
this is a true positive. Finally, two false positives, for which we cannot advance
anything, but just assume that the same player is behind each of these pairs;
these are actually the most interesting avatar aliases we are looking for.

4 Conclusion

In several online applications, a single user may have different virtual identi-
ties. When this mapping is not known, we face the duplicate label identification
problem, whose resolution has applications in targeted marketing, online sys-
tems security, etc. Whereas this problem has similar goals as entity resolution
techniques [3, 6], we treat it in a new way, taking into account the user behavior
hidden in the data traces by building a model for each possible subset of label (in
theory). Indeed, behavioral traces generated by the users can help building ac-
curate prediction models that only confuse avatars of a same user. We proposed
a method that takes advantage of this idea, by generating a binary classifier for
each possible subset of labels. Using a bottom-up generation of the label sets,
appropriate constraints ensure that we generate few accurate classifiers that each
depict the same user. We experimented the implementation of our approach with
behavioral data of a video game where players use several identities to play on-
line. The results are encouraging although more experiments and comparisons
remain to be done.

Acknowledgments. This work has been partially financed by the projects FUI
AAP 14 Tracaverre 2012-2016, VELINNOV (ANR INOV 2012) and GRAISearch
(FP7-PEOPLE-2013-IAPP).

References

1. Cavadenti, O., Codocedo, V., Boulicaut, J.F., Kaytoue, M.: When cyberathletes
conceal their game : Clustering confusion matrices to identify avatar aliases. In:
International Conference on Data Science and Advanced Analytics (DSAA) (2015)

2. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: The privacy bounds of human mobility. Nature Scientific reports 3(1376),
779–782 (2013)

3. Getoor, L., Machanavajjhala, A.: Entity resolution: Theory, practice & open chal-
lenges. PVLDB 5(12), 2018–2019 (2012)

4. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18
(2009), http://doi.acm.org/10.1145/1656274.1656278

5. ICDM Contest: Identify individual users across their digital devices. In: IEEE In-
ternational Conference on data mining (2015)

6. Mugan, J., Chari, R., Hitt, L., McDermid, E., Sowell, M., Qu, Y., Coffman, T.:
Entity resolution using inferred relationships and behavior. In: IEEE International
Conference on Big Data. pp. 555–560 (2014)

7. Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification.
IEEE Security & Privacy 2(5), 40–47 (2004)

8. Von Eschen, A.: Machine learning and data mining in call of duty (invited talk).
In: Eur. Conf. on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD) (2014)

9. Yan, E.Q., Huang, J., Cheung, G.K.: Masters of control: Behavioral patterns of
simultaneous unit group manipulation in starcraft 2. In: 33rd Annual ACM Conf.
on Human Factors in Computing Systems (CHI 2015). pp. 3711–3720. ACM (2015)

