Skip to main content

dARe – Using Argumentation to Explain Conclusions from a Controlled Natural Language Knowledge Base

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10351))

  • 1955 Accesses

Abstract

We present an approach to reasoning with knowledge bases comprised of strict and defeasible rules over literals. A controlled natural language is proposed as a human/machine interface to facilitate the specification of knowledge and verbalisation of results. Techniques from formal argumentation theory are employed to justify conclusions of the approach; this aims at facilitating human acceptance of computed answers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While ASP can deal with this example, the common “not provably not” reading of “usually, \(\langle statement \rangle \)” phrases is not always correct.

  2. 2.

    Adding an abnormality atom into the body of line 5 (like in rule (12) of [5]) would address inconsistency, but not get us our intended reading. It would introduce the issue of having to create abnormality predicates from language input, where such predicates are not explicit.

  3. 3.

    http://attempto.ifi.uzh.ch/site/description/.

  4. 4.

    See [27, 28] for an example of several natural language statements that are worked with ACE and related to an instantiated argumentation framework.

  5. 5.

    RACE and PENG-ASP have the same expressions [12, 13]. RACE is based on Satchmo (written in Prolog), while PENG-ASP uses ASP.

  6. 6.

    An integration to AceRules is feasible; see, in a related setting, If Nixon is a quaker then Nixon usually is a pacifist. in https://argument-pipeline.herokuapp.com/, which is based on [26]. However, that work relied on ad-hoc manipulations of semantic representations.

References

  1. Amgoud, L., Besnard, P.: A formal characterization of the outcomes of rule-based argumentation systems. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 78–91. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40381-1_7

    Chapter  Google Scholar 

  2. Amgoud, L., Nouioua, F.: Undercutting in argumentation systems. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS (LNAI), vol. 9310, pp. 267–281. Springer, Cham (2015). doi:10.1007/978-3-319-23540-0_18

    Chapter  Google Scholar 

  3. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Intell. Res. 38, 135–187 (2010)

    MATH  Google Scholar 

  4. Asher, N.: Reference to Abstract Objects in Discourse. Kluwer Academic Publishers, Amsterdam (1993)

    Book  Google Scholar 

  5. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Program. 19(20), 73–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. Artif. Intell. 233, 1–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dung, P.M., Son, T.C.: An argument-based approach to reasoning with specificity. Artif. Intell. 133(1–2), 35–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuchs, N.E.: Reasoning in attempto controlled english: non-monotonicity. In: Davis, B., Pace, G.J.J., Wyner, A. (eds.) CNL 2016. LNCS (LNAI), vol. 9767, pp. 13–24. Springer, Cham (2016). doi:10.1007/978-3-319-41498-0_2

    Chapter  Google Scholar 

  12. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0_3

    Chapter  Google Scholar 

  13. Guy, S., Schwitter, R.: The PENG\(^{{ASP}}\) system: architecture, language and authoring tool. Lang. Resour. Eval. 1–26 (2016)

    Google Scholar 

  14. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-Theoretic Semantics of Natural Language: Formal Logic and Discourse Representation Theory. Springer, Dordrecht (1993)

    Google Scholar 

  15. Kratzer, A.: Modals and Conditionals. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  16. Kuhn, T.: AceRules: executing rules in controlled natural language. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 299–308. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72982-2_24

    Chapter  Google Scholar 

  17. Kuhn, T.: A survey and classification of controlled natural languages. Comput. Linguist. 40(1), 121–170 (2014)

    Article  Google Scholar 

  18. Lippi, M., Torroni, P.: Argumentation mining: state of the art and emerging trends. ACM Trans. Internet Technol. 16(2), 10:1–10:25 (2016)

    Article  Google Scholar 

  19. Mott, D.: The ITA controlled english report (Prolog version). Technical report, Emerging Technology Services, Hursley, IBM UK (2016)

    Google Scholar 

  20. Pollock, J.L.: Reasoning and probability. Law Prob. Risk 6, 43–58 (2007)

    Article  Google Scholar 

  21. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  22. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  23. Strass, H.: Instantiating rule-based defeasible theories in abstract dialectical frameworks and beyond. J. Log. Comput. (2015)

    Google Scholar 

  24. Strass, H., Wyner, A.: On automated defeasible reasoning with controlled natural language and argumentation. In: AAAI-17 Workshop on knowledge-based Techniques for Problem Solving and Reasoning (KnowProS 2017), February 2017

    Google Scholar 

  25. Toniolo, A., Preece, A.D., Webberley, W., Norman, T.J., Sullivan, P., Dropps, T.: Conversational intelligence analysis. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 42:1–42:6 (2016)

    Google Scholar 

  26. Wyner, A., Bench-Capon, T., Dunne, P., Cerutti, F.: Senses of ‘argument’ in instantiated argumentation frameworks. Argum. Comput. 6(1), 50–72 (2015)

    Article  MATH  Google Scholar 

  27. Wyner, A., Engers, T., Bahreini, K.: From policy-making statements to first-order logic. In: Andersen, K.N., Francesconi, E., Grönlund, Å., Engers, T.M. (eds.) EGOVIS 2010. LNCS, vol. 6267, pp. 47–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15172-9_5

    Chapter  Google Scholar 

  28. Wyner, A.Z., van Engers, T.M., Hunter, A.: Working on the argument pipeline: through flow issues between natural language argument, instantiated arguments, and argumentation frameworks. Argum. Comput. 7(1), 69–89 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wyner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wyner, A., Strass, H. (2017). dARe – Using Argumentation to Explain Conclusions from a Controlled Natural Language Knowledge Base. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10351. Springer, Cham. https://doi.org/10.1007/978-3-319-60045-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60045-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60044-4

  • Online ISBN: 978-3-319-60045-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics