Skip to main content

KDM-Secure Public-Key Encryption from Constant-Noise LPN

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10342))

Included in the following conference series:

  • 971 Accesses

Abstract

The Learning Parity with Noise (LPN) problem has found many applications in cryptography due to its conjectured post-quantum hardness and simple algebraic structure. Over the years, constructions of different public-key primitives were proposed from LPN, but most of them are based on the LPN assumption with low noise rate rather than constant noise rate. A recent breakthrough was made by Yu and Zhang (Crypto’16), who constructed the first Public-Key Encryption (PKE) from constant-noise LPN. However, the problem of designing a PKE with Key-Dependent Message (KDM) security from constant-noise LPN is still open.

In this paper, we present the first PKE with KDM-security assuming certain sub-exponential hardness of constant-noise LPN, where the number of users is predefined. The technical tool is two types of multi-fold LPN on squared-log entropy, one having independent secrets and the other independent sample subspaces. We establish the hardness of the multi-fold LPN variants on constant-noise LPN. Two squared-logarithmic entropy sources for multi-fold LPN are carefully chosen, so that our PKE is able to achieve correctness and KDM-security simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_21

    Chapter  Google Scholar 

  2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  3. Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS 2003, pp. 298–307. IEEE Computer Society (2003)

    Google Scholar 

  4. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 659–680. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_23

    Chapter  Google Scholar 

  5. Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_29

    Chapter  Google Scholar 

  6. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_24

    Google Scholar 

  7. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_1

    Chapter  Google Scholar 

  8. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_13

    Chapter  Google Scholar 

  9. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_22

    Chapter  Google Scholar 

  10. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_7

    Chapter  Google Scholar 

  11. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_32

    Chapter  Google Scholar 

  12. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1+1=0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_31

    Chapter  Google Scholar 

  13. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  15. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7_6

    Chapter  Google Scholar 

  17. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theor. 44(1), 367–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_20

    Chapter  Google Scholar 

  19. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_32

    Chapter  Google Scholar 

  20. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  21. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Cham (2014). doi:10.1007/978-3-319-12280-9_10

    Google Scholar 

  22. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptography based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_30

    Chapter  Google Scholar 

  23. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample amplification. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_27

    Google Scholar 

  24. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning noisy parities and halfspaces. In: FOCS 2006, pp. 563–574. IEEE Computer Society (2006)

    Google Scholar 

  25. Forney, G.D.: Concatenated Codes. MIT Press, Cambridge (1966)

    Google Scholar 

  26. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33167-1_36

    Chapter  Google Scholar 

  27. Goyal, R., Koppula, V., Waters, B.: Separating IND-CPA and circular security for unbounded length key cycles. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 232–246. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54365-8_10

    Chapter  Google Scholar 

  28. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Han, S., Liu, S.: KDM-secure public-key encryption from constant-noise LPN. IACR Cryptology ePrint Archive, Report 2017/310 (2017)

    Google Scholar 

  31. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 307–338. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6_11

    Chapter  Google Scholar 

  32. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_31

    Chapter  Google Scholar 

  33. Kirchner, P.: Improved generalized birthday attack. IACR Cryptology ePrint Archive, Report 2011/377 (2011)

    Google Scholar 

  34. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0_1

    Chapter  Google Scholar 

  35. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_15

    Chapter  Google Scholar 

  36. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006). doi:10.1007/11761679_6

    Chapter  Google Scholar 

  37. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 681–700. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_24

    Chapter  Google Scholar 

  38. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006). doi:10.1007/11832072_24

    Chapter  Google Scholar 

  39. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_22

    Google Scholar 

  40. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/11538462_32

    Google Scholar 

  41. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_33

    Google Scholar 

  42. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_6

    Chapter  Google Scholar 

  43. Marcedone, A., Orlandi, C.: Obfuscation \(\Rightarrow \) (IND-CPA Security !\({\Rightarrow }\) Circular Security). In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7_5

    Google Scholar 

  44. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_28

    Chapter  Google Scholar 

  45. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  46. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). doi:10.1007/BFb0019850

    Chapter  Google Scholar 

  47. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_9

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Yunhua Wen for a careful proofreading, and the reviewers for valuable comments. The authors are supported by the National Natural Science Foundation of China Grant (Nos. 61672346, 61373153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Han, S., Liu, S. (2017). KDM-Secure Public-Key Encryption from Constant-Noise LPN. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10342. Springer, Cham. https://doi.org/10.1007/978-3-319-60055-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60055-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60054-3

  • Online ISBN: 978-3-319-60055-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics