Skip to main content

GenFace: Improving Cyber Security Using Realistic Synthetic Face Generation

  • Conference paper
  • First Online:
Cyber Security Cryptography and Machine Learning (CSCML 2017)

Abstract

Recent advances in face recognition technology render face-based authentication very attractive due to the high accuracy and ease of use. However, the increased use of biometrics (such as faces) triggered a lot of research on the protection biometric data in the fields of computer security and cryptography.

Unfortunately, most of the face-based systems, and most notably the privacy-preserving mechanisms, are evaluated on small data sets or assume ideal distributions of the faces (that could differ significantly from the real data). At the same time, acquiring large biometric data sets for evaluation purposes is time consuming, expensive, and complicated due to legal/ethical considerations related to the privacy of the test subjects. In this work, we present GenFace, the first publicly available system for generating synthetic facial images. GenFace can generate sets of large number of facial images, solving the aforementioned problem. Such sets can be used for testing and evaluating face-based authentication systems. Such test sets can also be used in balancing the ROC curves of such systems with the error correction codes used in authentication systems employing secure sketch or fuzzy extractors. Another application is the use of these test sets in the evaluation of privacy-preserving biometric protocols such as GSHADE, which can now enjoy a large number of synthetic examples which follow a real-life distribution of biometrics. As a case study, we show how to use GenFace in evaluating SecureFace, a face-based authentication system that offers end-to-end authentication and privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such as Aadhaar, the Indian biometric database of the full Indian population.

  2. 2.

    Changes in viewing conditions require the use of a 3D model and will be considered in future work.

  3. 3.

    Hereafter we use the term face-space to mean the space spanned by a set of principal components, derived from a set of training face images.

  4. 4.

    Our experiments, reported in Sect. 3.2 verify these assumptions.

  5. 5.

    It is unclear what should be the training size of a face-space that models all possible faces. However, we note that a face which is not “plausible” in some face-space, i.e., is very far from the surface of the face-space is likely to not “work” properly in a system which relies on the face-space.

  6. 6.

    This feature is more relevant to the “sample within” option, as the distance from each offspring image to the seed could be different.

  7. 7.

    GenFace does not require full Matlab, but the installation package will install the “MATLAB Component Runtime”.

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  3. Bringer, J., Chabanne, H., Favre, M., Patey, A., Schneider, T., Zohner, M.: GSHADE: faster privacy-preserving distance computation and biometric identification. In: Unterweger, A., Uhl, A., Katzenbeisser, S., Kwitt, R., Piva, A. (eds.) ACM Information Hiding and Multimedia Security Workshop, IH&MMSec 2014, Salzburg, Austria, June 11–13, 2014, pp. 187–198. ACM (2014)

    Google Scholar 

  4. Cappelli, R., Maio, D., Maltoni, D.: SFinGe: an approach to synthetic fingerprint generation. In: International Workshop on Biometric Technologies, pp. 147–154 (2004)

    Google Scholar 

  5. Chang, Y., Zhang, W., Chen, T.: Biometrics-based cryptographic key generation. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 2203–2206 (2004)

    Google Scholar 

  6. Chen, C., Veldhuis, R., Kevenaar, T., Akkermans, A.: Biometric binary string generation with detection rate optimized bit allocation. In: CVPR Workshop on Biometrics, pp. 1–7 (2008)

    Google Scholar 

  7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  8. Dezert, J., Musso, C.: An efficient method for generating points uniformly distributed in hyperellipsoids. In: The Workshop on Estimation, Tracking and Fusion: A Tribute to Yaakov Bar-Shalom (2001)

    Google Scholar 

  9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunkelman, O., Osadchy, M., Sharif, M.: Secure authentication from facial attributes with no privacy loss. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, November 4–8, 2013, pp. 1403–1406. ACM (2013)

    Google Scholar 

  11. Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998). doi:10.1007/BFb0054766

    Chapter  Google Scholar 

  12. Gibson, S.J., Solomon, C.J., Bejarano, A.P.: Synthesis of photographic quality facial composites using evolutionary algorithms. In: Proceedings on British Machine Vision Conference, BMVC 2003, Norwich, UK, pp. 1–10, September 2003 (2003)

    Google Scholar 

  13. Gibson, S.J., Solomon, C.J., Pallares-Bejarano, A.: Nonlinear, near photo-realisticcaricatures using a parametric facial appearance model. Behav. Res. Methods 37(1), 170–181 (2005). http://dx.doi.org/10.3758/BF03206412

    Article  Google Scholar 

  14. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Motiwalla, J., Tsudik, G. (eds.) CCS 1999, Proceedings of the 6th ACM Conference on Computer and Communications Security, Singapore, November 1–4, 1999, pp. 28–36. ACM (1999)

    Google Scholar 

  15. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014, pp. 1867–1874 (2014)

    Google Scholar 

  16. Lee, K., Byatt, G., Rhodes, G.: Caricature effects, distinctiveness, and identification: testing the face-space framework. Psychol. Sci. 11(5), 379–385 (2000)

    Article  Google Scholar 

  17. Lewis, M.: Face-space-R: towards a unified account of face recognition. Vis. Cogn. 11(1), 29–69 (2004)

    Article  Google Scholar 

  18. Li, M., Zuo, W., Zhang, D.: Convolutional network for attribute-driven and identity-preserving human face generation. arXiv preprint arXiv:1608.06434 (2016)

  19. Masi, I., Tran, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to collect millions of faces for effective face recognition? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 579–596. Springer, Cham (2016). doi:10.1007/978-3-319-46454-1_35

    Chapter  Google Scholar 

  20. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60(2), 135–164 (2004)

    Article  Google Scholar 

  21. Narayanan, H., Niyogi, P.: Sampling hypersurfaces through diffusion. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 535–548. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85363-3_42

    Google Scholar 

  22. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Tubaro, S., Dugelay, J. (eds.) Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, 2–4 September 2009, Genova, Italy, pp. 296–301. IEEE Computer Society (2009).,

    Google Scholar 

  23. Solomon, C.J., Gibson, S.J., Mist, J.J.: Interactive evolutionary generation of facial composites for locating suspects in criminal investigations. Appl. Soft Comput. 13(7), 3298–3306 (2013)

    Article  Google Scholar 

  24. Sumi, K., Liu, C., Matsuyama, T.: Study on synthetic face database for performance evaluation. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 598–604. Springer, Heidelberg (2005). doi:10.1007/11608288_79

    Chapter  Google Scholar 

  25. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  26. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M., Veldhuis, R.N.J.: Practical biometric authentication with template protection. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–446. Springer, Heidelberg (2005). doi:10.1007/11527923_45

    Chapter  Google Scholar 

  27. Tzimiropoulos, G., Pantic, M.: Optimization problems for fast AAM fitting in-the-wild. In: IEEE International Conference on Computer Vision, ICCV, pp. 593–600 (2013)

    Google Scholar 

  28. Valentine, T.: A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. 43(2), 161–204 (1991)

    Article  Google Scholar 

  29. Wu, H., Liu, X., Doretto, G.: Face alignment via boosted ranking model. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA (2008)

    Google Scholar 

  30. Zhang, L., Lin, L., Wu, X., Ding, S., Zhang, L.: End-to-end photo-sketch generation via fully convolutional representation learning. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 627–634. ACM (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by UK Engineering and Physical Sciences Research Council project EP/M013375/1 and by the Israeli Ministry of Science and Technology project 3-11858. We thank Mahmood Sharif for his support in experiments using SecureFace. We thank the anonymous reviewers of this paper for their ideas and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Osadchy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Osadchy, M., Wang, Y., Dunkelman, O., Gibson, S., Hernandez-Castro, J., Solomon, C. (2017). GenFace: Improving Cyber Security Using Realistic Synthetic Face Generation. In: Dolev, S., Lodha, S. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2017. Lecture Notes in Computer Science(), vol 10332. Springer, Cham. https://doi.org/10.1007/978-3-319-60080-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60080-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60079-6

  • Online ISBN: 978-3-319-60080-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics