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Abstract. Understanding the behavior of malware requires a semi-automatic
approach including complex software tools and human analysts in the
loop. However, the huge number of malicious samples developed daily
calls for some prioritization mechanism to carefully select the samples
that really deserve to be further examined by analysts. This avoids com-
putational resources be overloaded and human analysts saturated. In this
paper we introduce a malware triage stage where samples are quickly
and automatically examined to promptly decide whether they should
be immediately dispatched to human analysts or to other specific au-
tomatic analysis queues, rather than following the common and slow
analysis pipeline. Such triage stage is encapsulated into an architecture
for semi-automatic malware analysis presented in a previous work. In
this paper we propose an approach for sample prioritization, and its re-
alization within such architecture. Our analysis in the paper focuses on
malware developed by Advanced Persistent Threats (APTs). We build
our knowledge base, used in the triage, on known APTs obtained from
publicly available reports. To make the triage as fast as possible, only
static malware features are considered, which can be extracted with neg-
ligible delay, without the necessity of executing the malware samples, and
we use them to train a random forest classifier. The classifier has been
tuned to maximize its precision, so that analysts and other components
of the architecture are mostly likely to receive only malware correctly
identified as being similar to known APT, and do not waste important
resources on false positives. A preliminary analysis shows high precision
and accuracy, as desired.
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1 Introduction

Cyber threats keep evolving relentlessly in response to the corresponding progress
of security defenses, resulting in an impressive number of new malware that are



being discovered daily, in the order of millions [6]. To cope with this enormous
volume of samples there is the necessity of a malware knowledge base, to be kept
updated over time, and to be used as the main source of information to realize
novel and powerful countermeasures to existing and new malware. Some malware
are part of sophisticated and target-oriented cyber attacks, which often leverage
customized malware to remotely control the victims and use them for accessing
valuable information inside an enterprise or institutional network target. Accord-
ing to NIST Glossary of Key Information Security Terms 3, such “adversary that
possesses sophisticated levels of expertise and significant resources which allow it
to create opportunities to achieve its objectives by using multiple attack vectors
(e.g., cyber, physical and deception)” is known as Advance Persistent Threats
(APT). APTs typically target Critical Infrastructures (CIs) as well as important
organizations, stealthily intruding them and persisting there over time spans of
months, with the goal of exfiltrating information, undermining or impeding crit-
ical aspects of a mission, program, or organization; or positioning itself to carry
out these objectives in the future. Therefore, among the large amount of col-
lected malware, those belonging to some APT should be considered as the most
dangerous. In addition, the sooner an APT malware is identified, the smaller is
the loss it can cause. Within this scenario, it is important to define an efficient
workflow for APT malware analysis, aimed first at quickly identifying malware
that could belong to APTs and increase their priority in successive analysis (i.e.,
APT malware triage), and then determine whether these suspicious samples are
really related to APTs (i.e., APT malware detection). This early identification
can be embedded in the malware analysis architecture recently presented in [15],
which provides semi-automatic malware analysis, and supports a flow of anal-
ysis, continuous over time, from the collection of new samples to the feeding
and consequent growth of the malware knowledge base. Such an architecture
includes totally automated stages, in order to keep up with today’s pace of
new malware, and also manual stages, where human analysts have to reverse
engineer and study in details the samples that have not been completely un-
derstood through automatic means. Although the architecture is framed in a
scenario tailored for CIs, its employment can be naturally extended to any sit-
uation where a malware knowledge base is desired. Within the architecture, a
rank is produced for each sample as the intermediate output of some automatic
analyses, based on current malware knowledge base, representing to what extent
such sample resembles something that is already known and included in that
knowledge base. Such rank determines whether the sample should be further
analyzed by a human analyst. This can be seen as a specific instance of sample
prioritization, where samples follow different paths within a complex analysis
workflow depending on priority scores they get assigned during the first stages.
To this end, in this paper we introduce a malware triage stage, where samples
are timely analyzed to understand as soon as possible whether they likely belong
to some known APT campaign and should be dispatched, with highest priority,
to human analysts or other components of the architecture for further analysis.

3 http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf



Such prioritization is mainly aimed at giving precedence to what we deem to be
more important to analyze. In fact understanding whether we are being threaten
by an APT is much more urgent than dissecting an unknown variant of some
adware. It is to note that the objective of this triage stage is not APT malware
detection, which is instead pursued at a later stage by human analysts and spe-
cialized architecture components, rather the final goal of the triage is spotting
with the highest precision samples that seem to be related to known APTs. The
addition of this triage stage does not call for any relevant change in the ar-
chitecture, rather it can be easily realized using already envisaged components.
A prompt priority assignment is thus fundamental when designing a malware
triage stage, which translates to employing analysis techniques very efficient in
terms of time performance. There is hence the necessity of a triage stage that,
in order, (i) has low computational complexity to timely analyze a great number
of samples, (ii) has high precision, i.e. does not prioritize non-APT malware to
not overload human analysts and/or complex components with urgent but not
necessary analyses, and (iii) has high accuracy, i.e. a high number of samples
are correctly identified. For the first purpose, we adopt an approach based only
on static analysis methods. Although it is known that static features are not as
effective as dynamic features for malware analysis [7], we choose anyway to only
rely on static features because for the triage stage we deem prioritization speed
more important than accuracy, and we leave more accurate analyses to succes-
sive stages along the analysis pipeline. We leverage on publicly available reports
on APTs, which include MD5s of related malware. We collect these malware
from public sources, such as VirusTotal 4, then the content of sample binaries
are examined to extract static features to produce required feature vectors. No
sample execution is hence needed, and no expensive virtualized or emulated en-
vironment needs to be setup and activated. These static features are then used
in machine learning tools, where APT name represents the class label, to iden-
tify whether the sample is similar to some known APT malware. A part of the
samples is used in the training phase and the other samples are used in the
validation of the classifier, together with non-APT samples. For classification we
train a random forest classifier, because it guarantees high efficiency and low
complexity. The classifier has been tuned to provide the precision and accuracy
constraints. Results are encouraging, as they suggest this approach can be eas-
ily realized within the architecture proposed in [15], and effective in identifying
samples similar to malware realized by known APTs with a precision of 100%
and accuracy up to 96%. The contributions of this paper are (i) the definition of
a novel policy for malware triage, based on the similarity to malware developed
by known APTs, (ii) the design of the malware triage stage within the archi-
tecture proposed in [15], (iii) a prototype implementation of such architecture,
and (iv) an experimental evaluation regarding the performance of the proposed
malware triage, using a number of public reports about APTs as dataset. The
rest of the paper is structured as follows. § 2 reports on the state of the art
in the field of malware analysis architectures and malware triage. § 3 describes

4 https://www.virustotal.com/



the reference architecture. The malware triage approach is detailed in § 4, while
prototype implementation and experimental evaluations about triage accuracy
are reported in § 5. Conclusions are drawn and future works presented in § 6.

2 Related Work

The analysis of Advanced Persistent Threats is an important topic of research
within the cyber-security area: many researchers focus on the avoidance and/or
detection of this type of attacks. In [24] and [16] methodologies are shown to de-
tect the presence of these advanced intruders through anomaly detection systems
that use network traffic features. In [23] a framework is proposed to leverage dy-
namic analysis to find evidences of APT presence. Other researchers concentrate
their effort in the hardening of organizations [5, 11,26,27]. They propose proce-
dures to raise security levels through the implementation of various precautions
based on the analysis of previous attacks.

On the contrary, our work is not oriented to develop a monitor to detect sus-
picious activity or to improve the robustness of organization’s defenses. Rather,
we aim to develop a triage approach to support expert analysts in their work,
trough a prioritization of interesting threats. Several works in literature try to
face the problem of malware triage by using the same basic principle: finding
similarities among malware to identify variants of samples already analyzed in
the past, so that they are not analyzed in details and thus do not waste resources
such as human analysts.

One famous work in this field is Bitshred [10]: it is a framework for fast large-
scale malware triage using features hashing. The main idea is to reduce the size
of the feature vector to speed up the machine learning analysis.

VILO [14] is another tool for malware classification: it is based on nearest
neighbor algorithm with weighted opcode mnemonic permutation features and
it aims to be a rapid learner of malware families. It is well suited for malware
analysis because it makes minimal assumptions about class structures and thus
it can adapt itself to the continuous changes of this world.

An interesting triage approach is the one use by SigMal [13]: using signal
processing to measure the similarity among malware. This approach permits to
define more noise-resistant signatures to quickly classify malware.

All these works propose a triage approach based on the idea of performing
deep analysis only on malware that are not similar to known classes (like new
malware families), instead our approach prioritizes malware that are related to
already known malicious samples in order to find novel samples possibly de-
veloped by APTs. We base our system on static features extracted by static
analysis. While it is quite unreliable for malware detection [19], in our appli-
cation static analysis represent a lightweight and efficient tool for classification
of detected malware among APTs campaigns. Structural properties [28] would
add important knowledge to the classifier, however we discarded them because
of their high complexity



3 Architecture

Malware triage is a pre-processing phase, aiming at proritize APT malware anal-
ysis in the architecture presented in [15]. In this section we summarize a descrip-
tion of the given malware analysis framework, showing how sample analysis flow
is arranged through a staged view of the architecture. For a detailed descrip-
tion of the building blocks composing the architecture, and interactions of the
framework within multiple organizations and Critical Infrastructures (CIs), we
remind to the original paper [15].

Sample analysis is organized in a series of stages, from sample retrieval to
information sharing, shown in Fig. 1.

In the Loading Stage, malware samples are gathered from known datasets,
malware crawlers, honeypots and other distinct sources. Also APT reports are
collected and related malware are retrieved. In the Input Stage, samples collected
are stored together with a set of metadata characterizing the samples themselves,
including the APT they belong to, if any, and their source.

Samples collected are then analyzed in the Analysis Stage. Analysis Tools
are used to examine sample content and analysis in order to extract significative
features representing the samples. Machine Learning Classifiers are in charge of
assigning samples to predefined learned classes on the base of features values.
Clustering tools group samples according to their similarity, with the goal of
isolating specific groups of malware and link unknown samples to them. Corre-
lators try to match samples with information about cyber threats retrieved from
external sources.
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Fig. 1. Staged view of the architecture of the malware analysis framework.



Results obtained by these tools are pushed to the Output Stage and eventually
made available to other organizations in the Sharing Stage.

We underline that both input and output stage share the same storage space,
hence the output of the analysis also enrich the information associated to sam-
ples. Samples can pass through the analysis stage several times, in the case new
tools are added to the architecture, some tool is updated, or samples deserve spe-
cial attention by analysts. As shown in § 4, the triage approach aims to promptly
analyze malware samples to associate them a rank indicating whether samples
can be related to some known APT and hence they deserve further investigation.

4 Triage Approach

We propose an approach for malware triage based on the identification of samples
similar to malware known to be developed by APTs. From now on, we say that
these samples are related to known APTs. The basic idea is to generate a dataset
by collecting public APT reports (such as [17], [20] and [25]) and retrieving the
binaries of the malware referenced in these reports. Each malware is assigned to
an APT based on what is written in the reports. Static features are extracted
from these binaries and used to train a classifier to be used for the triage.

Fig. 2 highlights the components of the architecture (see § 3 and [15]) that
are involved in the malware triage process. The flow starts with the APT loading
plugin, which continuously crawls different public sources in order to obtain re-
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Fig. 2. Data Classification Flow.



ports about APTs and feeds the system with the information contained in them.
For the training phase, the Features Extraction component periodically analyses
all new static analysis reports of malware related to known APTs to produce
the feature vectors required to train the Classifier. For the analysis phase, novel
samples have to first pass through the malware triage stage. This includes a
static analysis phase (performed in the Sample Analysis Section of the archi-
tecture) aimed at producing the feature vectors (done by Features Extraction
component) to feed to the trained Classifier. If a sample is classified as related
to known APT, then it is directed to an alternative path within the analysis
chain, e.g., it is submitted to some human analyst for manual examination. We
first present the phase of malware retrieval based on public APT reports (§ 4.1),
then describe what static features are considered (§ 4.2), and finally detail how
the classifier is trained and then used for the actual triage (§ 4.3).

4.1 APT Malware Loading

This component crawls external, publicly-available sources to collect reports re-
lated to malicious campaigns, activities and software that have been associated
to APTs. These reports are produced by security firms and contain different
Indicator Of Compromises [IOCs] related to specific APTs, including domains,
IPs and MD5s of malware. The loading plugin parses them and add these infor-
mation into the Knowledge Base. When a malware is added through its MD5,
the architecture searches for the corresponding binary file in order to store and
analyze it. Unfortunately, many of these malware are not available on public
sources, so it is not possible to collect all of them.

4.2 Feature Extraction

To obtain a prompt triage process, we base the classification on static features
only. Indeed, they take shorter time to be extracted compared to dynamic fea-
tures, which instead require sample execution in some controlled environment
(e.g., a sandbox). Table 1 reports all the classes of features that are extracted.
In this work, considered samples are PE files. There are seven feature classes.

Table 1. Features Classes

Class Count

Optional Header 30
MS-DOS Header 17

File Header 7
Obfuscated String Statistics 3

Imports 158
Function lengths 50

Directories 65



Optional Header features. These features are extracted from the optional
header of the PE. It contains information about the logical layout of the PE file,
such as the address of the entry point, the alignment of sections and the sizes of
part of the file in memory.
MS-DOS Header features. Features related to the execution of the file, in-
cluding the number of bytes in the last page of the file, the number of pages or
the starting address of the Relocation Table.
File Header features. These features are extracted from the file header, which
is a structure containing information about the physical layout and the proper-
ties of the PE file in general, like number of sections, timestamp and the CPU
platform which the PE is intended for.
Obfuscated String features. FireEye Labs Obfuscated String Solver (FLOSS)
is a tool to automatically de-obfuscate strings from files through static analysis.
The result of this tools is used to compute some statistics, like how many entry-
points or relocations are present in the file, that compose the features of this
class.
Imports features. Functions can be imported from other executables or from
DLLs. We are interested in the import of a specific set of known DLLs and APIs,
and use their occurrences as feature. We also use three counters representing the
total number of imported APIs, the total number of imported DLLs, and the
total number of exported functions.
Function Lengths features. FLOSS also provides measurements of function
lengths. This class contains different counters to store that information. Due to
the huge number of different functions, we use bucketing to reduce the number
of possible features.
Directories features. PE header includes an array containing all the DATA
DIRECTORY structures, so, similarly to what we do for imports, we check the
occurrence in the file of some particular directory names. We use their size as
features, similarly to function lengths features.

4.3 Classification

We firstly tried to setup the classifier using a class for each known APT, rep-
resenting the malware collected on the base of APT reports, and an additional
class to represent all the samples that have not been created by any known APT.
If a sample were assigned to the latter class, then it would be considered not
related to any known APT. Otherwise, the classifier would establish the most
likely APT which developed malware similar to that sample. The problem of
this approach lies in training the classifier on such additional class. Indeed, the
overwhelming majority of samples belongs to that class, including most of mali-
cious samples, as a really tiny percentage of malware have been actually created
by some APT. This translates to an excessive heterogeneity among samples of
that class, and an extreme imbalance among classes in the training set, which
makes this approach infeasible. Hence, we give up such additional class and only
use classes representing known APTs for training. Given C = {ci} be the set
of classes, with N = |C| being the number of classes, equal to the number of



actually used APTs, we train the classifier on N classes (one for each APT in
the dataset). In the analysis flow we label the input samples in N + 1 classes,
where the additional class is composed by all the outlier samples, that can be
non-APT malware samples as well as samples of unknown APTs. Being the
classifier trained on N samples, the idea is that all the samples too distant from
all the centroids belong to such (N + 1)-th class. We use random forest [4] as
learning method for the classification, as it turned out to be really effective in
several works related to malware analysis [9,12,22], also because of its ensemble
approach. Moreover random forest permits to classify samples by using different
types of features (numbers, binary and non-numeric labels). A random forest op-
erates by generating a set of decision trees at training time, and using them as
classifier by picking the most frequent chosen class among them. Let T = {tj}
be the set of decision trees of the random forest. NT = |T | is the number of
trees. In order to determine whether a sample is related to a known APTs or
classified as non-APT, we rely on the confidence score of the classification: if
this score exceeds a threshold, then the sample is considered as related to the
relative APT, otherwise it is not. As one of the main goals is minimizing how
many irrelevant samples are delivered to human analysts or keep scarce resources
busy, we are interested in using only those APTs where the classifier can perform
with higher precision. We train the classifier with malware of all known APTs,
and use a K-fold cross validation to obtain accuracy results. We then remove
those APTs where both precision and recall are below a given threshold, and
use only remaining APTs to train the actual model. We also have to remove the
APTs where available malware are less than K. In the experimental evaluation,
we show triage accuracy results for two distinct thresholds.

Classification Confidence Computation The class assigned by a decision
tree depends on the leaf node where the decision path terminates. Each leaf node
corresponds to a subset of its training samples, which can belong to distinct
classes, and the output class of the leaf node is the most frequent one among
them. For a decision tree tj , let lj = {lj,k} be the set of its leaf nodes, with
Nj = |lj |. Let Nj,k be the number of training samples of leaf node lj,k. We define
classi,j,k as the number of training samples of lj,k that belong to class ci.

Intuitively, the diversity of classes among the training samples of a leaf node
reflects how much the decision tree is confident about its output, when this out-
put is determined by that leaf node. Thus, as confidence score for the single
decision tree, we use the percentage of training samples that belong to the same
class output by the leaf node. We then assign a confidence score to the classifi-
cation of the whole random forest by averaging the confidence scores of all its
decision trees. In a similar way, we can assign to a classified sample a confidence
score for each class, to represent to what extent that sample relates to each class.
We assign a confidence vector confidencej,k to each leaf node lj,k, where the i-th
entry represents the confidence for class ci, defined as follows

confidencej,k[i] =
classi,j,k∑N

m=1 classm,j,k

i = 1 . . . N (1)



For each sample to analyze, we setup the classifier to output a confidence
value for each class, which represents the likelihood that the sample resembles
malware created by the APT corresponding to that class. Given a sample s to
classify with the random forest, we introduce the function decisionj(s) which
determines the leaf node of tj where the decision path for s ends. Let lj,k be such
leaf node, then decisionj(s) = k. We define the confidence vector confidence(s)
assigned to a sample s classified with the random forest as follows, where the
i-th entry represents the confidence for class ci

confidence(s)[i] =
1

NT

NT∑
j=1

confidencej,decisionj(s)[i] i = 1 . . . N (2)

Confidence Threshold Computation Malware developed by a same APT
can be very different among each other. For example, they may relate to different
phases of an attack (e.g., the payload for intruding target system, and the remote
access trojan to enable external control), or they may have been used for attacks
to distinct victims. Furthermore, we empirically observe that collected malware
are distributed really unevenly among known APTs. This implies that confidence
scores obtained for distinct classes cannot be fairly compared. Thus, rather than
using a unique confidence threshold to discriminate whether a sample can be
considered as related to a known APT, we compute a different threshold for
each APT.

We first compute the confidence vector for each sample of the training set
TS by using leave-one-out cross validation: for each training sample s ∈ TS, we
use all the other training samples to train the random forest and then classify
s to identify the leaf nodes to use to compute confidence(s). Let class(s) be a
function that returns i if the class of training sample s is ci. Let TSi = {s ∈
TS : class(s) = i} be the subset of the training set containing all and only the
samples of class ci. We then calculate the threshold vector as follows

threshold[i] =

∑
s∈TSi

confidence(s)[i]

|TSi|
−∆ i = 1 . . . N (3)

For each class, rather than directly using the average of its confidence scores as
threshold, we decrease it by a tolerance band ∆ in order to avoid having too many
false negatives. During the actual triage in production, a test sample s is classified
by the random forest and assigned a confidence vector confidence(s), which is
compared to the threshold vector to check whether the following condition holds

∃i confidence(s)[i] > threshold[i] i = 1 . . . N (4)

In positive case, s is considered related to known APTs and dispatched ac-
cordingly, together with its confidence vector which may guide the subsequent
analyses, as it suggests to what extent s resembles malware developed by each
of the APTs used for training the random forest.



5 Experimental Evaluation

In this section we present details about the prototype and the preliminary results
achieved. As explained in previous sections, we design our system in order to
require the minimum amount of time to produce an evaluation for the triage: we
use static analysis that is the faster type of analysis, due to the fact that it does
not require sample execution. Moreover, we use a classifier based on Random
Forest, which requires a shorter period of time for the classification with respect
to other algorithms.

5.1 Prototype Implementation

We implement a prototype of the architecture presented in [15], by developing
custom tools and adapting and extending open-source products. The description
of prototype implementation is organized according to the same layered view
presented in § 3.

Visual Analytics Layer. For this layer we extend CRITs [18], an open-source
malware and threat repository developed by MITRE. It offers two important
characteristics: a well organized knowledge base and an extendible service plat-
form, both accessible trough a web interface. To integrate CRITs into our ar-
chitecture, we have to develop a set of services to enable the communication
with the other components, and to modify some interfaces to show additional
information.

Analysis Layer. For the analysis layer we adapt different open-source analysis
tools, both for static and dynamic analysis. For example, we extend PEFrame [3]
with functions from Flare-Floss [8] in order to have more information at disposal.
The modified version of PEFrame is also the source for the Features Extractor
Component described in § 4 (developed in R language [21]), which in turn feeds
the random forest classifier (implemented in R as well). The details of feature
extractor and classifier are reported in § 4.

Storage Layer. For the storage layer we use a MongoDB [2] cluster.

Loading Plugins. We also develop various plugins to gather required data from
public sources. We adapt some open-source crawlers and develop some other by
ourselves. The APT loader plugin is based on the IOC Parser [1], modified to
collect APT reports from some public sources, extract data if interest and insert
them into the storage.

5.2 Triage Evaluation

To validate the effectiveness of our approach we perform some preliminary ex-
periments, using datasets prepared by including samples retrieved on the base



of the MD5s found in the APT reports crawled by loading plugins. Unfortu-
nately, many referenced malware are not available in public sources, thus some
APTs have not enough samples to be properly represented. Furthermore, distinct
APTs have very different number of samples, which leads to a highly unbalanced
datasets, thus we choose to include only the most distinguishing APTs, basing
our decision on the average precision and recall that the default random forest
classifier would obtain.

Dataset We collect 403 different reports about APTs, containing overall refer-
ences to 9453 MD5. From public sources we manage to collect only 5377 binaries.
The resulting dataset contains 5685 sample belonging to 199 different APTs. We
discard all the APTs with less than 20 samples to avoid classes not sufficiently
represented, which leads to a dataset with 4783 samples and 47 APTs. We also
collect from public sources 2000 additional malware that are not known to be
developed by any APT.

Training Phase We build two datasets by using distinct thresholds for precision
and recall (see § 4.3): dataset D1 with threshold 0,95 and dataset D2 with
threshold 0,90. Table 2 shows details about these datasets. For each dataset, we
trained three diverse classifiers by using distinct confidence thresholds ∆: 5%,
10% and 15%.

APTs Samples Mean Class Size

D1 7 1308 187
D2 15 2521 168

Table 2. Dataset Composition

Test Phase For the test we choose to use a K-fold cross validation with k equals
to 10, a common value in literature for this kind of tests. For each execution, we
generate the model with k−1 folds and test it with both the remaining fold and
all the collected malware not developed by APTs (2000 samples). We consider
the triage as a binary classification, and measure its quality by using Accuracy,
Precision, Recall and F1. If a sample is classified as related to known APTs we
say it is positive, otherwise negative.As explained in § 4.3, the most important
measure for the triage is the Precision (i.e., minimize false positives), due to
the fact that human analysts are a limited resources and we have to reduce as
much as possible their workload by striving to deliver them only samples that
are highly confidently related to known APTs. Tables 3 and 4 show the results
of the classification test for both datasets, which highlight that obtained false
positives are indeed very low: we are able to reduce false positives to zero for D1
and to less than 70 for D2. It is to note that these numbers are computed over
20000 actual tests, in fact each of the 2000 negative samples is tested for each
of the 10 folds.

Tables 5 to 10 display the confusion matrices obtained by considering the
classifier as an N + 1 classifier, for both the datasets and the same three ∆



Table 3. Binary Confusion Matrix D1 [APTs / non-APTs]

∆ 5% 10% 15%

Triage Pos Neg Pos Neg Pos Neg

Ground Pos 1209 99 1232 76 1250 58

Truth Neg 0 20000 0 20000 0 20000

Table 4. Binary Confusion Matrix D2 [APTs / non-APTs]

∆ 5% 10% 15%

Triage Pos Neg Pos Neg Pos Neg

Ground Pos 2125 396 2197 324 2251 270

Truth Neg 2 19998 18 19982 53 19947

considered before. Results are coherent with the previous ones: with D1 we
always achieve zero false positives, while with D2 we incorrectly label less than
0,002% as related to known APTs.

Table 5. Confusion Matrix D1 [∆ = 5%]

A B C D E F G NA

A 23 0 0 0 0 0 0 2
B 0 36 0 0 0 0 0 8
C 0 0 275 0 0 0 0 28
D 0 0 0 414 0 0 0 22
E 0 0 0 0 16 0 0 6
F 0 0 0 0 0 313 0 28
G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

Table 11 reports quality metrics for all the tests, and shows that our approach
is really promising as it scores high levels of accuracy and precisions.

6 Conclusion and Future Works

Among the huge amount of malware produced daily, those developed by Ad-
vanced Persistent Threats (APTs) are highly relevant, as they are part of mas-
sive and dangerous campaigns that can exfiltrate information and undermine or
impede critical operations of a target. This paper introduces an automatic mal-
ware triage process to drastically reduce the number of malware to be examined
by human analysts. The triage process is based on a classifier which evaluates
to what extent an incoming malicious sample could have been developed by a



Table 6. Confusion Matrix D1 [∆ = 10%]

A B C D E F G NA

A 23 0 0 0 0 0 0 2

B 0 39 0 0 0 0 0 5

C 0 0 277 0 0 0 0 26

D 0 0 0 419 0 0 0 17

E 0 0 0 0 17 0 0 5

F 0 0 0 0 0 325 0 16

G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

Table 7. Confusion Matrix D1 [∆ = 15%]

A B C D E F G NA

A 24 0 0 0 0 0 0 1
B 0 40 0 0 0 0 0 4
C 0 0 283 0 0 0 0 20
D 0 0 0 424 0 0 0 12
E 0 0 0 0 19 0 0 3
F 0 0 0 0 0 328 0 13
G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

Table 8. Confusion Matrix D2 [∆ = 5%]

A B C D E F G H I J K L M N O NA

A 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27
B 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 5
C 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 11
D 0 0 0 66 0 0 0 0 0 0 0 0 0 0 0 38
E 0 0 0 0 122 0 0 0 0 0 0 0 0 0 0 28
F 0 0 0 0 0 476 0 0 0 0 0 0 0 0 0 79
G 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 26
H 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 9
I 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 31
J 0 0 0 0 0 1 0 0 0 407 0 0 0 0 0 28
K 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 13
L 0 0 0 0 0 0 0 0 0 0 0 299 0 0 0 42
M 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 17
N 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 8
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 34

NA 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 19998



Table 9. Confusion Matrix D2 [∆ = 10%]

A B C D E F G H I J K L M N O NA

A 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25
B 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 10
D 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 35
E 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 25
F 0 0 0 0 0 494 0 0 0 0 0 0 0 0 0 61
G 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 18
H 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 9
I 0 0 0 0 0 0 0 0 275 0 0 0 0 0 0 28
J 0 0 0 0 0 1 0 0 0 414 0 0 0 0 0 21
K 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 10
L 0 0 0 0 0 0 0 0 0 0 0 309 0 0 0 32
M 0 0 0 0 0 0 0 0 0 0 0 0 128 0 0 9
N 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 6
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140 32

NA 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 19982

Table 10. Confusion Matrix D2 [∆ = 15%]

A B C D E F G H I J K L M N O NA

A 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23
B 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 3
C 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 6
D 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 31
E 0 0 0 0 128 0 0 0 0 0 0 0 0 0 0 22
F 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 54
G 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 15
H 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 8
I 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 26
J 0 0 0 0 0 1 0 0 0 419 0 0 0 0 0 16
K 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 7
L 0 0 0 0 0 0 0 0 0 0 0 324 0 0 0 17
M 0 0 0 0 0 0 0 0 0 0 0 0 131 0 0 6
N 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 6
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 30

NA 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 19947

Table 11. Quality measures

Dataset D1 D2

Measures Accuracy Precision Recall F1 Accuracy Precision Recall F1

∆
5% 0.995 1.000 0.886 0.938 0.982 1.000 0.764 0.859
10% 0.996 1.000 0.910 0.952 0.985 0.998 0.807 0.888
15% 0.997 1.000 0.938 0.968 0.986 0.994 0.850 0.913



known APT, hence relieving analysts from the burden of analyzing these mal-
ware. The classifier is trained with static features obtained by static analysis
of available malware known to be developed by APTs, as attested by public
reports. Although static features alone are not sufficient to completely exclude
relations with APTs, they allow to perform a quick triage and recognize malware
that deserve higher attention, with minimal risk of wasting analysts time. In fact
the experimental evaluation has shown encouraging results: malware realized by
known APTs have been identified with a precision of 100% and an accuracy up
to 96%.

At the time of this writing, we are testing our approach in the real world,
i.e., we are analyzing large malware datasets. As future work, we want to study
more effective functions for the evaluation of the threshold (see § 4), in order
to improve the overall accuracy of the system. Moreover, we plan to include an
additional prioritization step for the samples that result nearer to the chosen
threshold: as this situation indicates a higher degree of uncertainty about these
sample, they can be sent to a second classifier trained with dynamic features of
malware known to be developed by APTs.
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