
Collaborative Item Embedding Model for
Implicit Feedback Data

ThaiBinh Nguyen1, Kenro Aihara2, and Atsuhiro Takasu2

1 Department of Informatics,
SOKENDAI (The Graduate University for Advanced Studies),

Shonan Village, Hayama, Kanagawa 240-0193 Japan
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda, Tokyo 101-8430, Japan
{binh,kenro.aihara,takasu}@nii.ac.jp

Abstract. Collaborative filtering is the most popular approach for rec-
ommender systems. One way to perform collaborative filtering is matrix
factorization, which characterizes user preferences and item attributes
using latent vectors. These latent vectors are good at capturing global
features of users and items but are not strong in capturing local re-
lationships between users or between items. In this work, we propose
a method to extract the relationships between items and embed them
into the latent vectors of the factorization model. This combines two
worlds: matrix factorization for collaborative filtering and item embed-
ding, a similar concept to word embedding in language processing. Our
experiments on three real-world datasets show that our proposed method
outperforms competing methods on top-n recommendation tasks.

Keywords: Recommender system, collaborative filtering, matrix fac-
torization, item embedding

1 Introduction

Modern recommender systems (RSs) are a core component of many online ser-
vices. An RS analyzes users’ behavior and provides them with personalized rec-
ommendations for products or services that meet their needs. For example, Ama-
zon recommends products to users based on their shopping histories; an online
newspaper recommends articles to users based on what they have read.

Generally, an RS can be classified into two categories: Content-based ap-
proach and collaborative filtering-based (CF-based) approach. The content-based
approach creates a description for each item and builds a profile for each user’s
preferences. In other words, the content-based approach recommends items that
are similar to items for which the user has expressed interest in the past. In
contrast, the CF-based approach relies on the past behavior of each user, with-
out requiring any information about the items that the users have consumed.
An advantage of the CF-based approach is that it does not require collection of
item contents or analysis. In this work, we focus on the CF-based approach.

ar
X

iv
:1

80
5.

05
00

5v
1

 [
cs

.I
R

]
 1

4
M

ay
 2

01
8

2 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

Input data for CF-based methods are the user-item interaction matrix, in
which each entry is the feedback of a user to an item. The feedback can be
explicit (e.g., rating scores/stars, like/dislike) or implicit (e.g., click, view, pur-
chase). Early work mainly focused on explicit feedback data such as SVD++ [1],
timeSVD [2], or probabilistic matrix factorization [3]. One advantage of explicit
feedback is that it is easy to interpret because it directly expresses the prefer-
ences of users for items. However, explicit feedback is not always available and
is extremely scarce, as few users provide explicit feedback.

Implicit feedback, in contrast, is generated in abundance while users interact
with the system. However, interpreting the implicit feedback is difficult, because
it does not directly express users’ opinions about items. For example, a user’s
click on an item does not mean that he or she likes it; rather, the user may click
and then find that he or she does not like the item. On the other hand, even
though a user does not interact with an item, this does not imply that the user
dislikes it; it may be because the user does not know that the item exists.

Hu et al. proposed the weighted matrix factorization (WMF) [4], a special
case of the matrix factorization technique targeted to implicit datasets. The
model maps each user and item into a low-dimensional vector in a shared latent
space, which encodes all the information that describes the user’s preference or
the item’s characteristics. Locations of users and items in the space show their
relationships. If two items are close together in the space, they are considered to
be similar. On the other hand, if a user and an item are close in the space, that
user is considered to like that item.

Detecting the relationships between items is crucial to the performance of
the RS. We consider two kinds of relationships, the global relationship and a
local one. The former indicates the global structure that relates simultaneously
to most or all items, and is captured from the overall information encompassed
in all user–item interactions. The latter, in contrast, indicates the relationships
between a small set of closely related items [1,5]. Detecting the local relationship
will benefit the RS in recommending correlated items. One example of correlated
items in the movie domain is the three volumes of the film series “Lord of
the Rings.” Usually, a user who watches one of them will watch the others.
The detection of local relationships gives the system the ability to capture such
correlations and recommend one of these volumes when it knows that the user has
watched the others. However, while WMF as well as other MF-based algorithms
are strong at capturing the global relationships, they are poor at detecting the
local relationships [1,5].

In this work, we propose a model that can capture both global and local rela-
tionships between items. The idea is to extract the relationships between items
that frequently occur in the context of each other, and embed these relationships
into the factorization model of WMF [4,6]. The “context” can be the items in a
user’s interaction list (i.e., the items that the user interacts with), or the items
in a transaction. Two items are assumed to be similar if they often appear in
a context with each other, and their representations should be located close to
each other in the space. The proposed model identifies such relationships and

Collaborative Item Embedding Model for Implicit Feedback Data 3

reflects them into WMF. This was inspired by word-embedding techniques in
natural language processing that represent words by vectors that can capture
the relationships between each word and its surrounding words [7,8,9,10].

In detail, we build an item–item matrix containing the context information
and embed information from this matrix into the factorization model. The em-
bedding is performed by factorizing the user–item matrix and the item–item
matrix simultaneously. In the model, the role of the item–item matrix factoriza-
tion is to adjust the latent vectors of items to reflect item–item relationships.

The rest of this paper is organized as follows. In Sect. 2, we present the
background knowledge related to this work. Section 3 presents the details of
our idea and how we add item embedding to the original factorization model.
In Sect. 4, we explain our empirical study and the experimental results. After
reviewing some related work in Sect. 5, we discuss the results of this work and
show some directions for future work in Sect. 6.

2 Preliminary

2.1 Weighted Matrix Factorization

Suppose we have N users and M items. For each user u and item i, we denote
by rui the number of times user u has interacted with item i. We assume that
user u likes item i if he or she has interacted with item i at least once. For user
u and item i, we define a reference value pui indicating whether user u likes item
i (i.e., pui = 1 if rui > 0 and pui = 0 otherwise), and a confidence level cui to
represent how confident we are about the value of pui. Following [4], we define
cui as:

cui = 1 + αrui, (1)

where α is a positive number.
Weighted matrix factorization (WMF) [4,6], is a factorization model to learn

the latent representations of all users and items in the dataset. The objective
function of the model is:

L(X,Y) =
∑
u,i

cui(pui − x>u yi)
2 + λ

(∑
u

||xu||2F +
∑
i

||yi||2F

)
, (2)

where X ∈ Rd×N and Y ∈ Rd×M are matrices with columns xu and yi that
are the latent vectors of users and items, respectively; ||.||F is the Frobenius
norm of a vector. This optimization problem can be efficiently solved using the
Alternating Least Square (ALS) method as described in [4].

2.2 Word Embedding

Word embedding models [11,7,8,10] have gained success in many natural lan-
guage processing tasks. Their goal is to find vector representations of words that

4 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

can capture their relationship with their context words (i.e., the surrounding
words in a sentence or paragraph).

Given a corpus and a word w, a context word c of w is a word that occurs
within a specific-size window around w (context window) in the corpus. Let D
denote the set of all word–context pairs, i.e., D = {(w, c)|w ∈ VW , c ∈ VC},
where VW and VC are the set of words and set of context words, respectively.
Word embedding models represent a word w ∈ VW and a context word c ∈
VC by vectors w ∈ Rd and c ∈ Rd, respectively, where d is the embedding’s
dimensionality.

Mikolov et al. proposed an efficient model for learning word vectors [7], which
is performed by maximizing the log-likelihood function for every word-context
pair (w, c) ∈ D:

log σ(w>c) + kEcN∝PD
σ(−w>cN), (3)

where σ(.) is the sigmoid function: σ(x) = 1/(1 + exp(−x)), PD is a distribution
for sampling false context words (hence, negative sampling) and k is a hyper-
parameter specifying the number of negative samples. This model is called Skip-
gram negative sampling (SGNS) [7]. Based on this model, Mikolov et al. released
a well-known open source package named word2vec3.

Levy et al. [9] showed that the optimal solutions w∗, c∗ of Eq. (3) satisfy:

w∗>c∗ = PMI(w, c)− log k, (4)

where PMI(w, c) is the pointwise mutual information between word w and con-
text word c. The symbol k, again, is the number of negative samples.

The PMI [12] of a word-context pair (w, c) is a measure that quantifies the
association between a word w and a context word c. It is defined as:

PMI(w, c) = log
P (w, c)

P (w)P (c)
, (5)

where P (w, c) is the probability that c appears in the context of w; P (w) and
P (c) are the probabilities that word w and context word c appear in the corpus,
respectively. Empirically, PMI can be estimated using the actual number of
observations in a corpus:

PMI(w, c) = log

(
#(w, c)|D|
#(w)#(c)

)
, (6)

where |D| is the size of D; #(w, c) is the number of times the pair (w, c) appears
in D; and #(w) =

∑
c #(w, c) and #(c) =

∑
w #(w, c) are the numbers of times

w and c appear in D, respectively.
Levy et al. [9] then proposed a word embedding model by factorizing the

matrix S, which has elements Swc that are defined in Eq. (7). This matrix is
called the shifted positive pointwise mutual information matrix (SPPMI matrix).

Swc = max{PMI(w, c)− log k, 0}. (7)

3https://code.google.com/archive/p/word2vec/

Collaborative Item Embedding Model for Implicit Feedback Data 5

In other words, the SPPMI matrix S is obtained by shifting the PMI matrix
by log k and then replacing all negative values with zeroes (hence, shifted positive
pointwise mutual information).

3 Co-occurrence-based Item Embedding for Collaborative
Filtering

3.1 Co-occurrence-based Item Embedding

By considering each item as a word, we aim to extract the relationships between
items in the same way as word embedding techniques do. Our motivation is that
the representation of an item is governed not only by the users who interact with
it but also by the other items that appear in its context. In this work, we define
“context” as the items occurring in the interaction list of a user (i.e., the items
that the user interacts with). However, other definitions of context can also be
used without any problems. We argue that if items co-occur frequently in the
interaction lists of some users, they are similar, and their latent vectors should
be close in the latent space.

Inspired by the work of Levy et al. [9], which we present in Sect. 2.2, we
construct an SPPMI matrix of items based on co-occurrences and embed it into
the factorization model.

Constructing the SPPMI matrix for items. We now show how to construct
the SPPMI matrix for items according to their co-occurrences.

Let D = {(i, j)|i, j ∈ Iu, i 6= j, u ∈ U}, where Iu is the set of items with
which user u has interacted. We use #(i, j) to denote the number of times the
item pair (i, j) appears in D and #(i) =

∑
j #(i, j) to denote the number of

times item i appears in D.
For example, if we have three users u1, u2, and u3 whose interaction lists are

I1 = {1, 2, 4}, I2 = {2, 3}, and I3 = {1, 2, 3}, respectively, we will have:

– D = {(1, 2), (1, 4), (2, 4), (2, 3), (1, 2), (1, 3), (2, 3)}
– #(1, 2) = 2,#(1, 3) = 1,#(1, 4) = 1,#(2, 3) = 2,#(2, 4) = 1
– #(1) = 4,#(2) = 5,#(3) = 3,#(4) = 2.

The item–item matrix S has elements:

sij = log

(
#(i, j)|D|
#(i)#(j)

)
− log k, (8)

where log
(

#(i,j)|D|
#(i)#(j)

)
is the pointwise mutual information of pair (i, j), as men-

tioned above, and k is a positive integer corresponding to the number of negative
samples in the SGNS model [7]. In our experiments, we set k = 1.

Because S defined above is symmetric, instead of factorizing S into two dif-
ferent matrices as in [9], we factorize it into two equivalent matrices. In more
detail, we factorize S to the latent vectors of items:

6 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

S = Y >Y (9)

In this way, S can also be viewed as a similarity matrix between items, where
element sij indicates the similarity between item i and item j.

3.2 Co-occurrence-based Item Embedded Matrix Factorization
(CEMF)

We can now show how to incorporate the co-occurrence information of items
into the factorization model. The SPPMI matrix will be factorized to obtain
the latent vectors of items. The learned latent factor vectors of items should
minimize the objective function:∑

i,j:sij>0

(
sij − y>i yj

)2
. (10)

Combining with the original objective function in Eq. (2), we obtain the
overall objective function:

L(X,Y) =
∑
u,i

cui
(
pui − x>u yi

)2
+
∑
i

j>i
si,j>0

(
sij − y>i yj

)2

+ λ

(∑
u

||xu||2F +
∑
i

||yi||2F

)
. (11)

Learning method. This function is not convex with respect to xu and yi, but
it is convex if we keep one of these fixed. Therefore, it can be solved using the
Alternating Least Square method, similar to the method described in [4].

For each user u, at each iteration, we calculate the partial derivative of L
with respect to xu while fixing other entries. By setting this derivative to zero,
∂L
∂xu

= 0, we obtain the update rule for xu:

xu =

(∑
i

cuiyiy
>
i + λId

)−1(∑
i

cuiyipui

)
. (12)

Similarly, for each item i, we calculate the partial derivative of L with respect
to yi while fixing other entries, and set the derivative to zero. We obtain the
update rule for yi:

yi =

∑
u

cuixux>u +
∑

j:si,j>0

yjy
>
j + λId

−1
∑

u

cuipuixu +
∑

j:sij>0

sijyj

 ,

(13)

Collaborative Item Embedding Model for Implicit Feedback Data 7

where Id ∈ Rd×d is the identity matrix (i.e., the matrix with ones on the
main diagonal and zeros elsewhere).

Computational complexity. For user vectors, as analyzed in [4], the com-
plexity for updating N users in an iteration is O(d2|R|+ d3N), where |R| is the
number of nonzero entries of the preference matrix P . Since |R| >> N , if d is
small, this complexity is linear in the size of the input matrix. For item vector
updating, we can easily show that the running time for updating M items in
an iteration is O(d2(|R| + M |S|) + d3M), where |S| is the number of nonzero
entries of matrix S. For systems in which the number of items is not very large,
this complexity is not a big problem. However, the computations become signif-
icantly expensive for systems with very large numbers of items. Improving the
computational complexity of updating item vectors will be part of our future
work.

4 Empirical Study

In this section, we study the performance of CEMF. We compare CEMF with
two competing methods for implicit feedback data: WMF [4,6] and CoFactor [13].
Across three real-world datasets, CEMF outperformed these competing methods
for almost all metrics.

4.1 Datasets, Metrics, Competing Methods, and Parameter Setting

Datasets. We studied datasets from different domains: movies, music, and lo-
cation, with varying sizes from small to large. The datasets are:

– MovieLens-20M (ML-20M) [14]: a dataset of users’ movie ratings collected
from MovieLens, an online film service. It contains 20 million ratings in
the range 1–5 of 27,000 movies by 138,000 users. We binarized the ratings
thresholding at 4 or above. The dataset is available at GroupLens4.

– TasteProfile: a dataset of counts of song plays by users collected by Echo
Nest5. After removing songs that were listened to by less than 50 users, and
users who listened to less than 20 songs, we binarized play counts and used
them as implicit feedback data.

– Online Retail Dataset (OnlineRetail) [15]: a dataset of online retail transac-
tions provided at the UCI Machine Learning Repository6. It contains all the
transactions from December 1, 2010 to December 9, 2011 for a UK-based
online retailer.

For each user, we selected 20% of interactions as ground truth for testing.
The remaining portions from each user were divided in two parts: 90% for a
training set and 10% for validation. The statistical information of the training
set of each dataset is summarized in Table 1.

4https://grouplens.org/datasets/movielens/20m/
5http://the.echonest.com/
6https://archive.ics.uci.edu/ml/datasets/Online+Retail

8 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

Table 1. Statistical information of the datasets after post-preprocessing

ML-20M TasteProfile OnlineRetail

of users 138,493 629,113 3,704
of items 26,308 98,486 3,643

of interactions 18M 35.5M 235K
Sparsity (%) 99.5 99.94 98.25

Sparsity of SPPMI matrix (%) 75.42 76.34 66.24

Evaluation metrics. The performance of the learned model was assessed by
comparing the recommendation list with the ground-truth items of each user. We
used Recall@n and Precision@n as the measures for evaluating the performance.

Recall@n and Precision@n are usually used as metrics in information re-
trieval. The former metric indicates the percentage of relevant items that are
recommended to the users, while the latter indicates the percentage of relevant
items in the recommendation lists. They are formulated as:

Recall@n =
1

N

N∑
u=1

|Su(n) ∩ Vu|
|Vu|

Precision@n =
1

N

N∑
u=1

|Su(n) ∩ Vu|
n

(14)

where Su(n) is the list of top-n items recommended to user u by the system
and Vu is the list of ground-truth items of user u.

Competing methods. We compared CEMF with the following competing
methods.

– CoFactor [13]: factorizes user–item and item–item matrices simultaneously
as we do, where the item–item co-occurrence matrix is factorized into two
matrices.

– WMF [4]: a weighted matrix factorization matrix for the implicit feedback
dataset.

Parameters.

– Number of factors d: we learn the model with the number of factors running
from small to large values: d = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

– Regularization term: we set the regularization parameter for the Frobenius
norm of user and item vectors as λ = 0.01.

– Confidence matrix : we set cui = 1 + αrui (α > 0). We changed the value of
α and chose the one that gave the best performance.

Collaborative Item Embedding Model for Implicit Feedback Data 9

4.2 Results

We evaluated CEMF by considering its overall performance and its performance
for different groups of users. Results for Precision@n and Recall@n show that
our method outperformed the competing methods.

Overall performance. Overall prediction performance with respect to Preci-
sion and Recall are shown in Table 2 and Table 3 respectively. These are the
results for d = 30; larger values of d produce higher accuracy but the differences
in performance between the methods do not change much. The results show that
CEMF improves the performances for the three datasets over almost all metrics,
except for some metrics with n > 20 for the TasteProfile. If we use only small
values of n, say n = 5 or n = 10, CEMF outperforms all competing methods
over the three datasets.

Table 2. Precision@n of WMF, CoFactor, and CEMF over three datasets

Dataset Model Pre@5 Pre@10 Pre@20 Pre@50 Pre@100

ML-20M

WMF 0.2176 0.1818 0.1443 0.0974 0.0677

CoFactor 0.2249 0.1835 0.1416 0.0926 0.0635

CEMF 0.2369 0.1952 0.1523 0.1007 0.0690

TasteProfile

WMF 0.1152 0.0950 0.0755 0.0525 0.0378

CoFactor 0.1076 0.0886 0.0701 0.0487 0.0353

CEMF 0.1181 0.0966 0.0760 0.0523 0.0373

OnlineRetail

WMF 0.0870 0.0713 0.0582 0.0406 0.0294

CoFactor 0.0927 0.0728 0.0552 0.0381 0.0273

CEMF 0.0959 0.0779 0.0619 0.0425 0.0302

Table 3. Recall@n of WMF, CoFactor, and CEMF over three datasets

Dataset Model Recall@5 Recall@10 Recall@20 Recall@50 Recall@100

ML-20M

WMF 0.2366 0.2601 0.3233 0.4553 0.5788

CoFactor 0.2420 0.2550 0.3022 0.4101 0.5194

CEMF 0.2563 0.2750 0.3331 0.4605 0.5806

TasteProfile

WMF 0.11869 0.1148 0.1377 0.2129 0.2960

CoFactor 0.1106 0.1060 0.1256 0.1947 0.2741

CEMF 0.1215 0.1159 0.1369 0.2092 0.2891

OnlineRetail

WMF 0.1142 0.1463 0.2136 0.3428 0.4638

CoFactor 0.1160 0.1384 0.1891 0.3020 0.4159

CEMF 0.1232 0.1550 0.2191 0.3466 0.4676

10 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

Performance for different groups of users. We divided the users into groups
based on the number of items they had interacted with so far, and evaluated the
performance for each group. There were three groups in our experiments:

– low : users who had interacted with less than 20 items
– medium: users who had interacted with 20 ∼ 100 items
– high: users who had interacted with more than 100 items.

The Precision@n and Recall@n for these groups are presented in Fig. 1. The
results show that CEMF outperforms the competing methods for almost all
groups of users. For users with small numbers of interactions, CEMF is slightly
better than WMF and much better than CoFactor. For users with many items
in their interaction lists, CEMF shows much better performance than WMF and
better than CoFactor.

In a system, we usually have users with few interactions and users with
many interactions; therefore, using CEMF is more efficient than either WMF or
CoFactor.

Fig. 1. Precision@10 and Recall@10 for different groups of users with the ML-20M
dataset

5 Related Work

Standard techniques for implicit feedback data include weighted matrix factor-
ization [4,6], which is a special case of the matrix factorization technique that is
targeted to implicit feedback data, where the weights are defined from the inter-
action counts, reflecting how confident we are about the preference of a user for
an item. Gopalan et al. [16] introduced a Poisson distribution-based factorization
model that factorizes the user–item matrix. The common point of these meth-
ods for matrix factorization is that they assume that the user–item interactions

Collaborative Item Embedding Model for Implicit Feedback Data 11

are independent; thus, they cannot capture the relationships between strongly
related items in the latent representations.

Collective matrix factorization (CMF) [17] proposes a framework for factor-
izing multiple related matrices simultaneously, to exploit information from mul-
tiple sources. This approach can incorporate the side information (e.g., genre
information of items) into the latent factor model.

In [18], the authors present a factorization-based method that uses item–item
similarity to predict drug–target interactions. While this model uses the item–
item similarity from additional sources as side information, we do not require
side information in this work. Instead, we exploit the co-occurrence information
that is drawn from the interaction matrix.

The CoFactor [13] model is based on CMF [17]. It factorizes the user–item
and item–item matrices at the same time in a shared latent space. The main
difference between our method and CoFactor is how we factorize the item–item
co-occurrence matrix. Instead of representing each item by two latent vectors as
in [13], where it is difficult to interpret the second one, we represent each item
by a single latent vector.

6 Discussion and Future Work

We have examined the effect of co-occurrence on the performance of recommen-
dation systems. We proposed a method that combines the power of two worlds:
collaborative filtering by MF and item embedding with item context for items in
the interaction lists of users. Our goal is a latent factor model that reflects the
strong associations of closed related items in their latent vectors. Our proposed
method improved the recommendation performance on top-n recommendation
for three real-world datasets.

We plan to explore several ways of extending or improving this work. The first
direction is to consider different definitions of “context items”. One approach
is to define context items as items that co-occur in the same transactions as
the given items. In this way, we can extract relationships between items that
frequently appear together in transactions and can recommend the next item
given the current one, or recommend a set of items.

The second direction we are planning to pursue is to reduce the compu-
tational complexity of the current algorithm. As we mentioned in Sect. 3, the
computational complexity for updating item vectors is O(d2(|R|+M |S|)+d3M),
which becomes significantly expensive for systems with large numbers of items.
We hope to develop a new algorithm that can improve this complexity. An on-
line learning algorithm, which updates user and item vectors when new data are
collected without retraining the model from the beginning, is also in our plan to
improve this work.

Acknowledgments. This work was supported by a JSPS Grant-in-Aid for
Scientific Research (B) (15H02789).

12 ThaiBinh Nguyen, Kenro Aihara, Atsuhiro Takasu

References

1. Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 426–434. ACM, 2008.

2. Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM,
53(4):89–97, 2010.

3. Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In
Advances in Neural Information Processing Systems, volume 20, 2008.

4. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on, pages 263–272. IEEE, 2008.

5. Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
SIGKDD Explorations, 9(2):75–79, 2007.

6. Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M. Lukose, Martin
Scholz, and Qiang Yang. One-class collaborative filtering. In IEEE International
Conference on Data Mining (ICDM 2008), pages 502–511, 2008.

7. Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
NIPS, pages 3111–3119, 2013.

8. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

9. Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix fac-
torization. In Advances in Neural Information Processing Systems 27, pages 2177–
2185. Curran Associates, Inc., 2014.

10. Quoc V Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, volume 14, pages 1188–1196, 2014.

11. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. journal of machine learning research, 3(Feb):1137–
1155, 2003.

12. K. W. Church and P. Hanks. Word association norms, mutual information, and
lexicography. Computational Linguistics, 1(16):22–29, 1990.

13. Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M. Blei. Factoriza-
tion meets the item embedding: Regularizing matrix factorization with item co-
occurrence. In RecSys, pages 59–66. ACM, 2016.

14. F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. TiiS, 5(4):19, 2016.

15. Daqing Chen, Sai Laing Sain, and Kun Guo. Data mining for the online retail in-
dustry: A case study of rfm model-based customer segmentation using data mining.
Journal of Database Marketing & Customer Strategy Management, 19(3):197–208,
2012.

16. Prem Gopalan, Jake M. Hofman, and David M. Blei. Scalable recommendation
with poisson factorization. CoRR, abs/1311.1704, 2013.

17. Ajit Paul Singh and Geoffrey J. Gordon. Relational learning via collective matrix
factorization. In KDD, pages 650–658. ACM, 2008.

18. Xiaodong Zheng, Hao Ding, Hiroshi Mamitsuka, and Shanfeng Zhu. Collaborative
matrix factorization with multiple similarities for predicting drug-target interac-
tions. In KDD, pages 1025–1033. ACM, 2013.

	Lecture Notes in Computer Science
	1 Introduction
	2 Preliminary
	2.1 Weighted Matrix Factorization
	2.2 Word Embedding

	3 Co-occurrence-based Item Embedding for Collaborative Filtering
	3.1 Co-occurrence-based Item Embedding
	Constructing the SPPMI matrix for items.

	3.2 Co-occurrence-based Item Embedded Matrix Factorization (CEMF)
	Learning method.
	Computational complexity.

	4 Empirical Study
	4.1 Datasets, Metrics, Competing Methods, and Parameter Setting
	Datasets.
	Evaluation metrics.
	Competing methods.
	Parameters.

	4.2 Results
	Overall performance.
	Performance for different groups of users.

	5 Related Work
	6 Discussion and Future Work

