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Abstract. Privacy analysis is critical but also a time-consuming and
tedious task. We present a formalization which eases designing and au-
diting high-level privacy properties of software architectures. It is in-
corporated into a larger policy analysis and verification framework and
enables the assessment of commonly accepted data protection goals of
privacy. The formalization is based on static taint analysis and makes
flow and processing of privacy-critical data explicit, globally as well as
on the level of individual data subjects. Formally, we show equivalence
to traditional label-based information flow security and prove overall
soundness of our tool with Isabelle/HOL. We demonstrate applicability
in two real-world case studies, thereby uncovering previously unknown
violations of privacy constraints in the analyzed software architectures.

1 Introduction

Recently, dynamic taint analysis [1] has been used successfully in the Android
world to enhance user privacy [2, 3]. In this paper, we demonstrate that coarse-
grained taint analysis is also applicable to the analysis and auditing of distributed
architectures, can be done completely static (preventing runtime failures), while
providing strong formal guarantees.

We base our understanding of privacy on the concept described by Pfitzmann
and Rost [4] and further elaborated on by Bock and Rost [5]. Their proposal has
been adapted by the European Union Agency for Network and Information Se-
curity (ENISA) [6] and by the German Standardised Data Protection Model [7],
showing wide acceptance of their approach.

Analyzing, designing, and auditing distributed software architectures with
regard to privacy requirements [4–9] is a complex task: For architecture analysis
and design, one requires a specification of privacy goals and a general overview of
the data collection, processing, and usage of the software system to be audited.
Detailed, often manual, examination is necessary to verify conformity to the
specification of an implemented software architecture.

While static label-based information flow is applied in programming lan-
guages [10] and a similar runtime system has successfully been applied in the
Android world [2,3], for software architectures a clear formalism to express pri-
vacy concerns is missing.
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As our first contribution, we propose a model based on static taint analy-
sis which makes relevant aspects of privacy more tangible. The model generally
facilitates the generation of architecture specifications for IT systems and pro-
vides guidance for auditing their concrete implementation by directing focus on
aspects important for privacy.

We show applicability of our model in two real-world case studies. In the first
case study, an energy monitoring system, we could make the informal claims of
the system’s original architects explicit and verify them. In the second case
study, a smartphone measurement framework, we additionally demonstrate the
complete audit of the real-world implementation in a fully-automated manner,
uncovering previously unknown bugs. To the best of our knowledge, this is the
first time that such an audit, which bridges the gap from an abstract taint
analysis to complex low-level firewall rules, has been performed completely with
the assurance level provided by the theorem prover Isabelle/HOL [11].

Another contribution is integrating a fully formalized privacy model based
on taint analysis into a larger, formal policy framework.

While our model is mathematically concise, transforming it into an exe-
cutable and convenient verification framework is a non-trivial and error-prone
task. To provide high confidence in our framework, we have proven all properties
of the model and the overall correctness of our framework in Isabelle/HOL (cf.
Section Availability).

In detail, our novel contributions to the body of knowledge in this area are:

– A survey of the conceptualization and formal models of privacy (Section 2)
– A formalization of privacy based upon taint analysis, integrated into a fully

automated validation and verification framework (Section 4)
– Practical evaluation by two case studies (Section 5)
• An energy monitoring system
• A distributed Android measurement framework

– Machine-verifiable proof of correctness in Isabelle/HOL for the presented
formalization

This paper is structured as follows: First, we survey related work in Section 2
and compile the requirements for formal assessment of privacy in software ar-
chitectures in Section 3. We present our formalization in Section 4. Two case
studies are presented in Section 5. We critically discuss our results in Section 6
and conclude in Section 7.

2 Related Work

2.1 Conceptualization of Privacy

The abstract concept of ‘security’ has been made more tangible and verifiable
by deriving protection goals, in particular confidentiality, integrity, and avail-
ability (CIA) [12]. Pfitzmann and Rost [4] applied the same methodology to
the abstract concept of ‘privacy’. They derived the protection goals unlinkability



(of collected data) and transparency (of the data collection and manipulation
processes). Unlinkability describes the impossibility to combine present infor-
mation so that no further information gain can be achieved. Unlinkability it-
self has already been formalized before by Steinbrecher [13] as a generalization
of anonymity. Transparency requires that users can gain insight into processes
and software architectures which work with privacy-critical data. It realizes the
base upon which surveillance and control of data processing can be carried out.
Later, Bock and Rost [5] added intervenability (of a data subject in the data
processing), effectively creating another triad of protection goals. Intervenability
addresses the ability, on the one hand, of data subjects to carry out control over
their data and to exercise their user rights and, on the other hand, of process
owners to demonstrably be in control of their technical systems

The proposal of Bock, Rost, and Pfitzmann has been adapted in the “Pri-
vacy and Data Protection by Design” report [6] and extended by the German
Standardized Data Protection Model [7].1 The German model adds data mini-
mization as another protection goal when striving for privacy-preservation. They
argue that privacy-threats, being misuse and abuse of data, is most effectively
mitigated when the amount of processed data is reduced itself. Hence, data min-
imization aims for reducing the amount of privacy-critical information from the
beginning and in each step where this is possible. They consider this protection
goal to be fundamental, as it does not protect present vulnerable assets, but
reduces the actual amount of assets being at risk.

In consequence, when reducing the amount of critical data or the criticality
itself, the required strength of data protection measures can also be reduced.
This is based on their assumption that the best data protection is not processing
privacy-critical data at all.

Another conceptualization of privacy is theGlobal Privacy Standard (GPS) [8].
Comparing “leading privacy practices and codes from around the world”, the
27th International Data Protection Commissioners Conference aimed for “de-
velop[ing] a harmonized set of fair information practices”. It identified ten prin-
ciples to be respected when handling personal data of individuals. The principles
regard the complete lifecycle of data from collection to processing to final dele-
tion. While being more organizationally than technically oriented, compatibility
to the aforementioned approach can be identified. The protection goals of trans-
parency is partially encoded in the principle of openness, which allows individu-
als to have access to “[i]nformation about the policies and practices relating to
the management of personal information”. Data minimization is directly repre-
sented but also includes the minimization of data linkability, effectively stating
a weaker variant of unlinkability. Lastly, the principle of compliance corresponds
to intervenability.

In 2010, Cavoukian [9] developed the information management principles,
Privacy by Design (PbD). PbD identifies principles which help considering privacy-
protection from the beginning of the design of a system in order to make it a
1 This concept is also designed to be compatible with the data protection laws of
Germany.



default property of newly developed systems. For existing systems, the princi-
ples give guidance for manual privacy audits. Structurally, PbD is located on a
higher level of abstraction than GPS. Some PbD principles subsume multiple
GPS statements; further principles are introduced by PbD, which were not yet
covered by GPS.

Hoepman [14] identifies a gap between the high-level principles stated by
PbD and their application by incorporating privacy-protection into the design
of a concrete technical system. He states that further measures, privacy design
strategies, must be provided to software engineers and developers in order to
actually implement privacy. From a body of current privacy laws and policies,
similar to GPS [8], he derived his proposed strategies. Due to the stated motiva-
tion, his work hence is more concrete than either GPS or PbD. The first half of
the presented strategies is data-centric and describe specific measures in order
to reduce the criticality of data present in a system. The second half is process-
oriented and focuses the relation of the system to their users. The protection
goals initially stated can be rediscovered in Hoepman’s work: The strategy min-
imize corresponds to data minimization, separate aims for unlinkability, inform
partially covers transparency, and control together with demonstrate reflect in-
tervenability.

In line with related work, we also base our understanding of privacy upon
the data protection goals of unlinkability, transparency, intervenability, and data
minimization.

2.2 Formal models for privacy

Pfitzmann and Hansen [15], as well as Hoepman [14], contribute groundwork for
formalising privacy: They provide definitions of frequent terms in the context of
security and privacy. Additionally they present high-level strategies of handling
data. Nevertheless, they do not provide a formal approach to privacy themselves.

Steinbrecher and Köpsell [13] developed a valuable generalization of anoymity
to unlinkability. They contributed a model of unlinkability based on set parti-
tioning and metrics of relation uncertainty between entities based on informa-
tion theoretic entropy. While being useful in their own means, their approach
addresses only a single aspect of privacy.

Hughes and Shmatikov [16] developed a “modular framework for formalizing
properties of computer systems in which an observer has only partial informa-
tion about system behaviour”. Hence, they provide a theoretic tool for creating
formalisms which model an adversary’s perspective as partial knowledge about
a confidential function. In their case study, they regard the security properties
anonymity and privacy. Here, they consider privacy to be anonymity of relation-
ships of agents in a system, and explicitly do not cover privacy as protection of
personal information. Neither does their approach already allow the assessment
of concrete systems.

Fischer-Hübner and Ott [17] define a formal task-based privacy model based
on a state mashine model. They aim for deriving formal privacy invariants, ex-
pressed as logical predicates, from informal privacy policies. While their work is



similar to ours as both approaches consider information flow in systems, their
work is orthogonal to ours, as they address the privacy properties of purpose
binding and necessity of collection and processing. They provide an implementa-
tion of their model in the Generalized Framework for Access Control Approach
in Unix System V.

Most other publications with regard to modeling privacy focus only on a spe-
cific subtopic. The proposed models are not generalizable to other areas of ap-
plication. The most prominent topics are information publishing [18–20], RFID
protocols [21–28] and location privacy [29–33].

2.3 Evaluation Assurances

Even for clearly specified privacy requirements, the confidence in a software
evaluation may vary vastly. For example, the Common Criteria [34] define sev-
eral Evaluation Assurance Levels (EAL). For the highest assurance level, formal
verification is required, e.g. using the theorem prover Isabelle/HOL [11]. One
remarkable work in the field of formal verification with Isabelle/HOL is the ver-
ification of information flow enforcement for the C implementation of the seL4
microkernel [35]. Similarly, to provide high confidence in our results, we have car-
ried out this research completely in Isabelle/HOL. The proofs are provided
in our theory files (cf. Section Availability).

2.4 Taint Analysis

We introduce the concepts of taint analysis by a simple, fictional example: A
house, equipped with a smart meter to measure its energy consumption. The
owner also provides location information via her smartphone to allow the system
to turn off the lights when she leaves the home. Once every month, the aggregated
energy consumption is sent over the internet to the energy provider for billing.

Smartphone
{location}

Building
{energy}

SmartHomeBox
{energy, location}

Anonymizer
untaints : {location}

Cloud
{energy}

Fig. 1. Example: Privacy Concerns and Information Flow in a Smart Home

We are interested in the privacy implications of this setup and perform a taint
tracking analysis. The software architecture is visualized in Fig.,1. The Building
produces information about its energy consumption. Therefore, we label the
Building as taint source and assign it the energy label. Likewise, the Smartphone
tracks the location of its owner. Both data is sent to the SmartHomeBox. Since



the SmartHomeBox aggregates all data, it is assigned the set {energy, location}
of taint labels. The user wants to transmit only the energy information, not her
location to the energy provider’s Cloud. Therefore, the Anonymizer filters the
information and removes all location information. We call this process untainting.
Let ‘· \ ·’ denote the minus operation on sets. With the Anonymizer operating
correctly, since {energy, location} \ {location} = {energy}, only energy-related
information ends up in the energy provider’s Cloud.

Taint Analysis in Android In the Android world, taint analysis has been
successfully used recently. TaintDroid [2] uses software instrumentation to track
taint information at runtime from pre-defined taint sources, such as the address
book or sensors. It then assesses whether tainted data leaves the phone, for ex-
ample via a network interface. Tracking itself happens on the variable, method,
and message level by storing taint labels in memory. Taint labels are also pre-
served when data is saved to files or databases. TaintDroid’s trust model relies
on the firmware being the gateway for accessing data considered privacy-critical.
Their main contribution is the integration of a multitude of known techniques
into a single approach and to demonstrate their applicability to the Android
platform.

DroidDisintegrator [3] is built on top of TaintDroid. It first computes a static
information flow policy which is presented to the user at the time of app instal-
lation. An app is repackaged such that enforcement of this policy at runtime is
very lightweight. To compute the policy, DroidDisintegrator relies on dynamic
taint analysis and input fuzzing to trigger the valid execution paths of an app.
Schuster and Tromer [3] make several important observations: Because of the
complexity of information flow security, it is hardly used in mainstream apps.
Therefore, Schuster and Tromer simplify the use of information flow security by
decreasing the granularity at which DroidDisintegrator operates. They demon-
strate that Android components provide an appropriate granularity for informa-
tion flow tracking which “places less burden on the developer than other IFC
frameworks” [3, §1.3]. Our model also supports a low-granularity approach by
enabling the usage of arbitrary granularity: parts of a software architecture can
be modeled with high granularity providing more precision or lower granularity
yielding easier applicability. Additionally, we introduce the concept of system
boundaries, which allows encapsulation of several fine-grained components into
one larger coarse-grained component without the loss of information.

Tracking implicit information flow with a practically acceptable false posi-
tive/negative rate is still an unsolved problem. DroidDisintegrator avoids this
problem in a very domain specific way: Implicit information flow is completely
disregarded when the policy is generated. Assuming good programming practice
and best-practice use of the Android API, valid and intentional information flow
should be explicit. Remaining (probably malicious) implicit information flow,
since it is not contained in the policy, is consequently prohibited at runtime.
Our generic analysis framework is built on the same principle.



Further Successful Formal Security Approaches for Android In a broader
context, Bagheri et al. [36] analyzed the Android permission system. They used
bounded verification with the Alloy tool to find design flaws. Permissions, which
focus on access control, may be considered complementary to taint analysis,
which focuses on information flow.

Fragkaki et al. [37] build a model of the Android permission system in order
to specify desired security properties and to verify whether these requirements
hold for the given system. They show that these requirements are only partly
fulfilled by the examined versions of Android. In line with our work, they consider
taint analysis for information flow security. They utilize a noninterference model
to formalize it in a dynamic context.

2.5 Models, Formalization, and topoS
“The architecture defines the structure of a software system in terms of com-
ponents and (allowed) dependencies” [38]. We will stick to this high-level, ab-
stract, implementation-agnostic definition for the formalization. Our case study
will evaluate a distributed system as well as an implementation which relies on
a component architecture of just one system.

As illustrated in Figure 1, a graph can be conveniently used to describe a
system architecture. Since a graph (without taint label annotations) specifies
the permitted information flows and all allowed accesses, we will call such a
graph a policy. We will always assume that a graph G = (V, E) is syntactically
well-formed, i.e. all vertices occuring in the edges E are also listed in the nodes
V .

To analyze, formalize, and verify policies represented as graphs, we utilize the
topoS [39,40] framework. topoS allows specification of predicates over the policy.
These predicates are called security invariants. The security invariants follow
special design criteria to ensure the overall soundness of topoS . To define a new
security invariant, topoS imposes strict proof obligations. In return, topoS offers
arbitrary composability of all security invariants and generic analysis/verification
algorithms.

3 Requirement Analysis

Our understanding of privacy focuses on the data protection goals of unlink-
ability, transparency, intervenability, and data minimization. We require that
our approach supports the assessment of a software architecture with respect
to privacy by making the handling of privacy-critical data streams explicit and
providing insights into the fulfillment of these very protection goals.

3.1 Data Privacy Protection Goals

To achieve this overall goal, the findings of the modelling must support the
assessment of the following aspects of privacy-preservation in software architec-
tures:



Unlinkability When different types of originally unrelated information are pro-
cessed at the very same realm (e.g. components), then, unlinkability is jeopar-
dized as these components can possibly derive further information by combining
the available data (e.g. using operations like set intersection or joining). Hence,
we require that our model makes these realms explicit. This is a critical part of
the assessment of unlinkability and enables developing remedies for this type of
privacy threat.

For improving unlinkability, our model should furthermore give insights how
existing data flows can be split in order to avoid realms with the ability to link.

Transparency and Intervenability Intervenability is based on knowledge
about a system. We require, that the model empowers the stakeholders to im-
prove privacy by making relevant data-flow aspects of privacy-preservation in
a given architecture explicit. Data generation, handling, processing and storage
must become explicit in the formalism.

Transparency should especially be given for two groups of stakeholders: First,
the system providers and administrators must be able to gain an overview over
the complete data processing in the given software. This enables them to iden-
tify components which unintentionally retrieve and process a certain type of
privacy-critical information. Second, our approach should be usable to enable
users to gain insights in the processing of their very data. Hence, we require it
to be possible to derive “views” on the model which express the specific privacy-
implications for a given user.

Data Minimization Data minimization targets the reduction of the amount
of data flowing through a system (without loss of functionality). Hence, our
approach must improve the assessment by providing insights in the amount of
relevant data flowing through a software system. This should build an informa-
tion foundation which makes the constructions of metrics possible. These metrics
can enable the estimation of the criticality of the software in general and the
criticality of certain components in particular. Similar to requirement unlinka-
bility, the model should support identifying hot spots, where the reduction of
the amount of data processing has the biggest positive effect for privacy.

3.2 Security and Risk Assessment

Besides support in the assessment of privacy in particular, our approach should
support accompanying aspects of security and risk assessment. These are asset
identification, the creation of a trust model and an adversary model.

Asset Identification We consider two types of assets to the relevant. The data
being handled constitutes the primary asset to be protected. The requirement to
make this aspect of the system explicit has already been stated in the previous
Section 3.1 .



Additionally, components handling the data also represent assets. Hence, we
require that our model supports the identification of these assets as well as
the assessment of their criticality. A foundation for the latter assessment is the
amount of data flows being processed by a given component.

Trust Model When handling privacy-critical data, stakeholders have to put
confidence in software or some of its components to be trustworthy. The model
should make clear, which component is trusted with regard to specific privacy-
critical information. Trust here means the confidence that the component works
as specified, correctly processes the given type of data and does not leak or retain
information for usage of secondary purposes. A relevant special case of trusted
behavior is the application of privacy-enhancing technologies. This processing
has considerable impact on the trust of each following component, effectively
reducing the amount of necessary trust as the data processed became less critical.
Hence, we want to have the positive consequences of this type of processing
explicitly representable in our formalism.

Adversary Model In order to specify adversaries intercepting specific channels
between individual systems or compromising a set of systems, it is important not
to sacrifice the notion of individual systems in the formalism by only modelling
interconnected components without differentiation depending on their locality.
Instead, explicitly modelling systems as a group of components allows the assess-
ment of scenarios where single systems are compromised and where eavesdrop-
ping on channels between systems is considered. Consequently, the formalism
must support combining multiple components into individual systems.

3.3 Implementation support

We want, that our formalism not only gives insights into the architecture of
a system but also to propose improvements, when privacy constraints are not
fulfilled. We will show that our approach enables topoS to automatically derive
the strictest set of firewall rules, which allows interconnected systems to com-
municate as specified and suppresses all further communication including all
privacy-violating exchanges.

4 Formalization & Implementation

We formalize tainting as a security invariant for topoS . To foster intuition, we first
present a simplified model which does not support trust or untainting. However,
we have aligned the paper constructively such that all the results obtained for
simple model follow analogously for the full model. All details can be found in
our accompanying Isabelle/HOL formalization (cf. Section Availability).

We assume we have a total function t which returns the taint labels for an
entity. For example, t SmartHomeBox = {energy, location}.



Intuitively, information flow security according to the taint model can be
understood as follows. Information leaving a node v is tainted with v’s taint
labels, hence every receiver r must have the respective taint labels to receive the
information. In other words, for every node v in the policy, all nodes r which are
reachable from v must have at least v’s taint labels. Representing reachability
by the transitive closure (i.e. E+), the invariant can be formalized as follows:

tainting (V, E) t ≡ ∀v ∈ V. ∀r ∈ {r. (v, r) ∈ E+}. t v ⊆ t r

For this formalization, we discharged the proof obligations imposed by topoS .
First, the security invariant is monotonic, which means that prohibiting more
flows will never make the policy less secure. Second, in case of a violation, there
is always a set of flows which are responsible for the violation and the violation
can be repaired by prohibiting said flows. We consider tainting as an information
flow security (IFS) invariant. For topoS , this means a violation occurs as soon
as a labeled information reaches an unintended receiver. Our formalization also
discharges the additional proof obligations imposed by topoS for IFS invariants:
A user will unlikely provide a total assignment t of taint labels. topoS can take
a partial assignment and, with the help of a secure default parameter, auto-
complete it to a total function. For this, topoS imposes the proof obligation for
IFS invariants that the default parameter can never hide a violating information
flow. In addition, it requires that the default parameter is uniquely defined, i.e.
it is the only value which can always uncover violations. Intuitively, if we assume
that a user has given labels to the important taint sources, the default parameter
needs to be the empty set of taint labels since this will uncover all undesirable
flows from labeled to unlabeled sources. Therefore, our invariant fulfills all proof
obligations of topoS .2

4.1 Analysis: Tainting vs. Bell-LaPadula Model

The Bell-LaPadula model (BLP) [41, 42] is the traditional, de-facto standard
model for label-based information flow security. The question arises whether we
can justify our taint model using BLP.

topoS comes with a pre-defined formalization of the BLP model [40]. The
labels in BLP, often called security clearances, are defined as a total order:
unclassified ≤ confidential ≤ secret ≤ topsecret ≤ . . . Let sc be a total function
which assigns a security clearance to each node. Since our policy model does
not distinguish read from write actions, the BLP invariant simply states that
receivers must have the necessary security clearance for the information they
receive:

blp (V, E) sc ≡ ∀(v1, v2) ∈ E. sc v1 ≤ sc v2

Inspired by BLP, we show an alternative definition for our tainting invariant:
2 We only have sketched the rough idea here, the full proofs can be found in our
formalization: interpretation Taints: SecurityInvariant-IFS



Lemma 1 (Localized Definition of Tainting).

tainting (V, E) t = ∀(v1, v2) ∈ E. t v1 ⊆ t v2

Proof. We assume a syntactically well-formed graph. First, we note that the
tainting invariant can be rewritten such that instead of quantifying over all ver-
tices, it quantifies over the first node of all edges. Subsequently, by induction
over the transitive closure, the invariant can be rewritten to the desired form.

Lemma 1 also provides a computational efficient formula, which only iterates
over all edges and never needs to compute a transitive closure.

We will now show that one tainting invariant is equal to BLP invariants for
every taint label. We define a function project a Ts, which translates a set of
taint labels Ts to a security clearance depending on whether a is in the set of
taint labels. Formally, project a Ts ≡ if a ∈ Ts then confidential else unclassified.
Using function composition, the term project a ◦ t is a function which first looks
up the taint labels of a node and projects them afterwards.

Theorem 1 (Tainting and Bell-LaPadula Equivalence).

tainting G t←→ ∀a. blp G (project a ◦ t)

Proof. See Analysis_Tainting.thy

The ‘→’-direction of our theorem shows that one tainting invariant guarantees
individual privacy according to BLP for each taint label. This implies that every
user of a software can obtain her personal privacy guarantees. This fulfills the
transparency requirement for individual users.

The ‘←’-direction shows that tainting is as expressive as BLP. This justifies
the theoretic foundations w.r.t. the well-studied BLP model. These findings are
in line with Denning’s lattice interpretation [43]; however, to the best of our
knowledge, we are the first to discover and formally prove this connection in the
presented context.

The theorem can be generalized for arbitrary (but finite) sets of taint labels A.
The project function then maps to a numeric value of a security clearance by
taking the cardinality of the intersection of A with Ts. For example, if we want
to project {location, temp}, then {name} is unclassified, {name, location, zodiac}
is confidential, and {name, location, zodiac, temp} is secret.

4.2 Untainting and Adding Trust

Real-world application requires the need to untaint information, for example,
when data is encrypted or properly anonymized. The taint labels now consist of
two components: the labels a node taints and the labels it untaints. Let t be a
total function t which returns the taints and untaints for an entity. We extend
the simple tainting invariant to support untainting:

tainting′ (V, E) t ≡ ∀(v1, v2) ∈ E. taints (t v1) \ untaints (t v1) ⊆ taints (t v2)



To abbreviate a node’s labels, we will write X—Y , where X corresponds to
the taints and Y corresponds to the untaints. For example, in Fig. 1 we have
t Anonymizer = {energy}—{location}.

We impose the type constraint that Y ⊆ X, i.e. untaints ⊆ taints. We im-
plemented the datatype such that X—Y is extended to X ∪ Y —Y . Regarding
Fig. 1, this merely appears to be a very convenient abbreviation. In particu-
lar, t Anonymizer now corresponds to {energy, location}—{location}, for which
the tainting′ invariant holds and which also corresponds to our intuitive under-
standing of untainting. However, this is a fundamental requirement for the over-
all soundness of the invariant. Without the type constraint, there can be dead
untaints, i.e. untaints which can never have any effect, which would violate the
uniqueness property required by topoS for default parameters and cause further
problems in pathological corner cases. Yet, with this type constraint, as indi-
cated earlier, all insights obtained for the simple model now follow analogously
for this model.

Analysis: Tainting’ vs. Bell-LaPadula Model’ In topoS ’ library, there is a prede-
fined formalization of the BLP model with trusted entities [40]. In the context
of BLP, a trusted entity is allowed to declassify information, i.e. receive infor-
mation of any security clearance and redistribute with its own clearance (which
may be lower than the clearance of the received information). This concept is
comparable to untainting. Let trusted extract the trusted flag from an entity’s
attributes and c extract the security clearance.

Our insights about the equality follow analogously. Let project a (X—Y ) be a
function which translates taints (X) and untaints (Y ) labels to security clearances
c and the trusted flag. Let c = if a ∈ (X \ Y ) then confidential else unclassified
and trusted = a ∈ Y .

Theorem 2 (Tainting and Bell-LaPadula Equivalence – full).

tainting′ G t←→ ∀a. blp′ G (project a ◦ t)

Similarly to the version without trust, the theorem can be generalized for
arbitrary (but finite) sets of taint labels.

4.3 System Boundaries

topoS provides a number of useful analyses. For example, given a taint label spec-
ification, topoS can compute all permitted flows which is invaluable for validating
a given specification. However, topoS might lack knowledge about architectural
constraints which leads to the computation of an unrealistic amount of flows.
For example, in Fig. 3, CollectDroid is one physical machine and Dec-A is one
isolated software component running on it. Dec-A is neither physically reachable
from outside of the machine nor has direct network connectivity itself. We want
to provide this knowledge to topoS . Therefore, we model systems with clearly
defined boundaries. This is visualized in Fig. 3 by the dotted rectangles; enti-
ties which are partially outside the rectangle represent system boundaries. We



define internal components (such as Dec-A) as nodes which are only accessible
from inside the system. We define passive system boundaries to be boundaries
which only accept incoming connections. Analogously, active system boundaries
are boundaries which only establish outgoing connections. A boundary may be
both.

A topoS invariant must either be an access control or information flow invari-
ant. An access control invariant restricts accesses from the outside, an informa-
tion flow invariant restricts leakage to the outside. However, internal components
of a system, e.g. Dec-A, require both: they should neither be accessible from com-
ponents outside of the system nor leak data to outside components. We overcame
this limitation of topoS by constructing a model for system boundaries which
is internally translated to two invariants: an access control invariant and an in-
formation flow invariant. We have integrated the concept of system boundaries
into topoS and proven the desired behavior of our implementation.

5 Evaluation

For the purpose of a case study, we use two distributed systems for data collection
which are deployed at the Technical University of Munich. First, we describe their
architectures, their purpose, and their handling of privacy-critical data as well as
their architecture. Then we present the modeling of the architectures in topoS .
In the second case study, the steps of architecture and taint label specification
are performed analogous to the first study and hence are not further elaborated
on. In a last step, we present the results of the insights gained by the application
of our formalism.

5.1 IDEM

The project IDEM [44] focuses on energy monitoring systems (EMS). The pur-
pose of an EMS is to support the reduction of energy consumption in the mon-
itored area by providing detailed and fine-grained insights in the actual use of
energy per room. These information help to identify the most greedy, faulty, or
incorrectly configured devices in the area and enable responsible staff to take ap-
propriate actions like repairing or replacing identified devices. Furthermore, an
EMS can also be used to carry out consumption billing with higher granularity.

The hardware of an off-the-shelf EMS consists of two components. A logging
unit which is attached to the fuse box of the area to monitor and transforms the
analogue signal into digital data points. A directly connected controller obtains
these data points and POSTs them via HTTPS to a cloud service. Data is stored
there and made available via a web-based GUI providing measures for statistical
analysis and visualization.

Privacy Criticality We consider the measured information to be privacy-
critical [44], as the energy consumption of devices is highly correlated with the



presence and behaviour of building inhabitants using these devices. We exem-
plify this point with the following scenario: Given, the measured rooms are office
rooms for at maximum two person each. Then, each room contains approxi-
mately the same equipment like computer, display, telephone, etc. The typical
use of these devices results in a certain consumption pattern on every working
day. E.g. due to automatic standby functions of displays as well as computers
and similar effects, power consumption lowers when people leave their working
place. This allows to carry out surveillance of user behaviour by misusing the
EMS. Especially tracking of work begin and end times as well as the number
and duration of breaks becomes easily possible. We modified the system in order
to achieve the following improvements: Collected information does not have to
leave the building but is stored on a local server. Access control is not carried
out by user authentication against a trusted system which has full access but
by cryptographic means instead. Data is preprocessed for different audiences,
so that each audience only gets the minimum of data which is needed to carry
out their task. From the provider’s point of view, these measures are motivated
by data protection laws and policies as well as the mitigation of data breach
consequences.

P4Sgraph
EMS

P4Sstorage

Logger
{A, B, C, D}—{}

Controller
{A, B, C, D}—{}

Input-API
{A, B, C, D}—{}

FilterA
{A}—{B, C, D}

FilterB
{B}—{A, C, D}

FilterC
{C}—{A, B, D}

AggregatorC
{Clow}—{C}

EncryptA
{} —{A}

EncryptB
{} —{B}

EncryptC
{} —{C}

EncryptClow
{} —{Clow}

Exit
{} —{}

DB
{} —{}

Fig. 2. IDEM Architecture

Architecture Specification The EMS can be modelled by two components:
The logger, being the data source, creates digital data points and the controller
pushes those data points to a given target. The controller is reconfigured not
to send data to the cloud but to the local privacy-preserving preprocessing and
storage system (P4S) via a secured channel. Hence, the logger is an internal com-
ponent while the controller is an active system boundary. The analogue/digital
transformation is not considered a relevant border in our context.

The P4S consists of the Input-API, a directed acyclic graph of preprocessing
modules, and a storage system. The Input-API obtains the data, when POSTed



to the P4S, and hence is a passive system boundary. The Input-API acts as the
entry node of the graph structure. The exit node forwards the preprocessed data
to the storage component, consequently being an active system boundary. All
other nodes are regarded to be internal, but are also considered in the modelling.
The actual shape of the graph and the selection of nodes depend on the concrete
system goals and the user roles which shall later obtain the collected informa-
tion. The purpose of the other nodes is as follows: Given a predicate, filtering
nodes only pass through data points which match the predicate, all other data is
dropped. The aim is to split a single data stream containing data points from all
rooms and users into multiple streams which only contain data about a single
entity. It is obvious that the former combined stream is more privacy-critical
as correlations between different entities can be analysed. Separation itself is
already a measure of privacy improvement [14].

Aggregation nodes transform multiple data points into a single data point
using aggregate functions like the sum, average, or median. Aggregation is also
a measure of privacy improvement as it removes information details and pre-
vents propagation of data which has higher information value and accuracy than
needed for a given purpose [14]. An example where this measure can be taken,
is when billing information is derived from the consumption data which initially
had a precision of seconds to minutes. This data stream can be reduced to data
points which only represent the overall amount consumed per month.

Encryption nodes implement access control on the data level. Each of these
nodes encrypt the incoming data for a set of preconfigured recipients. The
privacy-critical data stream is then protected until its decryption by one of the
authorized recipients. Besides privacy-uncritical publicly published information,
all information flowing on a path from the source of the graph to the data storage
component has to pass an encryption node before being forwarded to the latter.
Each path is effectively the preprocessing steps for a specific group of recipients.

After flowing through the exit node, the data is transmitted to and saved
in the storage component of the P4S. As data is encrypted, access is enabled
by indexes build upon stream meta data. This includes e.g. the data type and
timestamps or time intervals. Decryption happens on the data consumers’ local
system after querying and retrieval.

Taint Label Specification We specify the taint labels as described in Fig. 2.
For the current scenario, we assume four users, each possessing their own taint
label A, B, C, and D.

The logger is a central unit, hence it taints all labels {A, B, C, D}. The data
points are internally forwarded to the controller, requiring the same taint la-
bels for it. The same applies for forwarding them to the Input-API, although
traversing system boundaries.

Filtering nodes remove all but one specified taint label. This is expressed in
the combination of tainting and untainting labels. Each filtering node FK with
K ∈M obtains data of all taints and then removes the data of the taints M \K,
effectively untainting the labels M \K. Optionally, as shown for user C, an ag-



gregation node may untaint given data and derive a new low taint label from it.
This reflects two aspects of its behaviour: First, it receives privacy-critical data
of only a single taint. Second, the output data of taint Klow is considered to be
semantically less privacy-critical than the input data with taint K. Encryption
nodes untaint a given label by encrypting the information. While the input data
can possess arbitrary privacy-criticality, the output data is always considered
completely uncritical3. The encryption nodes allow that each following compo-
nent does not need any taints in order to receive, store, and forward the data.
This especially includes in this scenario the exit node, the P4S storage compo-
nent, and the query API. On decryption on the local system of the authorized
recipients the data restores its previous privacy-criticality.

Remark: Often, it is more sensible to model aggregation as reduction of
privacy-criticality instead of complete removal. Formally, this can be represented
by replacing an initial taint label with a new one, while implying that the lat-
ter is less critical than the former. Similarly, it is imaginable that merge nodes
exist which combine data of several different taint labels to a combined stream
of greater privacy-criticality, analogously indicated by a more critical taint la-
bel. Currently, the formalism does not support encoding the rating of criticality
explicitly, as taint labels are only categorical values without any means of com-
parison. In future work, we will add the ability to define a partial order of taint
labels to our model to allow better assessment of criticality.

Results and Insights In the following we describe the results of the formal-
ization of the architecture at hand.

Data Privacy Protection Goals Data minimization is performed relatively late.
Data is not collected locally with regard to individual users but rather in a
centralized manner. As a consequence, central components have full access to
the privacy-critical data of all users. More importantly, critical data crosses
system boundaries, which makes them susceptible to network attacks. However,
an advantage of the design is that data is untainted by encryption before storage.
This prevents attacks of the database which would jeopardize the whole history
of collected data.

By using the model, it becomes transparent that the EMS is critical for all
users. Furthermore, exactly one path in the P4S graph is dedicated to each user;
the untainting is completely identical for all users. Protection of stored data also
becomes visible. The data from user C is further processed and derived values
are also stored in the database. If user C is not aware of that process, she can
intervene and post an application of information to gain further insights.

Due to the aforementioned violations of locality and separation principles,
data is linkable in the EMS and in the P4S graph before separation by filters.4

3 Under the common assumption that strong state of the art encryption is utilized.
4 The actual instantiation of the model influences the linkability of data. When multi-
ple aggregation nodes for different taints are actually implemented as the very same
component, this component possesses the ability to link while this does not become



While not included in the current case study, if combined flows e.g. of several
users existed, exactly these links would also become visible in the model.

Security and Risk Assessment The first asset with regard to privacy-protection
is the EMS. The EMS is fully privacy-critical and does not employ any protection
and untainting measures. Given that it is not build but bought, protection might
only be possible by wrapping it. The next critical part of the architecture is the
connection between the EMS controller and the API of the P4S. If applicable,
TLS protection can be employed, otherwise measures which do no need support
on the side of the EMS are necessary. Furthermore, the P4S is considered to be
privacy-critical as it obtains the full stream of data.

On the level of components, from source to sink, the P4S constitutes a gra-
dient with respect to privacy-criticality. With each step, privacy-critical data is
more and more untainted. At last, data in the database is completely untainted;
hence, further measures of protection are not strictly necessary here.

We trust in the integrity of the EMS, that is, that it will only send its
data to the P4S. Accordingly, we trust the connection not to be susceptible to
eavesdropping or man-in-the-middle attacks. Moreover, we expect that there are
no data leaks in the P4S and data is only transmitted to the database. There is,
however, no need to trust the database itself.

With regard to untainting, we expect the correctness of privacy-protection
measures implemented in the filtering, aggregation, and encryption nodes. With-
out them, components which are now deemed not to process any privacy-relevant
data also become critical. Especially AggregatorC is a valuable target for further
investigation. Here, actual untainting depends more on the very semantics of the
applied function than when using, for example, encryption which works without
regard to the meaning of the encrypted data.

Based on the trust assumptions and the assessment of criticality, valuable
targets for adversaries are the EMS and the P4S graph. The EMS has an active
boundary, hence, intrusion must be considered, being an attack on the integrity
of the component, There are, however, no query APIs which have to be protected
against unauthorized data access. The Input-API of the P4S graph is a passive
boundary, accepting but not providing data. This interface is not to be considered
privacy-critical as it only receives information. Nevertheless, possible attacks
include POSTing faulty data and provoking denial of service by flooding the
system with data. Also having an active boundary, the exit node, intrusion is a
concern like for the EMS.

The exit node is not to be considered critical, due to two reasons: It is an
active boundary, not allowing data querying and the data is already encrypted
and therefore protected.

The database would be critical as it holds all data yet collected. However,
this is also not the case due to the previously employed encryption.

visible in the model. An improvement on the implementation side is to enforce com-
plete statelessness of these components.



5.2 MeasrDroid

MeasrDroid [45] is a system for collecting smartphone sensor data. The goal is
to utilize the gathered information for research purposes. It may collect infor-
mation about the current battery power, smartphone orientation, properties of
surrounding wifi and cellphone networks such as signal strength, latency, and
reliability. All information is collected in combination with the current location
of the smartphone. This allows to generate maps with respect to the measured
properties.

For this purpose, an app is installed on each participating smartphone. The
app regularly reads all available (hardware and software) sensor data and en-
crypts them with a predefined public key. The data is then send to UploadDroid,
an upload gateway which temporarily stores the collected information. With
lower frequency, CollectDroid, a trusted database server, pulls the information
from UploadDroid and decrypts them locally. The data is then stored in a lo-
cal database on CollectDroid. From these information, statistics and graphs are
generated and further analyzed.

Privacy Criticality Privacy criticality comes from the fact that all information
is not only mappable to an individual identifier for each smartphone, but it is
also collected including a precise GPS location of it. This enables tracking of
users over the time.

Architecture Specification Data is repeatedly collected on the smartphone
using the dedicated MeasrDroid app and serialized to a JSON string. The sensor
component of the app is the data source. As in IDEM, it is not considered to be
a boundary in the formal model. The data is directly and locally encrypted by
an internal component using the public key of the trusted CollectDroid server
and not saved on the phone in plaintext.5 From there it is internally forwarded
to the upload component which is an active system boundary and POSTs the
data to the UploadDroid server.

The following components constitute the MeasrDroid backend infrastructure.
The CollectDroid server shall not be accessible from the outside in order to

minimize its attack surface. Due to this reason, is it not desired that informa-
tion is directly pushed to it. Alternatively, the gateway server UploadDroid is
provided, to which the information can be pushed. Encrypted, and hence privacy-
protected information is only temporarily deposited on this server. This server
is simultaneously a passive system boundary for the smartphones pushing their
data as well as for the CollectDroid server pulling the data. Complementary,
CollectDroid has an active boundary for querying for new data.

The CollectDroid server consists of a data collection component, a data de-
cryption component, and an actual storage component. Regularly, the trusted
and isolated CollectDroid connects to the UploadDroid via SSH and pulls the
5 In consequence, even when the phone is stolen, an advisory cannot reconstruct the
whole measurement and location history of this phone.



newly received measurement data. It is the vital requirement that it may not be
contacted from the outside. This can be modeled by not providing any passive
system boundaries. After the transfer, data is decrypted and stored there.

In other words, the competing properties of outside access for data pushing
on the one hand and trustworthiness due to the handling of unencrypted data
on the other hand have been separated into two systems.

This derived model is shown in Figure 3.

Smartphone A

Smartphone B

Smartphone C

CollectDroidSensorsA
{A} — {}

EncryptionA
{} — {A}

ClientA-out
{} —{}

SensorsB
{B} — {}

EncryptionC
{}— {B}

ClientB-out
{} —{}

SensorsC
{C} — {}

EncryptionC
{} — {C}

ClientC-out
{} —{}

UploadDroid
{} —{}

Data−Retriever
{} —{}

Dec-A
{A} — {}

Dec-B
{B} — {}

Dec-C
{C} — {}

Storage
{A, B, C} — {}

Fig. 3. MeasrDroid Architecture

The main purpose of the collected data is to support scientific work. The
process of data analysis is carried out manually, hence there exists no further
infrastructure from this point on which is relevant for the current elucidations.

Taint Label Specification For the current scenario, we assume several users,
each possessing their own tainting label. For three users, the tainting labels A, B,
and C exist. Their smartphones collect individual data about them. Hence, the
collection component of every smartphone taints the gathered information with
the label of the corresponding user. Immediately, the following encryption com-
ponent again untaints the owner’s label. In consequence, the upload component
does not have taint labels.

On the side of the MeasrDroid system, the UploadDroid only handles en-
crypted data which it cannot decrypt. Hence, it does not have any taint la-
bels. This also applies for the CollectDroid’s data collection component. The
CollectDroid decrypts the data and has access to all information of every user.
Hence, it is necessary to allow the full taint label set, here being {A, B, C} for
its decryption component (necessarily modelled as three individual nodes to cor-
rectly reapply the decrypted data’s taints), as well as the storage component.

Remark: The current case showed that encryption can completely untaint
given information, regardless of their previous taints. For every encryption func-
tion, a related decryption function must exist, which restores the previous infor-
mation. Formally, also all previously applied taint labels are restored. Besides
explicit specification of taint labels, it should be possible to relate a pair of en-
cryption and decryption components to enable automatic taint label derivation



for the decryption component. The main problem to be avoided is the man-
ual introduction of inconsistencies by updating the taint specificiations of only
one entity in such a pair. We created a wrapper function, which creates an
taint-untaint-tuple for the encryption as well as the decryption component when
providing the corresponding taint and untaint labels as parameters. This solved
the aforementioned problem by the mere introduction of syntactic sugar, hence,
not requiring changes of the previously specified formalism nor requiring further
proofs.

Results and Insights Our evaluation of the architecture specification is ana-
logue to the previous case study. Remarkable differences are as follows.

Data Privacy Protection Goals Data collection is distributed and separated from
the beginning as each smartphone only collects data about its own user.

This has several benefits: Data minimization can already be performed by
the client application on the smartphone before it crosses any system boundary.
If the client-side application is open source, full transparency of the running
code is given. Also, the foundation for more intervenability is laid, as the app
can provide measures to the user, to exactly specifiy which information may be
collected. Based on separation, linkability of different users data is also prevented.
Only after storage, data can potentially be linked.

Security and Risk Assessment For each user, two assets exist: The user’s indi-
vidual smartphone must be considered critical as well as CollectDroid, which is
critical for all users. UploadDroid is considered completely uncritical.

The smartphone app is trusted that its sensor component only collects legit-
imate data and that the encryption component performs untainting correctly.
Furthermore it is expected that its upload component only pushes this data to
UploadDroid (if the data would be sent to a different entity, the data cannot be
decrypted). Lastly, CollectDroid is trusted with respect to data handling.

Depending on the motivation, two types of attacks can be derived: If surveil-
lance of a single individual is desired, the corresponding smartphone as well as
the CollectDroid are potential attack targets. Hence, the integrity of the smart-
phone, the app, and the trusted backend components has to be assured. When
access to all critical information, e.g. for untargeted correlation purposes is de-
sired, then the trusted backend systems (decryption component and the storage
component) become main targets. CollectDroid only has an active boundary;
intrusion has to be considered as an important attack vector. Consequently a
vital protection is a firewall restricting incoming connections.

While it is obvious that the storage component is highly critical and therefore
has to be protected, we consider it a valuable hint by topoS that the decryption
component itself have the same level of criticality and need to be protected with
the same amount of diligence.

Implementation Support The CollectDroid server has no passive boundaries but
only active boundaries to obtain data from the UploadDroid. It can be completely



isolated as mentioned before. This could be reflected in the following firewall
configuration:

– Drop all incoming connection requests6

– Only allow outgoing connections to UploadDroid

topoS shows that the UploadDroid is a passive system which has to be protected
by other means. For the Internet-facing side, each individual user can be given
a cryptographic identifier in order to authenticate against the APIs of the men-
tioned systems. Internally, certificates can be utilized in order to perform mutual
authentication of the servers.

5.3 Auditing the Real MeasrDroid

The previous sections presented a theoretical evaluation of the architecture of
MeasrDroid and consequently provide a recipe for evaluating and auditing the
real system. MeasrDroid is deployed and in productive use since 2013. The theo-
retic evaluation of its architecture, presented in this paper, was not available at
the time MeasrDroid was developed. In this section, together with the authors
of MeasrDroid we will evaluate the real MeasrDroid implementation with regard
to our findings of the previous sections.

First, we collected all physical and virtual machines which are associated
with MeasrDroid. We found the following machines:

droid0 Virtual machine
– IPv4: 131.159.15.16
– IPv6: 2001:4ca0:2001:13:216:3eff:fea7:6ad5
– Name in the model: not present
– Purpose: DNS server, not relevant for MeasrDroid’s architecture.

droid1 Virtual machine
– IPv4: 131.159.15.42
– IPv6: 2001:4ca0:2001:13:216:3eff:fe03:34f8
– Name in the model: UploadDroid
– Purpose: Receive data via http/https.

c3po Physical, powerful machine
– IPv4: 131.159.15.52
– IPv6: 2001:4ca0:2001:13:2e0:81ff:fee0:f02e
– Name in the model: CollectDroid
– Purpose: Trusted collection and storage.

The relevant machines are UploadDroid at 131.159.15.42 and CollectDroid
at 131.159.15.52. We found that the machines do not have a firewall set up. All
rely on the central firewall of our lab.

This central firewall may be the largest real-world, publicly available iptables
firewall in the world and handles many different machines and networks. Measr-
Droid is only a tiny fragment of it. We obtained a snapshot from June 2016 and
6 Except a management interface e.g. via SSH



make it publicly available [46]. The firewall is managed by several users and it
consists of over 5500 rules.

MeasrDroid relies on the protocols http (port 80), https (port 443), and
ssh (port 22). For conciseness, we focus our audit on port 80. Fundamentally,
port numbers are not of a big concern for the overall architecture. Notably, our
theoretical analysis, in particular Figure 3, has abstracted over concrete port
number all the time.

{224.0.0.0..239.255.255.255}

{0.0.0.0..45.56.113.32} ∪ {45.56.113.34..80.81.195.255} ∪
{80.81.197.0..81.169.253.163} ∪ {81.169.253.165..85.214.129.213} ∪

{85.214.129.215..94.186.159.97} ∪
{94.186.159.99..126.255.255.255} ∪ {128.0.0.0..131.159.13.255} ∪
{131.159.16.0..131.159.19.255} ∪ {131.159.22.0..138.246.252.255} ∪
{138.246.254.0..148.251.90.44} ∪ {148.251.90.46..185.86.231.255} ∪
{185.86.236.0..188.1.239.85} ∪ {188.1.239.87..188.95.232.63} ∪

{188.95.232.224..188.95.232.255} ∪ {188.95.240.0..192.48.106.255} ∪
{192.48.108.0..223.255.255.255} ∪ {240.0.0.0..255.255.255.255}

{131.159.14.0..131.159.14.10} ∪ {131.159.14.12..131.159.14.25} ∪
{131.159.14.27..131.159.14.35} ∪ {131.159.14.37..131.159.14.41} ∪
{131.159.14.43..131.159.14.46} ∪ {131.159.14.48..131.159.14.59} ∪
{131.159.14.61..131.159.14.62} ∪ {131.159.14.64..131.159.14.84} ∪

{131.159.14.86..131.159.14.124} ∪ {131.159.14.126..131.159.14.139} ∪
{131.159.14.141..131.159.14.144} ∪ {131.159.14.147..131.159.14.168} ∪
{131.159.14.170..131.159.14.203} ∪ {131.159.14.205..131.159.14.208} ∪

{131.159.14.210..131.159.14.211}∪131.159.14.213∪{131.159.14.217..131.159.14.220}∪
{131.159.14.222..131.159.15.3} ∪ 131.159.15.6 ∪ 131.159.15.8 ∪ 131.159.15.10 ∪

131.159.15.12 ∪ 131.159.15.15 ∪ {131.159.15.18..131.159.15.19} ∪ 131.159.15.22 ∪
{131.159.15.24..131.159.15.25} ∪ 131.159.15.28 ∪ 131.159.15.37 ∪ 131.159.15.40 ∪

131.159.15.45 ∪ 131.159.15.52 ∪ 131.159.15.55 ∪ {131.159.15.60..131.159.15.67} ∪
{131.159.15.69..131.159.15.225} ∪ {131.159.15.227..131.159.15.228} ∪
{131.159.15.230..131.159.15.232} ∪ {131.159.15.234..131.159.15.245} ∪
{131.159.15.249..131.159.15.255} ∪ {131.159.20.0..131.159.20.41} ∪
{131.159.20.43..131.159.20.44} ∪ {131.159.20.46..131.159.20.51} ∪
{131.159.20.53..131.159.20.58} ∪ {131.159.20.60..131.159.20.71} ∪

{131.159.20.73..131.159.20.154} ∪ {131.159.20.156..131.159.20.201} ∪
{131.159.20.203..131.159.20.242} ∪ {131.159.20.244..131.159.20.255} ∪

{188.95.233.0..188.95.233.3} ∪ {188.95.233.6..188.95.233.8} ∪
{188.95.233.10..188.95.233.255} ∪ {192.48.107.0..192.48.107.255}

131.159.14.11 ∪ 131.159.14.26 ∪ 131.159.14.36 ∪ 131.159.14.42 ∪ 131.159.14.47 ∪
131.159.14.60 ∪ 131.159.14.63 ∪ 131.159.14.85 ∪ 131.159.14.125 ∪ 131.159.14.140 ∪
{131.159.14.145..131.159.14.146} ∪ 131.159.14.169 ∪ 131.159.14.204 ∪
131.159.14.214 ∪ 131.159.14.221 ∪ {131.159.15.4..131.159.15.5} ∪ 131.159.15.7 ∪
131.159.15.9 ∪ 131.159.15.11 ∪ {131.159.15.13..131.159.15.14} ∪
{131.159.15.16..131.159.15.17} ∪ {131.159.15.20..131.159.15.21} ∪ 131.159.15.23 ∪
{131.159.15.26..131.159.15.27} ∪ {131.159.15.29..131.159.15.36} ∪
{131.159.15.38..131.159.15.39} ∪ {131.159.15.41..131.159.15.42..131.159.15.44} ∪
{131.159.15.46..131.159.15.49} ∪ 131.159.15.51 ∪ {131.159.15.53..131.159.15.54} ∪
{131.159.15.56..131.159.15.59} ∪ 131.159.15.68 ∪ 131.159.15.226 ∪ 131.159.15.229 ∪
131.159.15.233 ∪ {131.159.15.246..131.159.15.248} ∪ 131.159.20.42 ∪ 131.159.20.45 ∪
131.159.20.52 ∪ 131.159.20.59 ∪ 131.159.20.72 ∪ 131.159.20.155 ∪ 131.159.20.202 ∪
131.159.20.243 ∪ {131.159.21.0..131.159.21.255} ∪ {185.86.232.0..185.86.235.255} ∪
{188.95.232.192..188.95.232.223} ∪ {188.95.233.4..188.95.233.5} ∪ 188.95.233.9 ∪
{188.95.234.0..188.95.239.255}

188.1.239.86 ∪ {188.95.232.64..188.95.232.191}
45.56.113.33 ∪ 81.169.253.164 ∪

85.214.129.214 ∪
94.186.159.98 ∪ 148.251.90.45

{138.246.253.6..138.246.253.10} ∪
138.246.253.19

138.246.253.5

{138.246.253.0..138.246.253.4} ∪
{138.246.253.11..138.246.253.18} ∪
{138.246.253.20..138.246.253.255}

131.159.15.50

131.159.14.212 ∪
{131.159.14.215..131.159.14.216}

131.159.14.209

{127.0.0.0..127.255.255.255}

{80.81.196.0..80.81.196.255}

Fig. 4. MeasrDroid: Main firewall – IPv4 http connectivity matrix

The model of the MeasrDroid architecture (cf. Figure 3) should be recogniz-
able in the rules of our central firewall. In particular, CollectDroid should not be
reachable from the Internet, UploadDroid should be reachable from the Internet,
and CollectDroid should be able to pull data from UploadDroid. This informa-
tion may be hidden somewhere in the more than 5500 IPv4 firewall rules and



INET

internal,
including DB

external,
including UploadDroid

Fig. 5. MeasrDroid: Main firewall – simplified connectivity matrix

over 6000 IPv6 firewall rules. We used the fffuu tool [47] to extract the access
control structure of the firewall. The result is visualized in Figure 4 for IPv4.
The IPv6 structure is shown in Figure 6. These figures may first appear highly
confusing, which is due to the sheer intrinsic complexity of the access control
policy enforced by the firewall. We have highlighted three entities in both figures.
Because the structure and the results are similar for IPv4 and IPv6 and due to
its long addresses the IPv6 graph is even worse readable than the IPv4 graph,
we continue our analysis only with IPv4 for this paper. First, at the top, the IP
range enclosed in a cloud corresponds to the IP range which is not used by our
department, i.e. the Internet. The large block on the left corresponds to most
internal machines which are not globally accessible. The IP address we marked
in bold red in there belongs to CollectDroid. Therefore, inspecting the arrows,
we have formally verified our first auditing goal: CollectDroid is not directly
accessible from the Internet. The other large IP block on the right belongs to
machines which are globally accessible. The IP address we marked in bold red in
there belongs to UploadDroid. Therefore, we have verified our second auditing
goal: UploadDroid should be reachable from the Internet. In general, it is pleas-
ant to see that the two machines are in different access groups. Finally, we see
that the class of IP addresses including CollectDroid can access UploadDroid.
Therefore, we have verified our third auditing goal.

For the sake of example, simplicity, and presentiveness, we disregard that
most machines at the bottom of Figure 4 could attack CollectDroid.7 There-
fore, the huge access control structure at the bottom of Figure 4 is not related
to MeasrDroid and can be ignored. We have extracted only the relevant (and
simplified) parts in Figure 5. In the previous paragraph, we only presented the
successful parts of the audit. Our audit also revealed many problems related to
MeasrDroid, visualized with red arrows. The problems can be clearly recognized
in Figure 5:

7 Our method is also applicable to the complete scenario; this would only decreases
clarity without contributing any new insights. We acknowledge the sheer complexity
of this real-world setup with all its side-constraints.



– UploadDroid can connect to CollectDroid. This is a clear violation of the ar-
chitecture. We have empirically verified this highly severe problem by logging
into UploadDroid and connecting to CollectDroid.

– In general, most internal machines may access CollectDroid, which violates
the architecture.

– There are no restrictions for UploadDroid with regard to outgoing connec-
tions. In theory, it should only passively retrieve data and never initiate
connections by itself (disregarding system updates).

– We uncovered a special IP address with special access rights towards
CollectDroid (only shown in the full figure). We found an abandoned server,
which has no current relevance for the MeasrDroid system. As a consequence,
the access rights were revoked.

Therefore, our audit could verify some core assertions about the actual im-
plementation. In addition, our audit could uncover and confirm serious bugs in
the implementation. These bugs were unknown prior to our audit and we could
only uncover them with the help of the process proposed in this paper.

Automatically fixing bugs To fix the problems our audit uncovered, we decided
to install additional firewall rules at CollectDroid. topoS could automatically
generate the rules for us. We detail the topoS-supported firewall configuration
in the next section.

A Firewall for C3PO topoS can generate a global firewall for the com-
plete MeasrDroid architecture. We filtered the output for rules which affect
CollectDroid. Note that topoS generates a fully functional stateful firewall (cf.
[39,48]) for us. For our architecture, topoS generated the two simple rules shown
in Figure 7.

The first rule allows CollectDroid to connect to the UploadDroid. The second
rule allows the UploadDroid to answer to such existing connections.

In cooperation with the authors of the MeasrDroid system, we manually
extended the rules to further allow some core network services such as ICMP,
DHCP, DNS, NTP, and SSH for remote management. In addition, we allow
further outgoing TCP connections from CollectDroid (for example for system
updates) but log those packets. The modified ruleset is illustrated in Figure 8.

We analyzed the modified firewall with fffuu to ensure that it still conforms
to the overall policy. fffuu immediately verified that CollectDroid is no longer
reachable from any machine (excluding localhost connection) over http. We also
verified that we will not lock ourselves out from ssh access from our internal
network. After this verification, the firewall was deployed to the real CollectDroid
machine. Similarly, we implemented and deployed an IPv6 firewall.

6 Discussion & Future Work

In the previous section we presented a structured approach to apply our formal-
ism to two real-world software architectures and their implementation.



{ff00:: .. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff}

2600:3c02::f03c:91ff:fe84:a75 ∪
2a01:238:4270:b800:a7dc:c448:3f2:3ce3 ∪
2a01:238:43d7:c300:74c7:3bfe:cceb:ee03 ∪

2a01:4f8:202:702c::2

{2001:4ca0:2001:a:: .. 2001:4ca0:2001:a:ffff:ffff:ffff:ffff} ∪ 2001:4ca0:2001:10:201:80ff:fe7f:6d87 ∪
2001:4ca0:2001:10:211:2fff:feb5:9193 ∪ 2001:4ca0:2001:10:214:bff:fe60:16f4 ∪ 2001:4ca0:2001:10:216:3eff:fe38:14e1 ∪
2001:4ca0:2001:10:216:3eff:fe51:7871 ∪ 2001:4ca0:2001:10:216:3eff:fe68:84d3 ∪ 2001:4ca0:2001:10:225:90ff:fedb:c720 ∪
2001:4ca0:2001:10:230:48ff:febb:4bca ∪ 2001:4ca0:2001:10:2e0:81ff:fec6:74bd ∪ {2001:4ca0:2001:10:2e0:81ff:fec6:75fe ..
2001:4ca0:2001:10:2e0:81ff:fec6:75ff} ∪ 2001:4ca0:2001:11:210:18ff:fe91:1901 ∪ 2001:4ca0:2001:11:214:bff:fe6f:2ab1 ∪
2001:4ca0:2001:11:216:3eff:fe07:16f9 ∪ 2001:4ca0:2001:11:225:90ff:fe7a:cb82 ∪ 2001:4ca0:2001:11:225:90ff:fed7:8914 ∪
2001:4ca0:2001:11:226:22ff:fea1:2382 ∪ 2001:4ca0:2001:11:226:b9ff:fe7d:84ed ∪ 2001:4ca0:2001:11:2e0:81ff:fe2d:f16 ∪
2001:4ca0:2001:11:be30:5bff:fed4:bfee ∪ 2001:4ca0:2001:13::42 ∪ 2001:4ca0:2001:13:216:3eff:fe03:34f8 ∪
2001:4ca0:2001:13:216:3eff:fe04:da66 ∪ 2001:4ca0:2001:13:216:3eff:fe10:a5d9 ∪ 2001:4ca0:2001:13:216:3eff:fe16:d255 ∪
2001:4ca0:2001:13:216:3eff:fe1c:a6f5 ∪ 2001:4ca0:2001:13:216:3eff:fe30:d8c7 ∪ {2001:4ca0:2001:13:216:3eff:fe32:c969 ..
2001:4ca0:2001:13:216:3eff:fe32:c96a} ∪ 2001:4ca0:2001:13:216:3eff:fe39:a31f ∪ 2001:4ca0:2001:13:216:3eff:fe45:42 ∪
2001:4ca0:2001:13:216:3eff:fe50:e76b ∪ 2001:4ca0:2001:13:216:3eff:fe5b:5e87 ∪ 2001:4ca0:2001:13:216:3eff:fe5f:b83f ∪
2001:4ca0:2001:13:216:3eff:fe60:442a ∪ 2001:4ca0:2001:13:216:3eff:fe6e:ade7 ∪ 2001:4ca0:2001:13:216:3eff:fe75:7acd ∪
2001:4ca0:2001:13:216:3eff:fe76:6aae ∪ 2001:4ca0:2001:13:216:3eff:fe96:6bbc ∪ 2001:4ca0:2001:13:216:3eff:fea0:37e5 ∪
2001:4ca0:2001:13:216:3eff:fea6:878b ∪ 2001:4ca0:2001:13:216:3eff:fea7:6ad5 ∪ 2001:4ca0:2001:13:216:3eff:fea8:cbf3 ∪
2001:4ca0:2001:13:216:3eff:fead:288c ∪ 2001:4ca0:2001:13:216:3eff:feb0:5c43 ∪ 2001:4ca0:2001:13:216:3eff:fec2:1264 ∪
2001:4ca0:2001:13:216:3eff:fec7:6d64 ∪ 2001:4ca0:2001:13:216:3eff:fece:fe68 ∪ 2001:4ca0:2001:13:216:3eff:fee1:6973 ∪
2001:4ca0:2001:13:216:3eff:fee9:36a6 ∪ 2001:4ca0:2001:13:216:3eff:fee9:a554 ∪ 2001:4ca0:2001:13:216:3eff:feea:2fb7 ∪
2001:4ca0:2001:13:216:3eff:fefe:ce2e ∪ 2001:4ca0:2001:13:219:b9ff:feea:4ce0 ∪ 2001:4ca0:2001:13:219:b9ff:feea:4ce2 ∪
2001:4ca0:2001:13:250:56ff:fe9d:955 ∪ 2001:4ca0:2001:13:be5f:f4ff:fe4a:497f ∪ 2001:4ca0:2001:14:216:3eff:fe52:ed14 ∪
2001:4ca0:2001:14:216:3eff:feff:d683 ∪ 2001:4ca0:2001:17:216:3eff:fe75:f85c ∪ 2001:4ca0:2001:18:216:3eff:fef0:3933 ∪
{2001:4ca0:2001:19:: .. 2001:4ca0:2001:19:ffff:ffff:ffff:ffff} ∪ 2001:4ca0:2001:21:216:3eff:fec6:7b51 ∪
2001:4ca0:2001:40:21b:21ff:fe29:a5cd ∪ 2001:4ca0:2001:40:21d:baff:fe5c:9cf3 ∪ 2001:4ca0:2001:40:21f:d0ff:fe46:17df ∪
{2001:4ca0:2001:42:: .. 2001:4ca0:2001:42:ffff:ffff:ffff:ffff} ∪ {2a00:4700:0:2:21b:21ff:fe42:301c ..
2a00:4700:0:2:21b:21ff:fe42:301d} ∪ {2a00:4700:0:2:225:90ff:fe7a:cbc8 .. 2a00:4700:0:2:225:90ff:fe7a:cbc9} ∪
2a00:4700:0:2:2e0:81ff:fe2f:fd9d ∪ {2a00:4700:0:2:2e0:81ff:fe2f:fde2 .. 2a00:4700:0:2:2e0:81ff:fe2f:fde3} ∪
{2a00:4700:0:2:2e0:81ff:feb9:3824 .. 2a00:4700:0:2:2e0:81ff:feb9:3825} ∪ {2a00:4700:0:3:: .. 2a00:4700:0:3:ffff:ffff:ffff:ffff} ∪
{2a00:4700:0:6:: .. 2a00:4700:0:7:ffff:ffff:ffff:ffff} ∪ {2a00:4700:0:9:: .. 2a00:4700:0:9:ffff:ffff:ffff:ffff}

2001:638:c:a09d::2 ∪ {2001:4ca0:2001:10:: .. 2001:4ca0:2001:10:201:80ff:fe7f:6d86} ∪ {2001:4ca0:2001:10:201:80ff:fe7f:6d88 ..
2001:4ca0:2001:10:211:2fff:feb5:9192} ∪ {2001:4ca0:2001:10:211:2fff:feb5:9194 .. 2001:4ca0:2001:10:214:bff:fe60:16f3} ∪
{2001:4ca0:2001:10:214:bff:fe60:16f5 .. 2001:4ca0:2001:10:216:3eff:fe38:14e0} ∪ {2001:4ca0:2001:10:216:3eff:fe38:14e2 ..

2001:4ca0:2001:10:216:3eff:fe51:7870} ∪ {2001:4ca0:2001:10:216:3eff:fe51:7872 .. 2001:4ca0:2001:10:216:3eff:fe68:84d2} ∪
{2001:4ca0:2001:10:216:3eff:fe68:84d4 .. 2001:4ca0:2001:10:225:90ff:fedb:c71f} ∪ {2001:4ca0:2001:10:225:90ff:fedb:c721 ..
2001:4ca0:2001:10:230:48ff:febb:4bc9} ∪ {2001:4ca0:2001:10:230:48ff:febb:4bcb .. 2001:4ca0:2001:10:2e0:81ff:fec6:74bc} ∪

{2001:4ca0:2001:10:2e0:81ff:fec6:74be .. 2001:4ca0:2001:10:2e0:81ff:fec6:75fd} ∪ {2001:4ca0:2001:10:2e0:81ff:fec6:7600 ..
2001:4ca0:2001:11:210:18ff:fe91:1900} ∪ {2001:4ca0:2001:11:210:18ff:fe91:1902 .. 2001:4ca0:2001:11:214:bff:fe6f:2ab0} ∪

{2001:4ca0:2001:11:214:bff:fe6f:2ab2 .. 2001:4ca0:2001:11:216:3eff:fe07:16f8} ∪ {2001:4ca0:2001:11:216:3eff:fe07:16fa ..
2001:4ca0:2001:11:225:90ff:fe7a:cb81} ∪ {2001:4ca0:2001:11:225:90ff:fe7a:cb83 .. 2001:4ca0:2001:11:225:90ff:fed7:8913} ∪
{2001:4ca0:2001:11:225:90ff:fed7:8915 .. 2001:4ca0:2001:11:226:22ff:fea1:2381} ∪ {2001:4ca0:2001:11:226:22ff:fea1:2383 ..
2001:4ca0:2001:11:226:b9ff:fe7d:84ec} ∪ {2001:4ca0:2001:11:226:b9ff:fe7d:84ee .. 2001:4ca0:2001:11:2e0:81ff:fe2d:f15} ∪

{2001:4ca0:2001:11:2e0:81ff:fe2d:f17 .. 2001:4ca0:2001:11:be30:5bff:fed4:bfed} ∪ {2001:4ca0:2001:11:be30:5bff:fed4:bfef ..
2001:4ca0:2001:13::41} ∪ {2001:4ca0:2001:13::43 .. 2001:4ca0:2001:13:216:3eff:fe03:34f7} ∪ {2001:4ca0:2001:13:216:3eff:fe03:34f9

.. 2001:4ca0:2001:13:216:3eff:fe04:da65} ∪ {2001:4ca0:2001:13:216:3eff:fe04:da67 .. 2001:4ca0:2001:13:216:3eff:fe10:a5d8} ∪
{2001:4ca0:2001:13:216:3eff:fe10:a5da .. 2001:4ca0:2001:13:216:3eff:fe16:d254} ∪ {2001:4ca0:2001:13:216:3eff:fe16:d256 ..
2001:4ca0:2001:13:216:3eff:fe1c:a6f4} ∪ {2001:4ca0:2001:13:216:3eff:fe1c:a6f6 .. 2001:4ca0:2001:13:216:3eff:fe30:d8c6} ∪

{2001:4ca0:2001:13:216:3eff:fe30:d8c8 .. 2001:4ca0:2001:13:216:3eff:fe32:c968} ∪ {2001:4ca0:2001:13:216:3eff:fe32:c96b ..
2001:4ca0:2001:13:216:3eff:fe39:a31e} ∪ {2001:4ca0:2001:13:216:3eff:fe39:a320 .. 2001:4ca0:2001:13:216:3eff:fe45:41} ∪
{2001:4ca0:2001:13:216:3eff:fe45:43 .. 2001:4ca0:2001:13:216:3eff:fe50:e76a} ∪ {2001:4ca0:2001:13:216:3eff:fe50:e76c ..

2001:4ca0:2001:13:216:3eff:fe5b:5e86} ∪ {2001:4ca0:2001:13:216:3eff:fe5b:5e88 .. 2001:4ca0:2001:13:216:3eff:fe5f:b83e} ∪
{2001:4ca0:2001:13:216:3eff:fe5f:b840 .. 2001:4ca0:2001:13:216:3eff:fe60:4429} ∪ {2001:4ca0:2001:13:216:3eff:fe60:442b ..
2001:4ca0:2001:13:216:3eff:fe6e:ade6} ∪ {2001:4ca0:2001:13:216:3eff:fe6e:ade8 .. 2001:4ca0:2001:13:216:3eff:fe75:7acc} ∪
{2001:4ca0:2001:13:216:3eff:fe75:7ace .. 2001:4ca0:2001:13:216:3eff:fe76:6aad} ∪ {2001:4ca0:2001:13:216:3eff:fe76:6aaf ..

2001:4ca0:2001:13:216:3eff:fe96:6bbb} ∪ {2001:4ca0:2001:13:216:3eff:fe96:6bbd .. 2001:4ca0:2001:13:216:3eff:fea0:37e4} ∪
{2001:4ca0:2001:13:216:3eff:fea0:37e6 .. 2001:4ca0:2001:13:216:3eff:fea6:878a} ∪ {2001:4ca0:2001:13:216:3eff:fea6:878c ..
2001:4ca0:2001:13:216:3eff:fea7:6ad4} ∪ {2001:4ca0:2001:13:216:3eff:fea7:6ad6 .. 2001:4ca0:2001:13:216:3eff:fea8:cbf2} ∪
{2001:4ca0:2001:13:216:3eff:fea8:cbf4 .. 2001:4ca0:2001:13:216:3eff:fead:288b} ∪ {2001:4ca0:2001:13:216:3eff:fead:288d ..
2001:4ca0:2001:13:216:3eff:feb0:5c42} ∪ {2001:4ca0:2001:13:216:3eff:feb0:5c44 .. 2001:4ca0:2001:13:216:3eff:fec2:1263} ∪
{2001:4ca0:2001:13:216:3eff:fec2:1265 .. 2001:4ca0:2001:13:216:3eff:fec7:6d63} ∪ {2001:4ca0:2001:13:216:3eff:fec7:6d65 ..
2001:4ca0:2001:13:216:3eff:fece:fe67} ∪ {2001:4ca0:2001:13:216:3eff:fece:fe69 .. 2001:4ca0:2001:13:216:3eff:fee1:6972} ∪

{2001:4ca0:2001:13:216:3eff:fee1:6974 .. 2001:4ca0:2001:13:216:3eff:fee9:36a5} ∪ {2001:4ca0:2001:13:216:3eff:fee9:36a7 ..
2001:4ca0:2001:13:216:3eff:fee9:a553} ∪ {2001:4ca0:2001:13:216:3eff:fee9:a555 .. 2001:4ca0:2001:13:216:3eff:feea:2fb6} ∪

{2001:4ca0:2001:13:216:3eff:feea:2fb8 .. 2001:4ca0:2001:13:216:3eff:fefe:ce2d} ∪ {2001:4ca0:2001:13:216:3eff:fefe:ce2f ..
2001:4ca0:2001:13:219:b9ff:feea:4cdf} ∪ 2001:4ca0:2001:13:219:b9ff:feea:4ce1 ∪ {2001:4ca0:2001:13:219:b9ff:feea:4ce3 ..
2001:4ca0:2001:13:250:56ff:fe9d:954} ∪ {2001:4ca0:2001:13:250:56ff:fe9d:956 .. 2001:4ca0:2001:13:2e0:81ff:feb5:afd7} ∪

{2001:4ca0:2001:13:2e0:81ff:feb5:afda .. 2001:4ca0:2001:13:2e0:81ff:fee0:f02e .. 2001:4ca0:2001:13:be5f:f4ff:fe4a:497e} ∪
{2001:4ca0:2001:13:be5f:f4ff:fe4a:4980 .. 2001:4ca0:2001:14:216:3eff:fe52:ed13} ∪ {2001:4ca0:2001:14:216:3eff:fe52:ed15 ..

2001:4ca0:2001:14:216:3eff:feff:d682} ∪ {2001:4ca0:2001:14:216:3eff:feff:d684 .. 2001:4ca0:2001:15:ffff:ffff:ffff:ffff} ∪
{2001:4ca0:2001:17:: .. 2001:4ca0:2001:17::214} ∪ {2001:4ca0:2001:17::217 .. 2001:4ca0:2001:17:216:3eff:fe75:f85b} ∪

{2001:4ca0:2001:17:216:3eff:fe75:f85d .. 2001:4ca0:2001:17:225:90ff:fe57:1ff7} ∪ {2001:4ca0:2001:17:225:90ff:fe57:1ff9 ..
2001:4ca0:2001:17:225:90ff:fe57:2259} ∪ {2001:4ca0:2001:17:225:90ff:fe57:225b .. 2001:4ca0:2001:17:225:90ff:fe7a:cbb9} ∪
{2001:4ca0:2001:17:225:90ff:fe7a:cbbc .. 2001:4ca0:2001:17:225:90ff:fe7a:cbbd} ∪ {2001:4ca0:2001:17:225:90ff:fe7a:cbc0 ..

2001:4ca0:2001:18:216:3eff:fef0:3932} ∪ {2001:4ca0:2001:18:216:3eff:fef0:3934 .. 2001:4ca0:2001:18:ffff:ffff:ffff:ffff} ∪
{2001:4ca0:2001:20:: .. 2001:4ca0:2001:21:216:3eff:fec6:7b50} ∪ {2001:4ca0:2001:21:216:3eff:fec6:7b52 ..

2001:4ca0:2001:21:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:30:: .. 2001:4ca0:2001:30:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:40:: ..
2001:4ca0:2001:40:21b:21ff:fe29:a5cc} ∪ {2001:4ca0:2001:40:21b:21ff:fe29:a5ce .. 2001:4ca0:2001:40:21d:baff:fe5c:9cf2} ∪
{2001:4ca0:2001:40:21d:baff:fe5c:9cf4 .. 2001:4ca0:2001:40:21f:d0ff:fe46:17de} ∪ {2001:4ca0:2001:40:21f:d0ff:fe46:17e0 ..

2001:4ca0:2001:40:ffff:ffff:ffff:ffff} ∪ {2a00:4700:0:1:: .. 2a00:4700:0:2:21b:21ff:fe42:301b} ∪ {2a00:4700:0:2:21b:21ff:fe42:301e ..
2a00:4700:0:2:225:90ff:fe7a:cbc7} ∪ {2a00:4700:0:2:225:90ff:fe7a:cbca .. 2a00:4700:0:2:2e0:81ff:fe2f:fd9c} ∪

{2a00:4700:0:2:2e0:81ff:fe2f:fd9e .. 2a00:4700:0:2:2e0:81ff:fe2f:fde1} ∪ {2a00:4700:0:2:2e0:81ff:fe2f:fde4 ..
2a00:4700:0:2:2e0:81ff:feb9:3823} ∪ {2a00:4700:0:2:2e0:81ff:feb9:3826 .. 2a00:4700:0:2:ffff:ffff:ffff:ffff} ∪ {2a00:4700:0:4:: ..

2a00:4700:0:5:ffff:ffff:ffff:ffff}

:: ∪ {::2 .. 2001:638:c:a09d::1} ∪ {2001:638:c:a09d::3 .. 2001:4ca0:108:41:ffff:ffff:ffff:ffff} ∪
{2001:4ca0:108:43:: .. 2001:4ca0:2001:9:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:b:: ..

2001:4ca0:2001:f:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:16:: .. 2001:4ca0:2001:16:ffff:ffff:ffff:ffff} ∪
{2001:4ca0:2001:1a:: .. 2001:4ca0:2001:1f:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:22:: ..

2001:4ca0:2001:2f:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:31:: .. 2001:4ca0:2001:3f:ffff:ffff:ffff:ffff} ∪
{2001:4ca0:2001:41:: .. 2001:4ca0:2001:41:ffff:ffff:ffff:ffff} ∪ {2001:4ca0:2001:43:: ..

2600:3c02::f03c:91ff:fe84:a74} ∪ {2600:3c02::f03c:91ff:fe84:a76 .. 2a00:4700::ffff:ffff:ffff:ffff} ∪
{2a00:4700:0:8:: .. 2a00:4700:0:8:ffff:ffff:ffff:ffff} ∪ {2a00:4700:0:a:: ..

2a01:238:4270:b800:a7dc:c448:3f2:3ce2} ∪ {2a01:238:4270:b800:a7dc:c448:3f2:3ce4 ..
2a01:238:43d7:c300:74c7:3bfe:cceb:ee02} ∪ {2a01:238:43d7:c300:74c7:3bfe:cceb:ee04 ..

2a01:4f8:202:702c::1} ∪ {2a01:4f8:202:702c::3 .. feff:ffff:ffff:ffff:ffff:ffff:ffff:ffff}

{2001:4ca0:2001:17::215 .. 2001:4ca0:2001:17::216} ∪
2001:4ca0:2001:17:225:90ff:fe57:225a ∪

{2001:4ca0:2001:17:225:90ff:fe7a:cbba ..
2001:4ca0:2001:17:225:90ff:fe7a:cbbb} ∪
{2001:4ca0:2001:17:225:90ff:fe7a:cbbe ..
2001:4ca0:2001:17:225:90ff:fe7a:cbbf}

2001:4ca0:2001:17:225:90ff:fe57:1ff8

{2001:4ca0:2001:13:2e0:81ff:feb5:afd8 ..
2001:4ca0:2001:13:2e0:81ff:feb5:afd9}

{2001:4ca0:108:42::5 .. 2001:4ca0:108:42::9}
∪ 2001:4ca0:108:42::10

{2001:4ca0:108:42:: .. 2001:4ca0:108:42::4} ∪
{2001:4ca0:108:42::a .. 2001:4ca0:108:42::f} ∪

{2001:4ca0:108:42::11 .. 2001:4ca0:108:42:ffff:ffff:ffff:ffff}

::1

Fig. 6. MeasrDroid: Main firewall – IPv6 http connectivity matrix



*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
-A OUTPUT -s 131.159.15.52 -d 131.159.15.42 -j ACCEPT
-A INPUT -m state --state ESTABLISHED -s 131.159.15.42 -d 131.159.15.52 -j ACCEPT
COMMIT

Fig. 7. Automatically generated iptables rules

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
# topoS generated:
# C3PO -> UploadDroid
-A OUTPUT -s 131.159.15.52 -d 131.159.15.42 -j ACCEPT
# UploadDroid -> C3PO (answer)
-A INPUT -m state --state ESTABLISHED -s 131.159.15.42 -d 131.159.15.52 -j ACCEPT
# custom additional rules
-A INPUT -i lo -j ACCEPT
-A OUTPUT -o lo -j ACCEPT
-A OUTPUT -p icmp -j ACCEPT
-A INPUT -p icmp -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -s 131.159.20.190/24 -p tcp -m tcp --dport 22 -j ACCEPT
-A OUTPUT -m state --state ESTABLISHED -p tcp -m tcp --sport 22 -j ACCEPT
# DHCP
-A INPUT -p udp --dport 67:68 --sport 67:68 -j ACCEPT
-A OUTPUT -p udp --dport 67:68 --sport 67:68 -j ACCEPT
# ntp
-A OUTPUT -p udp --dport 123 -j ACCEPT
-A INPUT -p udp --sport 123 -j ACCEPT
# DNS
-A OUTPUT -p udp --dport 53 -j ACCEPT
-A INPUT -p udp --sport 53 -m state --state ESTABLISHED -j ACCEPT
# further output, policy could be improved.
# Notice mails to admin, system updates, ...
-A OUTPUT -p tcp -j LOG
-A OUTPUT -p tcp -j ACCEPT
-A INPUT -p tcp -m state --state ESTABLISHED -j LOG
-A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT
COMMIT

Fig. 8. Manually tuned iptables rules

We could show that it is straightforward to derive a model from a real sys-
tem and to make its most important aspects of privacy explicit: Participating
systems, each consisting of individual components within a common boundary,
their interconnections, and the classes of data they handle.



In the first case study, additionally the effect of privacy-enhancing practices
(separation, aggregation, hiding) could be made visible. With the help of our
model we assessed the effectiveness of these methods in the given scenarios.
However, we also found that modeling methods of mere reduction of privacy-
criticality could be improved by defining a partial order on the set of taint labels.
Regarding privacy protection goals, it became easy to argue for (un)successful
fulfillment of data minimization and unlinkability. The degree of achieving these
goals becomes clear by visualizing the flows of critical data streams. In both
studies, the mere creation of our system model improved the transparency, con-
sequently allowing direct assessment of the previously mentioned goals. While
this lays the foundation for intervenability, this goal is only achieved by sharing
the created model with the subjects whose data is processed by the system. It
will, however, depend on the service providers whether they do so.

For risk analysis, our model explicitly suggests components and systems for
being assets, trusted parties, or attack targets. Furthermore, given their taint
labels, it provides a foundation for rating their criticality. Here, especially com-
ponents with privacy-enhancing functionality can be automatically identified by
their non-empty untainting sets. Finally, in the second case study we could ad-
ditionally show the automatic generation of remedies for the identified privacy
violations. With help of topoS we could build firewall rules which enforce the
model’s architecture.

7 Conclusion

Several guidelines and policies for verifying and auditing the privacy properties
of software architectures and IT systems exist. Yet, this task itself is usually
carried out manually, making it complex and time-consuming.

In this paper, we presented a model, formalization, and technique based on
static taint analysis and showed its applicability to the assessment of integral
privacy protection goals. From given architecture designs or existing implemen-
tations, a model is derived which makes transmission and processing of privacy-
critical data explicit. We showed how this information can be used to support
the data protection goals of transparency, data minimality, and unlinkability.

We integrated our model into the formal policy framework topoS and proved
soundness with Isabelle/HOL. Two real-world case studies demonstrate the ap-
plicability of our approach, exemplifying that insights formally derived from the
model are consistent with manual inspections of the architecture. In the second
studied system, auditing could be even carried out in a completely automated
manner, uncovering previously unknown bugs, and providing measures for mit-
igation.

Availability
Our formalization, case studies, and proofs can be found at https://www.
isa-afp.org/entries/Network_Security_Policy_Verification.shtml
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