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Abstract

This paper, constituting an extension to the conference paper [8],
corrects the proof of the Theorem 2 from the Gower’s paper [4, page 5]
as well as corrects the Theorem 7 from Gower’s paper [6] . The first
correction is needed in order to establish the existence of the kernel
function used commonly in the kernel trick e.g. for k-means clustering
algorithm, on the grounds of distance matrix. The correction encom-
passes the missing if-part proof and dropping unnecessary conditions.
The second correction deals with transformation of the kernel matrix
into a one embeddable in Euclidean space.

1 The Problem

A number of approaches to solving various data mining problems, including
clustering, is based on so-called kernel approach. The kernel approach may
be seen as application of a mapping Φ to the data points in such a way that
they are represented in a high dimensional Euclidean space (called feature
space) in which it is hoped to separate the data points easier via simpler
geometrical constructs (e.g. hyperplanes), compared for example to their
original low dimensional representation space. In this way, a number of
data mining methods requiring linear data separation can be applied to non-
linearly separated data sets.
The kernel approach is most frequently applied in conjunction with Sup-

port Vector Machine based analysis methods, but it is also used in case of
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k-means clustering algorithm1, in which we are interested in this paper. We
will introduced this algorithm in Section 3

The kernel-based approaches assume the availability of a similarity func-
tion κ() and in particular of the similarity matrixK, called also a kernel func-
tion and kernel matrix resp., which express similarities between data points
at hand. This similarity function/matrix must have the property that, for
any two data points i, j in the original apace space we have κ(i, j) = Φ(i)◦Φ(j)
(◦ operator indicates a dot product between vectors), and for any two data
points in the data set under consideration the similarity matrixK is available
such that Kij = κ(i, j).

For a number of algorithms, including k-means, the so-called kernel trick
has been elaborated. The essence of the kernel trick is that we can perform
the kernel algorithms based on the kernel matrixK alone, without an explicit
knowledge of the mapping Φ. Section 3 explains the usage of kernel trick for
k-means algorithm.

Nonetheless, the very existence of the mapping Φ, and hence of the kernel
function κ() is of vital importance to the validity of application of the k-
means algorithm in the feature space. Φ transforms the data to points in
an Euclidean space so that k-means can be applied at all. Inversion of Φ
will provide with cluster centers produced by kernel-k-means. Furthermore,
not similarities but rather distances are used by k-means. We can easily
imagine that no kernel function κ() exists for a given similarity matrix K.
We can also have to do with the situation that there exist multiple kernel
functions κ as well as Φ related to the same kernel matrix K. Can it mean
that there exist multiple feature spaces in which the very same data set can
be clustered differently via kernel-k-means depending on the Φ function we
choose? Closely related is the following issue: For algorithms like k-means,
instead of the kernel matrix the distance matrix D between the objects in
the feature space may be available, being the Euclidean distance matrix. We
will call D Euclidean matrix.

We are faced with the following questions:

(1) what properties the kernel matrix should have in be really a matrix of
dot products?

(2) what properties the kernel matrix should have in to enable to recover
function Φ() at the data points from the kernel matrix?

(3) can we obtain the matrix K from distance data matrix D?

1For an overview of kernel k-means algorithm see e.g. [3].
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(4) can we obtain from the matrix K the function Φ() such that the dis-
tances in the feature space are exactly the same as given by the D
matrix?

(5) if we derived the matrix K from D and K turns out to yield Φ(), can
we know then that D was really an Euclidean distance matrix?

Questions (1), (2) may seem to be pretty easy and were partially ad-
dressed e.g. by Schölkopf [17]. Schölkopf investigates what kinds of kernel
functions may lead to a distance measure in the feature space. However,
he does not consider the inverse, that is Euclidean distance matrix leading
to a kernel function. He does not investigate finding explicit form of the Φ
function either.
The answer to the third question seems to be easily derivable from the

paper by Balaji et al. [1]. One should use the transformation

K = −1

2

(

I− 11T

m

)

Dsq(I−
11T

m
) (1)

(where Dsq is a matrix containing as entries squared distances from D) a re-
sult going back to a paper by Schoenberg [15]. The problem is that this paper
of Schoenberg does not contain any such statement. This result should be
rather ascribed to the paper [16]. 2 The most general proposal of a distance-
to-kernel-matrix transform seems to be that of by Gower [4, Theorem 2, page
5], who generalizes the aforementioned transform (1) to

K =
(

I− 1sT
)

(−1

2
Dsq)

(

I− s1T
)

(2)

for an appropriate choice of s. A generally accepted proof of this transforma-
tion can be found in the paper by Gower [4, Theorem 2, page 5]. If this proof
were correct, the questions (4) and (5) would have been answered. Regret-
tably, the proof of the validity of the latter is incomplete, as we will explain
in Section 4. For this reason, these questions still remain open.
Therefore, we decided to provide with a correction of the proof of the

Gower’s theorem that we will present in Section 5. This correction is needed
in order to establish the existence of the kernel function used commonly in
the kernel trick e.g. for k-means clustering algorithm, on the grounds of
distance matrix.

2 Schoenberg [15] proposed still another distance-to-kernel matrix transform

κd(x,y) = exp(−γd2(x,y))

for any positive γ, which we will not discuss here.
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The question that was left open by Gower was: do there exist special cases
where two different Φ() functions, complying with a given kernel matrix,
generate different distance matrices in the feature space, maybe in some
special, ”sublimated” cases? This would mean that under some ”special”
conditions the output of kernel k-means could differ radically not just on
the grounds of some random causes but in a systematic way. The answer
given to this open question in this paper is definitely NO. We closed all the
conceivable gaps in this respect. So usage of (linear and non-linear) kernel
matrices that are semipositive definite, is safe in this respect.
Let us underline here that we did not impose any apriorical restrictions

on the form of Φ() function itself. It may be a linear or non-linear mapping
from the sample space to the feature space. But what we insist on is that the
feature space has to be Euclidean. This is the requirement for applicability
of (kernel) k-means clustering algorithm. If the feature space is not metric,
the results of (kernel) k-means clustering are questionable.

In Section 6 we provide with a numerical example illustrating some dis-
tance matrix transformations discussed in Section 5.

The second problem with usage of kernel-k-means is related to the basic
assumption of k-means that it has been designed for Euclidean space. In a
number of applications, like clustering based on Laplacians, the embeddabil-
ity of the kernel matrix can be guaranteed from the theoretical standpoint.
However, this does not need to be always the case. Therefore we need to an-
swer the questions (6) what does kernel-k-means produce for non-Euclidean
kernel matrices, (7) can a non-Euclidean kernel matrix be turned to an Eu-
clidean kernel matrix, (8) how does the latter matrix transformation impact
the results of kernel-k-means clustering. The questions could have been eas-
ily answered if the Theorem 7 of Gower from [6] were correct. Regrettably,
this Theorem requires an quantitative correction. We handle these issues in
Section 7.
In the subsequent Section 2 we will point at research directions for which

the correction proposed here is of importance.

2 The Background

The k-means algorithm has the very attractive property of being easy to
implement, and there exist various variants of it like k-means++ possessing
even closeness-to-optimum properties. The drawback of this algorithm is that
it accepts numeric attributes only and requires an embedding in Euclidean
space. Embeddings into other spaces were investigated, like hyperbolic space,
but the computation of cluster centers that is vital and very easy in Euclidean
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space, is not that easy in the other spaces.
However, real-world objects are frequently described by non-numeric at-

tributes, or are not embedded in any space whatsoever and instead only
similarity, dissimilarity or distance between objects is known. In such cases
the kernel-k-means clustering algorithm can be used which at least partially
inherits the good properties of k-means. In such cases, however, the very
existence of embedding into Euclidean space (even if it is not used explic-
itly), is of vital importance, because otherwise the clustering results may
be unreliable. Same holds for other kernel algorithms for which the original
algorithm relies on an Euclidean space.
Therefore, research is performed like that of [9], in order to find ways

of transforming a similarity matrix into the closest proper positive definite
kernel matrix, so that an approximating Euclidean embedding is existent, or
one learns the distances themselves.
These efforts in establishing the proper kernel matrix make sense only if

the Theorem 2 of Gower [4] is valid. However, a study of the literature seems
to reveal that nobody except for Gower himself was aware of the mentioned
flaw of his proof of his theorem and the result is used rather as a granted
truth.
The Gower’s paper [4], according to GoogleScholar, is cited over 200 times

in a number of research and application contexts. For example, Pekalska et
al. [12] derive the necessity of creation of a generalized kernel handling of
dissimilarity on the grounds that the kernel according to equation (2) is posi-
tive definite if and only if the underlying distance matrix is Euclidean, which
has not been proven by Gower [4]. Same motivation lies behind Nikolentzos
et al. work [10] on seeking appropriate embeddings. Pavoine et al. [11] relies
on the property, suggested by Gower [4], that the decomposition of the kernel
can be shifted, while performing PCA analysis.
Kernel-trick based k-means algorithms are applied in various areas (e.g.

gene expression clustering [7], spectral clustering of graphs [3]).
The validity of the Gower transform underpins various improvements of

kernel k-means clustering, like single pass clustering [14]. global kernel k-
means [18], subsampling kernel k-means [2] robust kernel k-means [19] and
other.
Furthermore, let us stress here that the aforementioned papers do not care

at all about whether or not the kernel matrices are embeddable in Euclidean
space which is the basic assumption of applying the basic form of kernel-
k-means. Non-Euclidean space require a serious modification of k-means,
accommodating to that fact that gravity center of a cluster cannot serve any
more as cluster center (gradient descent methods are needed for example, see
[13, Section 6].
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For these reasons a definite solving of the Gower theorem dilemma seems
to be of uttermost importance.

3 Kernel-k-means

The well known k-means clustering algorithm is claimed to minimize the
objective function being the sum of squares of distances of data points to
their cluster centers. It consists of the following steps: (1) creating the initial
clustering, (2) computation of cluster center for each cluster, (3) creation of
a new clustering by assigning each data point to the cluster defined by the
closest cluster center (4) repeating steps (2) and (3) till some terminating
condition. There exist a large variety of variants of this algorithm. For
example step (1) may cosist in random selection of k distinct data points
as cluster centers and applying step (3). Another variant may replace step
(2) with step (2’) in which a single data point is moved from one cluster
to the other if and only if the move decreases the cost function and then
perform proper step (2). steps (2) and (2’) may be applied interchangingly
in subsequent iterations and so on.
Kernel based k-means clustering algorithm (clustering objects 1, . . . , m

into k clusters 1, . . . , k) consists in switching to a multidimensional feature
space F and searching therein for prototypes µΦ

j minimizing the error

m
∑

i=1

min
1≤j≤k

‖Φ(i)− µ
Φ
j ‖2 (3)

where Φ: {1, . . . , m} → F is a (usually non-linear) mapping of the space
of objects into the feature space. The so-called ”kernel trick” means the
possibility to apply k-means clustering without knowing explicitly the Φ(i)
function and using so-called kernel matrix with elements kij = Φ(i)TΦ(j) =
K(i, j) instead.
In analogy to the classical k-means algorithm, the prototype vectors are

updated according to the equation

µ
Φ
j =

1

mj

∑

i∈Cj

Φ(i) (4)

where mj is the cardinality of the j-th cluster. A direct application of this
equation is not possible unless the function Φ is known. But it may be still
feasible if we would know the so-called Kernel Matrix K with elements being
dot products of data points in the feature space, that is kij = Φ(i)TΦ(j) =
K(i, j). Given matrix K, it is possible to compute the distances between
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the object images and prototypes in the feature space by making use of so-
called called ”the kernel trick”. The ”kernel trick” relies on the fact that the
following transformation is possible:

‖Φ(i)− µ
Φ
j ‖2 =

(

Φ(i)− µ
Φ
j

)T (

Φ(i)− µ
Φ
j

)

= Φ(i)TΦ(i)− 2Φ(i)TµΦ
j + (µΦ

j )
T
µ

Φ
j

= Φ(i)TΦ(i)− 2

mj

∑

h∈Cj

Φ(i)TΦ(h)+

+
1

m2
j

∑

r∈Cj

∑

s∈Cj

Φ(r)TΦ(s)

= kii −
2

mj

∑

h∈Cj

khi +
1

m2
j

∑

r∈Cj

m
∑

s∈Cj

krs

(5)

where, as already stated, kij = Φ(i)TΦ(j) = K(i, j).

In this way, one can update the elements of clusters without determining
the prototypes explicitly.

Let Y be a matrix Y = (Φ(1),Φ(2), . . . ,Φ(m))T . Then apparently K =
Y Y T . Hence for any non-zero vector u uTKu = uTY Y Tu = (Y Tu)(Y Tu) =
yTy ≥ 0 where y = Y Tu so K must be positive semidefinite. But a matrix
is positive semidefinite iff all its eigenvalues are non-negative. Furthermore,
all its eigenvectors are real numbers.

So to identify Φ() at data points, one has to find all eigenvalues λl, l =
1, . . . , m and corresponding eigenvectors vl of the matrixK. If all eigenvalues
are hereby non-negative, then construct the matrix Y that has as columns
the products

√
λlvl. Rows of this matrix (up to permutations) are the values

of the function Φ() at data points 1, . . . , m. More formally, if the matrix
V = (v1, . . . ,vm), and Λ is the vector of eigenvalues, then

Y = V diag(
√
Λ) (6)

where diag() turns a vector into a diagonal matrix. It may be verified that
kernel-k-means with the above K matrix and ordinary k-means for Y would
yield same results.
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4 Gower formulation of distance-to-kernel-matrix

transformation

Let us recall that a matrix D ∈ R
m×m is an Euclidean distance matrix

between points 1, . . . , m if and only if there exists a matrix X ∈ R
m×n

rows of which (x1
T , . . . ,xm

T ) are coordinate vectors of these points in an
n-dimensional Euclidean space and

dij =
√

(xi − xj)T (xi − xj) (7)

. Gower in [4] claims that

Theorem 1 D is Euclidean iff the matrix F =
(

I− 1sT
)

(−1
2
)Dsq

(

I− s1T
)

is positive semidefinite for any vector s such that sT1 = 1 and Dsqs 6= 0

whereas in [6] he claims:

Theorem 2 D is Euclidean iff the matrix F =
(

I− 1sT
)

(−1
2
)Dsq

(

I− s1T
)

is positive semidefinite for any vector s such that sT1 = 1.

Apparently both claims do not match quite (with respect to condition
Dsqs 6= 0). It must be underlined, however, that the paper [4] provides
strong clues how the theorem 2 shall be proven, though incompletely, so that
in what follows we use these clues to establish the result. We claim here is
that the Gower’s theorem has the following deficiencies

• requirement Dsqs 6= 0 is not needed in Theorem 1.

• the if-part of neither Theorem 1 nor of his theorem correction in [6]
was demonstrated.

It should be noted at this point, that in a 1985 paper Gower [5] derives his
theorem in the latter version from a paper by Schoenberg [16]. The problem
is that first of all Gower’s result does not need this second derivation and
second the paper by Schoenberg [16] does not prove what Gower [5] claims.
So the issue is open and we want to address it here more thoroughly. We
provide a coorection, completing Gower’s proof in Section 5. See Section 6
for some numerical examples of matrices and vectors that we operate on in
Section 5. In Section 8 we draw some conclusions from the corrective proof.
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5 Correrction of Gower’s result

In this section we shall correct the Gower’s result from [4].

For construction purposes we need still another formulation of the theo-
rem, which is slightly more elaborate:

Theorem 3 1. If the matrix D is a matrix of Euclidean distances then
for each vector s such that sT1 = 1 the matrix

F =
(

I− 1sT
)

(−1

2
)Dsq

(

I− s1T
)

(8)

is positive semidefinite (Dsq being a matrix with entries being squares
of entries of the matrix D).

2. If D is a symmetric matrix with zero diagonal and for a vector s such
that sT1 = 1. the matrix F =

(

I− 1sT
)

(−1
2
)Dsq

(

I− s1T
)

is positive
semidefinite then D is Euclidean.

3. If D is Euclidean then for each vector s such that sT1 = 1 the matrix D
can be derived from matrix F =

(

I− 1sT
)

(−1
2
)Dsq

(

I− s1T
)

in such
a way that its squared entries can be computed as d2ij = fii + fjj − 2fij.

4. If D is Euclidean then for each vector s such that sT1 = 1 the matrix
F =

(

I− 1sT
)

(−1
2
)Dsq

(

I− s1T
)

can be expressed as F = Y Y T where
Y is a real-valued matrix, and the rows of Y can be considered as co-
ordinates of data points the distances between which are those from the
matrix D.

Let D ∈ R
m×m be a matrix of Euclidean distances dij between objects

i, j ∈ {1, . . . , m}. Let Dsq be a matrix of squared Euclidean distances d
2
ij

between objects with identifiers 1, . . . , m. This means that there must exist
a matrix X ∈ R

m×n for some n, rows of which represent coordinates of these
objects in an n-dimensional space. This real-valued matrix X represents an
embedding of the Euclidean distance matrix D into Rm×n. A distance matrix
can be called Euclidean if and only if an embedding exists. If E = XXT (E
with dimensions m×m), then d2ij = eii + ejj − 2eij.

As a rigid set of points in Euclidean space can be moved (shifted, rotated,
flipped symmetrically3) without changing their relative distances, there may
exist many other matrices Y rows of which represent coordinates of these

3Gower does not consider flipping.

9



same objects in the same n-dimensional space after some isomorphic trans-
formation. Let us denote the set of all such embeddings E(D). And if a ma-
trix Y ∈ E(D), then for the product F = Y Y T we have d2ij = fii + fjj − 2fij.
We will say that F ∈ Edp(D)

For an F ∈ Edp(D) define a matrix G = F + 1
2
Dsq. Hence F = G− 1

2
Dsq.

Obviously then

d2ij = fii + fjj − 2fij (9)

= (gii −
1

2
d2ii) + (gjj −

1

2
d2jj)− 2(gij −

1

2
d2ij) (10)

= gii + gjj − 2gij + d2ij (11)

(as djj = 0 for all j). This implies that

0 = gii + gjj − 2gij (12)

that is

gij =
gii + gjj

2
(13)

So G is of the form

G = g1T + 1gT (14)

with components of g ∈ R
m equal gi =

1
2
gii.

Therefore, to find F ∈ Edp(D) for an Euclidean matrix D we need only
to consider matrices deviating from −1

2
Dsq by g1

T + 1gT for some g. Let us
denote with G(D) the set of all matrices F such that F = g1T +1gT − 1

2
Dsq.

So for each matrix F if F ∈ Edp(D) then F ∈ G(D), but not vice versa.
We stress that we work with an Euclidean matrix D. So we would like to
find an F such that F is decomposable into real-valued matrices Y such that
F = Y Y T so that Y would represent an embedding of an Euclidean distance
matrix. But first of all even if D is not Euclidean, or even not metric, such
an embedding may be found. (see Gower et al. [6]).

As Gower et al. [6] states, see their Theorem 1, any non-metric dissim-
ilarity measure d(z, y) for z, y ∈ X where X is finite, can be turned into a
(metric) distance function d′(z, y) = d(z, y) + c where c is a constant where
c ≥ maxx,y,z∈X ‖d(x, y) + d(y, z) − d(z, x)‖. Furthermore, Gower et al. [6]
recall that any dissimilarity matrix D may be turned to an Euclidean dis-
tance matrix, see their Theorem 7, by adding an appropriate constant, e.g.
d′(z, y) =

√

d(z, y)2 + σ where σ is a constant such that σ ≥ −λm, λm being
the smallest eigenvalue of (I−11T /m)(−1

2
Dsq)(I−11T/m), Dsq is the matrix

of squared values of elements of D, m is the number of rows/columns in D.
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So even if D is actually an Euclidean distance matrix, and F = −1
2
Dsq +

g1T + 1gT , there is no warranty, that the distance matrix induced by corre-
sponding Y is identical with D.

For an F ∈ G(D) consider the matrix F ∗ =
(

I− 1sT
)

F
(

I− 1sT
)T
. We

obtain

F ∗ =
(

I− 1sT
)

F
(

I− 1sT
)T

(15)

=
(

I− 1sT
)

(1gT + g1T − 1

2
Dsq)

(

I− 1sT
)T

(16)

=
(

I− 1sT
)

1gT
(

I− 1sT
)T

+
(

I− 1sT
)

g1T
(

I− 1sT
)T

− 1

2

(

I− 1sT
)

Dsq

(

I− 1sT
)T

(17)

Let us investigate
(

I− 1sT
)

1gT
(

I− 1sT
)T
:

(

I− 1sT
)

1gT
(

I− s1T
)

= 1gT − 1gT s1T − 1sT1gT + 1sT1gT s1T (18)

Let us make the following choice (always possible) of s with respect to g:
sT1 = 1, sTg = 0.
Then we obtain from the above equation

(

I− 1sT
)

1gT
(

I− s1T
)

= 1gT − 101T − 1gT + 1sT1 · 0 · 1T = 00T (19)

By analogy

(

I− 1sT
)

g1T
(

I− 1sT
)T

= (
(

I− 1sT
)

1gT
(

I− s1T
)

)T = 00T (20)

By substituting (19) and (20) into (17) we obtain

F ∗ =
(

I− 1sT
)

F
(

I− 1sT
)T

= −1

2

(

I− 1sT
)

Dsq

(

I− 1sT
)T

(21)

So for any g, hence an F ∈ G(D) we can find an s such that:

(

I− 1sT
)

F
(

I− 1sT
)T

= −1

2

(

I− 1sT
)

Dsq

(

I− 1sT
)T

For any matrix F = −1
2

(

I− 1sT
)

Dsq

(

I− 1sT
)T
for some s with 1T s = 1

we say that F is in multiplicative form or F ∈ M(D).
If F = Y Y T , that is F is decomposable, then also

F ∗ =
(

I− 1sT
)

Y Y T
(

I− 1sT
)T

= (
(

I− 1sT
)

Y )(
(

I− 1sT
)

Y )T = Y ∗Y ∗T

11



is decomposable. But

Y ∗ =
(

I− 1sT
)

Y = Y − 1sTY = Y − 1vT (22)

where v = Y T s is a shift vector by which the whole matrix Y is shifted
to a new location in the Euclidean space. So the distances between objects
computed from Y ∗ are the same as those from Y , hence if F ∈ Edp(D), then
Y ∗ ∈ E(D).
Therefore, to find a matrix F ∈ Edp(D), yielding an embedding of D in

the Euclidean n dimensional space we need only to consider matrices of the

form −1
2

(

I− 1sT
)

Dsq

(

I− 1sT
)T
, subject to the already stated constraint

sT1 = 1, that is ones fromM(D).
So we can conclude: If D is a matrix of Euclidean distances, then there

must exist a positive semidefinite matrix F = −1
2

(

I− 1sT
)

Dsq

(

I− s1T
)

for
some vector s such that sT1 = 1, det(

(

I− 1sT
)

) = 0 and Dsqs 6= 0. These
last two conditions are implied by the following fact: Dsq is known to be not
negative semidefinite, so that F would not be positive semidefinite in at least
the following cases: det(

(

I− 1sT
)

) 6= 0 (see reasoning prior to formula (30))
or Dsqs = 0 (see reasoning prior to formula (31)). So if D is an Euclidean
distance matrix, then there exists an F ∈ M(D) ∩ Edp(D).
Let us investigate other vectors t such that tT1 = 1. Note that

(I− 1tT )(I− 1sT ) = I− 1tT − 1sT + 1tT1sT (23)

= I− 1tT − 1sT + 1sT = I− 1tT (24)

Therefore, for a matrix F ∈ M(D)

(I− 1tT )F (I− 1tT )T = −1

2
(I− 1tT )

(

I− 1sT
)

Dsq

(

I− 1sT
)T

(I− 1tT )T

= −1

2
(I− 1tT )Dsq(I− 1tT )T (25)

But if F = Y Y T ∈ Edp(D), then

F ′ = (I− 1tT )F (I− 1tT )T (26)

= (I− 1tT )Y Y T (I− 1tT )T (27)

= (Y − 1(tT )Y )(Y − 1(tT )Y )T (28)

and hence each −1
2
(I − 1tT )Dsq(I − 1tT )T is also in Edp(D), though with a

different placement (by a shift) in the coordinate systems of the embedded
data points. So if one element ofM(D) is in Edp(D), then all of them are.

12



So we have established that: if D is an Euclidean distance matrix4, then
there exists a decomposable matrix F = Y Y T ∈ Edp(D) which is in G(D),
hence Edp(D) ⊂ G(D). For each matrix in G(D)∩ Edp(D) there exists a mul-
tiplicative form matrix inM(D)∩ Edp(D). But if it exists, all multiplicative
forms are there: M(D) ⊂ Edp(D)
In this way we have proven points 1,3 and 4 of the Theorem 3. And also

the only-if-part of Gower’s theorem correction in [6].
However, two things remain to be clarified and are not addressed in [4]

nor in [6]: the if-part of [6] theorem correction (given a matrix D such that

−0.5
(

I− 1sT
)

Dsq

(

I− 1sT
)T
is positive semidefinite, is D an Euclidean dis-

tance matrix? – see point 2 of the Theorem 3) and the status of the additional
condition Dsqs 6= 0 in Theorem 1.
Gower [4] makes the following remark: F =

(

I− 1sT
)

(−1
2
Dsq)

(

I− s1T
)

is to be positive semidefinite for Euclidean D. However, for non-zero vectors
u

uTFu =− 1

2
uT

(

I− 1sT
)

Dsq

(

I− 1sT
)T

u

=− 1

2
(
(

I− 1sT
)T

u)TDsq(
(

I− 1sT
)T

u) (29)

But Dsq is known to be not negative semidefinite, so that F would not be
positive semidefinite in at least the following cases: det(

(

I− 1sT
)

) 6= 0 and
Dsqs = 0. Let us have a brief look at these conditions and why they are
neither welcome nor actually existent:

1. Situation det(
(

I− 1sT
)

) 6= 0 is not welcome, because there exists a

vector u′ such that u′TDsqu
′ > 0 and under det(

(

I− 1sT
)

) 6= 0 we

could solve the equation
(

I− 1sT
)T

u = u′ and thus demonstrate that
for some u

uTFu < 0 (30)

However this situation is impossible, because for F ∈ M(D)

(I− 1sT )1 = 1− 1 = 0

which means that the rows are linearly dependent, hence det(
(

I− 1sT
)

) =
0 is guaranteed by earlier assumption about s; so this concern by Gower
needs to be dismissed as pointless.

4 This means that there exists a matrix X such that rows are coordinates of objects in
an Euclidean space with distances as in D
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2. Situation Dsqs = 0 is not welcome, because then

uT
(

I− 1sT
)

Dsq

(

I− 1sT
)T

u = uTDsq

(

I− 1sT
)T

u = uTu > 0

and thus

uTFu < 0 (31)

denying positive semidefiniteness of F . Gower does not consider this
further, but such a situation is impossible. Recall that because D is
Euclidean, there must exist a vector r such that rT1 = 1 and

F (r) = Y Y T = −1

2

(

I− 1rT
)

Dsq

(

I− r1T
)

is in Edp(D). Hence for any s such that sT1 = 1

(

I− 1sT
)

F (r)
(

I− s1T
)

=(
(

I− 1sT
)

Y )(
(

I− 1sT
)

Y )T

=− 1

2

(

I− 1sT
)

Dsq

(

I− s1T
)

(32)

is positive semidefinite. This allows us to conclude that for such s

Ds 6= 0. Therefore if Ds = 0 then sT1 = 0 . What is more, if
det(D) 6= 0 then Dsqs = 0 implies s = 0, for which of course s11 = 0.
Hence the last assumption of if-part of Theorem 1 needs to be dropped
as unnecessary which simplifies it to corrected theorem in [6].

As we can see from the first point above, F , given by

F = −0.5
(

I− 1sT
)

Dsq

(

I− 1sT
)T

does not need to identify uniquely a matrix D, as
(

I− 1sT
)

is not invertible.
Though of course it identifies an Euclidean distance matrix.

Let us now demonstrate the missing part of Gower’s proof that D is
uniquely defined given a decomposable F .

So assume that for some D (of which we do not know if it is Euclidean,

but is symmetric and with zero diagonal), F = −0.5
(

I− 1sT
)

Dsq

(

I− 1sT
)T

and F is decomposable that is F = Y Y T . Let D(Y ) be the distance ma-
trix derived from Y (that is the distance matrix for which Y is an em-
bedding). That means F is decomposable into properly distanced points
with respect to D(Y ). And F is in additive form with respect to it, that
is F ∈ G(D(Y )) Therefore there must exist some s′ such that the F ′ =

14



−0.5
(

I− 1s′
T
)

D(Y )sq
(

I− s′1T
)

as valid multiplicative form with respect

to D(Y ), and it holds that F ′ =
(

I− 1s′
T
)

F
(

I− s′1T
)

. But recall that

(

I− 1s′
T
)

F
(

I− s′1T
)

=
(

I− 1s′
T
)

(−0.5
(

I− 1sT
)

Dsq

(

I− s1T
)

)
(

I− s′1T
)

=− 0.5(
(

I− 1s′
T
)

(

I− 1sT
)

)Dsq(
(

I− 1s′
T
)

(

I− 1sT
)

)T

=− 0.5
(

I− 1s′
T
)

Dsq

(

I− s′1T
)

(33)

Hence

−0.5
(

I− 1s′
T
)

Dsq

(

I− s′1T
)

= −0.5
(

I− 1s′
T
)

D(Y )sq
(

I− s′1T
)

So we need to demonstrate that for two symmetric matrices with zero di-
agonalsD,D′ such that−1

2

(

I− 1sT
)

Dsq

(

I− s1T
)

= −1
2

(

I− 1sT
)

D′
sq

(

I− s1T
)

the equation D = D′ holds.
It is easy to see that −1

2

(

I− 1sT
)

(Dsq −D′
sq)

(

I− s1T
)

= 00T . Denote
∆ = Dsq −D′

sq.
(

I− 1sT
)

∆
(

I− s1T
)

= 00T

∆− 1sT∆−∆s1T + 1sT∆s1T = 00T

With ∆ denote the vector ∆s and with c the scaler sT∆s. So we have

∆− 1∆
T −∆1T + c11T = 00T

So in the row i, column j of the above equation we have: δij+ c−δi−δj = 0.
Let us add cells ii and jj and subtract from them cells ij and ji. δii+c−δi−
δi+δjj+c−δj−δj−δij−c+δi+δj−δji−c+δj+δi = δii+δjj−δij−δji = 0. But
as the diagonals of D and D′ are zeros, hence δii = δjj = 0. So −δij−δji = 0.
But δij = δji because D,D′ are symmetric. Hence −2δji = 0 so δji = 0. This
means that D = D′.
This means that D and D(Y ) are identical. Hence decomposition of

F = −0.5
(

I− 1sT
)

Dsq

(

I− 1sT
)T
is sufficient to prove Euclidean space

embedding ofD and yields this embedding. This proves the if-part of Gower’s
Theorem 1 and of the corrected theorem in [6] 2 and point 2 of Theorem 3.

6 A numerical example

Let us illustrate the process of generating a kernel matrix from a distance
table and show that the distances between the objects in the feature space
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really match the distances of the original distance matrix. We took a n = 4-
dimensional data matrix with m = 7 objects.

X =





















77 113 125 99
53 127 104 122
95 80 136 55
20 83 12 2
62 67 84 6
47 11 77 94
30 87 26 90





















and derived from it an original Euclidean distance matrix

D0 =





















0 41.7 58.9 162.3 112.6 116.8 113
41.7 0 97.4 160.9 132.4 122.5 96.1
58.9 97.4 0 154.3 79.8 109.8 132.7
162.3 160.9 154.3 0 85 136.4 89.8
112.6 132.4 79.8 85 0 105.6 108.8
116.8 122.5 109.8 136.4 105.6 0 93.2
113 96.1 132.7 89.8 108.8 93.2 0





















We applied to it the transformation from equation (8) using the vector

s =
(

0.22 0.17 0.08 0.04 0.05 0.04 0.41
)T

and obtained the (kernel) matrix

F =





















3755 2570.5 3689.2 −5143.7 −615.5 −1404 −3110.1
2570.5 3127.9 367.7 −5238.2 −3362 −2403.5 −1658.6
3689.2 367.7 7093.4 −2220.5 4207.7 1048.2 −3856.9
−5143.7 −5238.2 −2220.5 12284.6 6374.8 376.3 3510.2
−615.5 −3362 4207.7 6374.8 7685 1800.5 −683.6
−1404 −2403.5 1048.2 376.3 1800.5 7070 589.9
−3110.1 −1658.6 −3856.9 3510.2 −683.6 589.9 2791.9





















After eigen-decomposition of F , we get via equation (6) the embedding
matrix (after ignoring columns with next to zero eigenvalues)

Y =





















−50.8 −31.6 −12.9 −1.5
−52.4 9.1 −13.8 −10.2
−21.1 −81.3 −4.1 5.1
107.6 0.4 −26.1 −4.2
56.4 −65.9 −12.5 −2.4
22.3 −22.8 77.7 −4.2
34.9 38.3 9.1 5.2
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which produces the distance matrix

D =





















0 41.7 58.9 162.3 112.6 116.8 113
41.7 0 97.4 160.9 132.4 122.5 96.1
58.9 97.4 0 154.3 79.8 109.8 132.7
162.3 160.9 154.3 0 85 136.4 89.8
112.6 132.4 79.8 85 0 105.6 108.8
116.8 122.5 109.8 136.4 105.6 0 93.2
113 96.1 132.7 89.8 108.8 93.2 0





















The sum of squared differences between the corresponding entries in the
distance matrices D and D0 amounts to 5.727256e-25.
It can be easily seen that D is (nearly) identical with D0, though the

embeddings X and Y differ. The k-means algorithm as implemented in R
(kmeans, centers=2,nstart=100) was run both for the embedding X and Y
yielding the clustering [ 2, 2, 2, 1, 1, 1, 1].
A version of kernel-k-means, as described in this paper, was also imple-

mented and produced for the kernel matrix F the very same clustering. [2,
2, 2, 1, 1, 1, 1].
Note that same distance matrix can be turned to a kernel matrix using

different s verctors. We applied to it the transformation from equation (8)
using the vector

s′ =
(

0.13 0.09 0.15 0.12 0.31 0.08 0.11
)T

and obtained the (kernel) matrix

F ′ =





















5423.6 5652.6 3042.7 −5937.6 −2491.7 −748.2 −867.5
5652.6 7623.5 1134.7 −4618.6 −3824.7 −334.2 1997.5
3042.7 1134.7 4131.9 −5329.5 16.4 −611.1 −3929.4
−5937.6 −4618.6 −5329.5 9028.2 2036.1 −1430.4 3290.3
−2491.7 −3824.7 16.4 2036.1 2264 −1088.5 −1985.8
−748.2 −334.2 −611.1 −1430.4 −1088.5 6713 1819.7
−867.5 1997.5 −3929.4 3290.3 −1985.8 1819.7 5608.4





















After eigen-decomposition of F ′, we get via equation (6) the embedding
matrix (after ignoring columns with next to zero eigenvalues)

Y ′ =





















−71.6 9.6 −14.3 0.8
−67.6 49.2 −24.2 −6.7
−49.2 −40.3 7 5.6
90.1 17.5 −24.3 −2.7
29.8 −37 0.2 −2.3
−1 29.1 76.5 −3
22.2 71 −2.6 8.4
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which produces the distance matrix

D′ =





















0 41.7 58.9 162.3 112.6 116.8 113
41.7 0 97.4 160.9 132.4 122.5 96.1
58.9 97.4 0 154.3 79.8 109.8 132.7
162.3 160.9 154.3 0 85 136.4 89.8
112.6 132.4 79.8 85 0 105.6 108.8
116.8 122.5 109.8 136.4 105.6 0 93.2
113 96.1 132.7 89.8 108.8 93.2 0





















The sum of squared differences between the corresponding entries in the
distance matrices D′ and D0 amounts to 2.090166e-25.

Not surprisingly, a version of kernel-k-means, as described in this paper,
was also implemented and produced for the kernel matrix F ′ the very same
clustering. [2, 2, 2, 1, 1, 1, 1].

7 k-means under non-Euclidean kernels

In many cases, like Laplacians of graphs, we know in advance that they can
be deemed as kernels embedded into Euclidean space, so that there are no
obstacles to apply kernel-k-means clustering. However, this does not always
need to be the case. Let us discuss now the concerns for applying kernel-k-
means in such situations and about the validity of the obtained clusters.

Let w1, . . . , wm be non-negative weights of data points 1, . . . , m. Let C be
such a subset of {1, . . . , m} that

∑

i∈C wi 6= 0. Define µΦ
w(C) as a weighted

center of the datapoints of C as follows:

µ
Φ
w(C) =

1
∑

i∈C wi

∑

i∈C

wiΦ(i) (34)

It is easily seen that it is possible to compute the squared distance of any
data point to a weighted center of a set.
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‖Φ(i)− µ
Φ
w(C)‖2 =

(

Φ(i)− µ
Φ
w(C)

)T (

Φ(i)− µ
Φ
w(C)

)

= Φ(i)TΦ(i)− 2Φ(i)TµΦ
w(C) + (µΦ

w(C))TµΦ
w(C)

= Φ(i)TΦ(i)− 2
∑

h∈C wh

∑

h∈C

whΦ(i)
TΦ(h)+

+
1

(
∑

h∈C wh)2

∑

r∈C

∑

s∈C

wrwsΦ(r)
TΦ(s)

= kii −
2

∑

h∈C wh

∑

h∈C

whkhi +
1

(
∑

h∈C wh)2

∑

r∈Cj

m
∑

s∈Cj

wrwskrs

(35)
Let us now pay some attention to the consequence of the fact that one may

be tempted to apply the kernel-k-means algorithm under missing Euclidean
embedding.
The kernel-k-means algorithm consists in switching to a multidimensional

feature space F and it is clamed to search therein for prototypes µΦ
j mini-

mizing the error
m
∑

i=1

min
1≤j≤k

‖Φ(i)− µ
Φ
j ‖2

over all possible choices of the set of cluster centers µΦ
j , j = 1, . . . , k.

But this is actually not the entire truth. µΦ
j may only be equal to

µ
Φ
j =

1

mj

∑

i∈Cj

Φ(i) (36)

for some subset Cj of all the data points and no other vectors in the feature
space are taken into account. If the feature space is Euclidean, it is guar-
anteed that no other vector from the feature space shall ever be considered
as cluster center, because the clustering will not be optimal. It is not so in
case of non-Euclidean feature spaces. To demonstrate this, we will use an
example.
Consider the following non-Euclidean distance matrix

nED =

















0 10 20 20 40 40
10 0 40 40 20 40
20 40 0 40 40 20
20 40 40 0 20 10
40 20 40 20 0 40
40 40 20 10 40 0
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and the corresponding kernel matrix

nEF =

















266.7 316.7 191.7 66.7 −408.3 −433.3
316.7 466.7 −308.3 −433.3 291.7 −333.3
191.7 −308.3 516.7 −408.3 −283.3 291.7
66.7 −433.3 −408.3 266.7 191.7 316.7

−408.3 291.7 −283.3 191.7 516.7 −308.3
−433.3 −333.3 291.7 316.7 −308.3 466.7

















If we apply kernel-k-means clustering with k = 2, this implies a clustering [ 2,
2, 1, 2, 2, 1] with the total value of the cost function 1325 . Other clusterings
would not be better. Check e.g. that the clustering [1,1,1,2,2,2] produces the
cost function amounting to 1400 which is higher than what kernel-k-means
produces.
But consider now a different clustering, [1,1,1,2,2,2], where you choose

weighted cluster centers with weights [10,1,1,10,1,1], instead of the k-means
cluster centers. Then the cost function will amount to 1175 which is below
what kernel-k-means produces.
In this way we have proven that

Theorem 4 kernel-k-means does not optimize the cost function

J(µΦ
j ; j = 1, . . . , k) =

m
∑

i=1

min
1≤j≤k

‖Φ(i)− µ
Φ
j ‖2

for non-Euclidean kernel matrices.

We have already mentioned the Gower’s et al. [6] Theorem 7, stat-
ing that any dissimilarity matrix D may be turned to an Euclidean dis-
tance matrix, by adding constant σ to the squared distances as follows:
d′(z, y) =

√

d(z, y)2 + σ where σ is a constant such that σ ≥ −λm, λm being
the smallest eigenvalue of (I−11T /m)(−1

2
Dsq)(I−11T/m), Dsq is the matrix

of squared values of elements of D, m is the number of rows/columns in D.
Gower’s Theorem 7 is actually wrong. Let us continue the above example.

Gowerr’s constant for EF amounts to σ= 757.205 . Upon modifying the
distance matrix we get the new kernel matrix

impF =

















582.2 253.6 128.6 3.6 −471.4 −496.4
253.6 782.2 −371.4 −496.4 228.6 −396.4
128.6 −371.4 832.2 −471.4 −346.4 228.6
3.6 −496.4 −471.4 582.2 128.6 253.6

−471.4 228.6 −346.4 128.6 832.2 −371.4
−496.4 −396.4 228.6 253.6 −371.4 782.2
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which is again non Euclidean, because its lowest eigenvalue is equal -378.603
Let us now propose a correction of Gower’s ”euclidesation” theorem:

Theorem 5 Any dissimilarity matrix D may be turned to an Euclidean dis-
tance matrix, see their Theorem 7, by adding an appropriate constant (to non-
diagonal elements) , e.g. d′(z, y) =

√

d(z, y)2 + 2σ where σ is a constant such
that σ ≥ −λm, λm being the smallest eigenvalue of (I− 11T/m)(−1

2
Dsq)(I−

11T/m), Dsq is the matrix of squared values of elements of D, m is the
number of rows/columns in D.

Proof 1 The equation (24) allows us to conclude that given

F = −1

2

(

I− 11T

m

)

Dsq

(

I− 11T

m

)

for a dissimilarity matrix D, the following holds:

F = (I− 11T

m
)F (I− 11T

m
) = F (I− 11T

m
) = (I− 11T

m
)F

Let v be an eigenvector of F for a non-zero eigenvalue λ. Therefore

λ(I− 11T

m
)v = (I− 11T

m
)Fv = Fv = F (I− 11T

m
)v

Assuming that v′ = (I− 11T

m
)v, we get:

λv′ = Fv′

which means that v′ is also an eigenvector of F for the same eigenvalue.
Notably, The sum of components of v′ is equal zero.
Consider now the following expression for some number σ.

F ′ =

(

I− 11T

m

)(

−1

2
Dsq − σ

(

11T − I
)

)(

I− 11T

m

)

=

(

I− 11T

m

)(

−1

2
Dsq

)(

I− 11T

m

)

−
(

I− 11T

m

)

σ
(

11T − I
)

(

I− 11T

m

)

=

(

I− 11T

m

)(

−1

2
Dsq

)(

I− 11T

m

)

+ σ

(

I− 11T

m

)

Now consider an eigenvector v′ of F ′ for a non-zero eigenvalue λ′, such that
the sum of its components equals zero. For each λ such a vector always exists.
We see immediately that

F ′v′ =

(

I− 11T

m

)(

−1

2
Dsq

)(

I− 11T

m

)

v′ + σv′
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λ′v′ = Fv′ + σv′

(λ′ − σ)v′ = Fv′

that is that (λ′ − σ) is an eigenvalue of F with eigenvector v′.

This means that by subtracting σ from non-diagonal elements of −1
2
Dsq

in the computation of F we can increase its eigenvalues of eigenvectors with
zero sum by σ. But subtracting σ from non-diagonal elements of −1

2
Dsq

means adding σ to non-diagonal elements of 1
2
Dsq, or adding 2σ to non-

diagonal elements of Dsq, or just replacing non-diagonal elements dij of D

with
√

d2ij + σ. If we add at least the negation of the lowest eigenvalue of non-

Euclidean F to all its eigenvalues, then of course it turns to an Euclidean
one, given that all eigenvectors with non-zero eigenvalues have zero sums of
components.

How can we now tell if all such eigenvectors have zero sums? In case that
all eigenvalues are different, this is simple. As shown, each eigenvalue has
the zero sum eigenvector, and this is the only one up to scaling factor.

The details of handling special cases (of identical eigenvalues) follow now.
Consider the set of all eigenvectors related to a multiple eigenvalue. The
whole set can be represented as a linear combination of some number of or-
thogonal vectors from this set with the number equal to the multiplicity of
the eigenvalue. Let v be one of these orthogonal vectors. Then any linear
combination of all the other orthogonal vectors is orthogonal to v. Let v”
be an example from this combination. Then clearly v”Tv = 0. But also
v”T (Fv) = λv”Tv = 0. Hence v”T (F (I − 11T

m
)v) = v”Tλv′ = 0. So

v′ = (I − 11T

m
)v is orthogonal to v”. As the latter represents any vector

orthogonal to v of the subspace co-spanned by v, so v′ must be identical to
v up to scaling factor. So the subspace of eigenvectors can be spanned by a
set of orthogonal vectors with component sums equal zero. Therefore all the
eigenvectors of F have this property and hence adding the respective constant
adds to all the eigenvalues of the matrix F . This completes the proof.

Let us illustrate the Theorem refthKlvopotekEuclidesation by continuing
the previous example. The euclidesation of the kernel nEF , according to
Theorem 5, will lead to the following kernel matrix:

Upon modifying the distance matrix according to our Theorem we get
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the new kernel matrix

EF =

















897.7 190.5 65.5 −59.5 −534.5 −559.5
190.5 1097.7 −434.5 −559.5 165.5 −459.5
65.5 −434.5 1147.7 −534.5 −409.5 165.5
−59.5 −559.5 −534.5 897.7 65.5 190.5
−534.5 165.5 −409.5 65.5 1147.7 −434.5
−559.5 −459.5 165.5 190.5 −434.5 1097.7

















which is now Euclidean, because its lowest eigenvalue is equal 0 The kernel
matrix EF implies a clustering [ 1, 2, 1, 1, 2, 1] with the total value of the cost
function 4353.821 . Other clusterings would not do better. Check e.g. that
the clustering [1,1,1,2,2,2] produces the cost function amounting to 4428.821
which is higher than what kernel-k-means produces.
Consider now a different clustering, [1,1,1,2,2,2], where you choose weighted

cluster centers with weights [10,1,1,10,1,1], instead of the k-means cluster cen-
ters. Then the cost function will amount to 5907.533 which is again higher
than what kernel-k-means produces. In Euclidean space, kernel-k-means
produces appropriate results.
Note that the clustering obtained is identical with the clustering delivered

by kernel-k-means from the original kernel matrix nEF .
Let us investigate this phenomenon more generally.

Theorem 6 If we pursue the kernel-k-means clustering when seeking the
optimum among cluster center sets being a subset of the set of µΦ

j that may
only be equal to

µ
Φ
j =

1

mj

∑

i∈Cj

Φ(i) (37)

for some subset Cj of all the data points and no other vectors in the feature
space are taken into account, then after adding a constant σ to the distance
matrix as follows: d′(z, y) =

√

d(z, y)2 + 2σ then the optimal clustering will
remain the same.

Proof 2 If we add in a cluster Cj of cardinality mj for an element i to all
its distances σ, then its squared distance to the cluster center will increase by
σ

mj−1

mj
because d(i, i) = 0 is unchanged . So in all the cluster cost function

will change by σ
mj−1

mj
mj = σ · (mj − 1). So the overall cost function of

all k clusters will increase by σ · (m − k). That is it is independent of the
actual cost function. Hence the optimum clustering of k-means, achievable
by kernel-k-means, will remain unchanged after this addition.
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Under these circumstances

Theorem 7 For kernel-k-means, adding a constant to squared dissimilarity
measures of non-identical elements is a clustering preserving and embeddabil-
ity preserving operation.

Note that the transformation mentioned above (1) increases all distances,
(2) the absolute increase in distances is the largest for the smallest distances,
and the smallest for the largest, (3) therefore no new clustering structures
occur under this transformation. We define in this way a new axiom/property
of k-means - in that we require that clustering algorithm yields same result
under the mentioned distance change/transformation.
The idea behind is that in the permissible domain for k-means (Euclidean)

the optimum is unchanged if we add constant to squared distances between
different elements. By means of conceptual extension we can carry on this
assumption backwards into non-Euclidean distances.
Then we need to define under what regime we compute the permissible

optimum of k-means, because in the whole space itself it is no true. Only
if we limit the permissible space in a reasonable way, we can still assume
that we are computing k-means optimum. So if we agree that the kernel
function Φ() for kernel k-means is deemed to transmit the data points into
the Euclidean space under the mentioned invariance transformation, then it
is permissible to apply kernel-k-means without checking for embeddability.

8 Concluding remarks

In this paper we corrected the proof of the Theorem 2 from the Gower’s paper
[4, page 5]. This correction was needed in order to establish the existence
of the kernel function used commonly in the kernel trick e.g. for k-means
clustering algorithm, on the grounds of distance matrix.
Let us underline here that we did not impose any apriorical restrictions

on the form of Φ() function itself. It may be a linear or non-linear mapping
from the sample space to the feature space. But what we insist on is that the
feature space has to be Euclidean. This is the requirement for applicability
of (kernel) k-means clustering algorithm. If the feature space is not metric,
the results of (kernel) k-means clustering are questionable.
But this is not enough. The same kernel matrix may be related to in-

finitely many Φ() functions.
The question that was left open by Gower was: do there exist special cases

where two different Φ() functions, complying with a given kernel matrix,
generate different distance matrices in the feature space, maybe in some
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special, ”sublimated” cases? The answer given to this open question in this
paper is definitely NO. We closed all the conceivable gaps in this respect. So
usage of (linear and non-linear) kernel matrices that are semipositive definite,
is safe in this respect.
Furthermore we resolved the issue of applicability of kernel-k-means for

non-embeddable kernel matrices. If we accept the eigen-value-shift transfor-
mation as a legitimate kernel matrix transformation and the kernel-k-means
clustering in the kernel matrix obtained via such euclidesation as the valid
clustering for the original kernel matrix, then we can apply kernel-k-means
also in the non-Euclidean space.

Software

Please feel free to experiment with an R package (source code) implementing
kernel k-means functionality install.packages("https://home.ipipan.waw.pl/m.klopotek/ipi_archiv/kernelKmeansAndPlusPlusDemo_1.0.tar.gz",repos=NULL,type="source")
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