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Abstract. In the last few years, the emerging network architecture paradigm of 

Software-Defined Networking (SDN), has become one of the most important 

technology to manage large scale networks such as Vehicular Ad-hoc Networks 

(VANETs). Recently, several works have shown interest in the use of SDN 

paradigm in VANETs. SDN brings flexibility, scalability and management 

facility to current VANETs. However, almost all of proposed Software-Defined 

VANET (SDVN) architectures are infrastructure-based. This paper will focus 

on how to enable SDN in infrastructure-less vehicular environments. For this 

aim, we propose a novel distributed SDN-based architecture for uncovered 

infrastructure-less vehicular scenarios. It is a scalable cluster-based architecture 

with distributed mobile controllers and a reliable fallback recovery mechanism 

based on self-organized clustering and failure anticipation.  
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1   Introduction 

Actually, people spend more and more time in transportation, whether in personnel 

vehicles or public transport. Thus, vehicles have become an important part of peoples 

travel experience. In this context, Intelligent Transportation System (ITS) and more 

specially Vehicular Ad-hoc Networks (VANETs) have attracted in the last past 

decade lots of interests for the purpose of improving travelling safety, comfort and 

efficiency via enabling communication between vehicles in an infrastructure-less 

vehicle-to-vehicle (V2V) mode and / or between vehicles and infrastructure in an 

infrastructure-based vehicle-to-infrastructure (V2I) mode. 

Nowadays, VANET architectures suffer from scalability issues since it is very 

difficult to deploy services in a large-scale, dense and dynamic topology [1]. These 

architectures are rigid, difficult to manage and suffer from a lack of flexibility and 

adaptability in control. Hence, it is hard to choose the adequate solution to use, 

according to the actual context, because of the diversity of deployment environments 

and the large panoply of solutions that are generally adapted only in a certain context 



and particular situation. These constraints limit system functionality, slow down 

creativity and often lead to under-exploitation of network resources. Therefore, 

current VANET architectures cannot efficiently deal with these increasing challenges 

and the need of a new flexible and scalable VANET architecture become an absolute 

requirement. 

In the last few years, the emerging network architecture paradigm of Software-

Defined Networking (SDN) has become one of the most important technologies to 

manage large scale networks. SDN has been proposed as an attractive and promising 

paradigm to address the previous VANET architecture challenges. SDN is mainly 

based on a physical separation between control plane (network management features) 

and data plane (data forwarding features) and a logically centralized control and 

intelligence in a software controller. Other remaining equipment becomes simple data 

transmitter \ receiver with minimal intelligence. OpenFlow [2] is the most used 

standard for communication between the control plane and data plane. OpenFlow 

defines two types of network equipment, the controller that centralizes the network 

intelligence and vSwitchs that ensure only data forwarding. The controller handles the 

vSwitchs via installing flow entries in flow tables. 

Given the growing popularity of SDN, researchers are increasingly exploring the 

possibility of integrating SDN in VANETs. Recently, some works have shown 

interest in the use of the SDN paradigm in VANETs and propose Software-Defined 

Vehicular Network (SDVN) architectures [1], [3–15]. These works have shown that 

SDN can be used to bring flexibility, scalability and programmability to VANETs, 

exploit the available network resources more efficiently and introduce new services in 

current vehicular networks. However, almost all of the proposed SDVN architectures 

are infrastructure-based and generally propose to host the controller somewhere on 

the fixed infrastructure of vehicular networks. Unfortunately, the total coverage of 

fixed infrastructure is not yet reached in current VANET systems. Therefore, 

uncovered infrastructure-less VANET zones already exist and they must be taken into 

consideration in the design of future SDVN architectures. 

In this paper, we propose a novel distributed cluster-based architecture to enable 

SDN in infrastructure-less VANET environments with mobile controllers and an 

efficient fallback recovery mechanism based on self-organized clustering and failure 

anticipation. Integrating SDN in such uncovered areas is much more difficult given 

the dynamic sparse topology, the absence of the infrastructure support, and the 

vehicles’ autonomous nature. To the best of our knowledge, this is the first work that 

integrates SDN in infrastructure-less VANET environments. 

Our key contributions can be summarized as follows: 

 We propose a new distributed scalable SDN-based architecture for 

infrastructure-less VANET, 

 We present a novel kind of mobile multi-controllers, installed close to 

mobile vehicles to ensure a reasonable end-to-end delay and better support 

delay-sensitive-services, 

 We furnish an efficient fallback recovery mechanism based on self-organized 

clustering and controller failure anticipation. 

The rest of this paper is organized as follows. First, we provide an overview of 

existing related SDVN architectures in Section 2. In Section 3, the proposed 



distributed SDN-based infrastructure-less VANET architecture is presented and the 

fallback recovery mechanism is described. Section 4 brings two possible use-cases for 

the proposed architecture. Based on experimental evaluations, we demonstrate in 

Section 5 the reliability and the efficiency of our proposition. Finally, the conclusion 

is drawn in Section 6. 

2   Related Work 

Since the first work proposed in 2014 by Ku et al. [1] that explores how to integrate 

SDN in VANET scenarios, researchers investigated more and more how to benefit 

from SDN advantages to improve the performance of current VANET architectures. 

Recently, some SDVN works [1], [3–10] propose SDN-based architecture with the 

use of one controller generally hosted somewhere on the fixed infrastructure to handle 

the entire network. However, this assumption seems clearly impracticable in such 

dynamic, dense and large networks. In fact, this generates a high end-to-end delay 

especially when the distance between vehicles and controller is too large, which 

makes this solution not suitable for most delay-sensitive services. There is also a high 

risk of controller bottleneck and control overhead in case of a huge number of vehicle 

requests. Given these limitations, authors in [11–15] propose to use multiple 

controllers instead of a single controller and each controller handles a part of the 

network. The use of multiple distributed controllers can achieve scalability and 

reliability even in dense and heavy data loads. Much better, some of the previous 

works [5], [12–14] propose to install controllers (all or some) in the edge of the 

network, the closest as possible to vehicles to guarantee a reasonable end-to-end delay 

and satisfy the delay-sensitive application requirements. Furthermore, the fully 

centralized control of SDN presents a serious risk of reliability and security if the 

controller is unreachable especially if the system control is based on one unique 

controller, even worse with the intermittent and unstable nature of wireless 

connections. For this aim, works in [1], [3], [9], [12], [14] propose to use a fallback 

recovery mechanism as a backup solution if the controller is inaccessible. 

Almost all proposed SDVN architectures are infrastructure-based and then host 

their controllers somewhere on the fixed infrastructure and no alternative was 

proposed for infrastructure-less zones, when the fixed infrastructure is totally absent 

or the coverage is not available. If we admit that the total and full coverage of fixed 

infrastructure is not yet reached in VANET system even with the integration of new 

emerging heterogeneous technologies as cellular technologies. For example inside 

tunnels when the coverage is not reachable and some rural areas where the fixed 

infrastructure is totally absent either because the deployment is very difficult, costly 

or not profitable. Thus, uncovered infrastructure-less VANET areas still exist and 

must be taken into consideration in the design of future SDVN architectures. We 

propose in the next section a distributed cluster-based SDN architecture for 

infrastructure-less VANET scenarios with multiple mobile controllers. 



3   Proposed Architecture 

In this section, we present our novel distributed multi-hop SDN-based architecture for 

infrastructure-less VANETs that uses only V2V communications via IEEE 802.11p, 

called distributed Software-Defined infrastructure-less Vehicular Network (dSDiVN). 

dSDiVN uses the emerging concept of SDN to introduce flexibility, facility and 

scalability to the network. However, as it is well known, SDN relies on a centralized 

control for network management, which seems impracticable in large scale networks 

such as VANETs. Thus, dSDiVN proposes to combine SDN with clustering technique 

to partition the network and assign for each partition a dedicated controller. Hence, 

dSDiVN is based on a logically centralized, but physically distributed multi-hop 

control plane, which can benefit from the scalability and reliability of the distributed 

architecture while preserving the simplicity of the centralized management. dSDiVN 

uses multiple mobile controllers that interact each other and work together to get a 

global view of the network state. Partitioning the network makes it more stable, 

smaller and less dynamic for a vehicle, and can reduce overhead and latency. 

The dSDiVN architecture is detailed below. 

3.1    dSDiVN System Architecture 

dSDiVN is based on a combination of two emerging network paradigms: SDN and 

clustering. Indeed, the control logic in clustering technique when the cluster head 

centralizes the cluster intelligence and the cluster members have a minimal 

intelligence, is very similar to that used by SDN paradigm. In this context, dSDiVN 

involves to: (i) organizing and partitioning the network according to certain criteria in 

partitions (i.e., segments) using the clustering technique, (ii) grouping vehicles that 

are situated in the same geographic area (i.e., segment) and which have similar 

characteristics (position, velocity, direction, etc.) at the same virtual group (i.e., 

cluster), (iii) choosing a leader (i.e., cluster head) for each partition, (iv) deploying a 

local controller on each partition leader (i.e., cluster head), and (v) connecting the 

adjacent controllers to build a backhaul for network control and enforce global 

policies. By partitioning the network and using distributed controllers, dSDiVN can 

better deal with scalability, handles easily increasing load, introduces efficiently 

specific new services to a particular cluster and effectively offers more reliability. 

For cluster's management and maintenance, dSDiVN adopts and adapts the 

clustering algorithm in [16] based on CGP [17], which is a distributed multi-hop 

geographic clustering algorithm. As shown in Fig.1, the uncovered road is divided 

into equal size segments of 150 m each (half of IEEE 802.11p coverage area) to 

ensure that adjacent controllers on cluster heads always be reachable to each other. 

Each segment represents a virtual cluster (called Software-Defined domain, SD-

domain), that regroups all mobile vehicles (called Software-Defined mobile vehicle, 

SD-vehicle) which roll in the same direction and are situated in the same SD-domain. 

The elected cluster head (called SD-domain head, SD-DH) will be the SD-vehicle that 

has the longest time to life in the SD-domain (i.e., the longest SD-domain travel time) 

to minimize the cluster maintenance overhead. Upon elected, each SD-vehicle domain 



head enables its local mobile controller and starts managing a backup candidate list in 

order to anticipate its potential failure and prepare the recovery controller. The 

identifier of the best candidate (i.e., recovery controller) is sent periodically to all 

cluster members (called SD-domain members, SD-DM) via flow rules and stored in 

the flow table. For that, we propose to add a novel field to the flow table entry for 

storing the identifier. A replication of local mobile controller knowledge base is 

compressed and backed-up periodically on the recovery controller to allow fast 

service resume if the controller failed. Adjacent local mobile controllers are 

connected with each other via IEEE 802.11p to build a control backhaul for dSDiVN, 

see Fig. 1. 

Each local mobile controller maintains a local view of the network state of its SD-

domain. A global view of the network state can be obtained by exchanging the local 

view of adjacent controllers. The local mobile controller is considered in control as a 

master of its SD-domain members where it collects data from the multiple members 

(slaves), and equivalent to its mobile neighbor controllers where all the controllers 

collaborate to get a global view of the entire network. 

 

 
Fig. 1. dSDiVN System architecture. 

3.2    dSDiVN SDN Architecture 

dSDiVN is based on the three layers of SDN architecture, as illustrated in Fig. 2: 

1) Data plane layer: It consists of all SD-vehicle SD-domain members that only 

perform collection and forwarding of data information, 

2) Control plane layer: It consists of all local mobile controllers deployed on the 

SD-vehicle SD-domain heads that centralize the network control, 

3) Service and application layer: It contains all the services and applications 

such as routing, security and QoS services. To minimize the cost of installing 

new services, the service is initially installed in one controller and after that 

communicated hop by hop to the adjacent controllers, 

4) Communication interfaces: OpenFlow is an IP-oriented protocol and there is 

not a no-IP version compatible with safety VANET application features. Also, 



there are no standardized SDN interfaces for directly integrating SDN into 

VANETs. Therefore, we propose to use: (i) a customized version of OpenFlow 

protocol adapted to V2V communications as southbound API to communicate 

between the control plane and the data plane and, (ii) a customized interface as 

northbound API to communicate between the control plane and applications 

[9]. 

 

 
Fig. 2. dSDiVN 3-tier SDN architecture. 

In dSDiVN, all SDN components are implemented on the unique hardware 

component, i.e., the wireless mobile vehicle that the internal architecture is detailed 

below. 

3.3    Software-Defined Wireless Mobile Vehicle 

A software-defined wireless mobile vehicle (SD-vehicle) is a traditional vehicle with 

an additional SDN module which consists of hardware and software resources that 

allow SDN to function on the mobile vehicle. From the hardware side, it consists of a 

computing and storage unit that offers the SDN platform to install different services 

(to limit hardware modification, it is preferable to reuse, if possible, the available 

resources of the OBUs - on board units). From the software side, it consists of basic 

SDN components: SDN operating system, virtual machines on the hypervisor, 

network services, etc. Moreover, dSDiVN defines two main software SDN 

components, as illustrated in Fig. 3: 

1) The local mobile controller (simplified mobile controller): It is initially in 

standby mode and it is enabled when the hosting SD-vehicle is selected as an 

SD-domain head. It is known as mobile because it is implemented on a 

mobile vehicle and can migrate from an SD-domain head to another, when it 

hosting SD-vehicle leave an SD-domain. The mobile controller centralizes 



the intelligence and controls all the vehicles of its SD-domain. To the best of 

our knowledge, we are the first that propose a mobile controller in an SDVN 

architecture. 

2) The monitoring and collection agent: it ensures data forwarding and 

monitoring of SD-vehicle parameters (e.g., position, velocity, direction, etc.). 

This monitored information is periodically communicated to the mobile 

controller. The local monitoring and collect agent receives and executes 

control directives from its mobile controller via flow rule entries installed in 

its flow table. 

The architecture of the SD-vehicle is implemented at the facilities layer of the 

standard ISO CALM (Communication Architecture for Land Mobile), which assumes 

the existence of multiple wireless interfaces in a vehicle. In dSDiVN, each SD-vehicle 

has several communication interfaces: (i) two broadband wireless interfaces DSRC 

(i.e., IEEE 802.11p), to avoid interferences and separate control traffic from data 

traffic: one for the V2V control plane communication between SD-domain members 

and the mobile controller and the other for the data plane V2V communication 

between vehicle SD-domain members and, (ii) a wideband wireless cellular interface 

(LTE/4G), initially disabled and enabled when the coverage of fixed infrastructure is 

available, as illustrated in Fig. 3. 

 
Fig. 3. Internal architecture of software-defined mobile vehicle. 

The fallback recovery mechanism of dSDiVN is presented below. 

3.4     Fallback Recovery Mechanism 

In a fully centralized architecture such as the one that adopts SDN, all system 

reliability relies on the central controller. Therefore, it is necessary to envisage a back 



recovery mechanism if this central controller is unreachable [1]. In [1], [14], authors 

propose to switch to traditional VANET routing when the connection with the 

controller is lost. This may increase the complexity of software and hardware design 

[12]. In [9], authors use trajectory prediction to pre-install entries in the flow table that 

can be used for a short period of time when the controller fails but this initiative does 

not envisage any solution if the controller failure lasts after the end of the entry. In 

[12], two types of hierarchical controllers are used, and if the high-level controller 

fails, the low-level controllers take over to ensure service continuity but no solution is 

envisaged if one of the low-level controllers failed. 

Our architecture is based on a cluster-based distributed multi-hop control system. 

As fallback recovery mechanism, we simply propose to profit from the self-organized 

clustering technique, permanently anticipating the possible failure of each controller 

and prepare in advance the recovery scenario. Thus, if a mobile controller fails, the 

pre-prepared recovery controller (see section 3.A) will take over to ensure the service 

continuity. When the SD-vehicles are aware of the controller failure, they will start to 

send their requests directly to the recovery controller using the beforehand pre-

installed identifier as prevention recovery solution, see Section 3.A. The recovery 

controller when enabled, use the knowledge base replication to immediately start to 

respond the SD-vehicle requests. 

Some possible use-cases of dSDiVN are presented in the next section. 

4.   dSDiVN Use Cases 

In this section we present two possible use-cases of our dSDiVN architecture: 

 SDN-assisted efficient data collection and dissemination: the data collected 

at each SD-vehicle level are not useful individually. However, the 

aggregation of all data of a geographical area allows having a vision on the 

network state. By separating the data plane from the control plane, mobile 

controllers can centralize the collection of data from various sensors installed 

on SD-vehicles, each in its SD-domain. Unlike traditional networks, mobile 

controllers can handle the collected data in a more informed way to extract 

useful information and improve the system decision. Also, by collaborating 

with each other, mobile controllers can build a global view of current 

network state and can choose the most optimal path to disseminate/route this 

extracted information. 

 SDN-assisted VANET safety applications: dSDiVN uses only V2V based 

IEEE 802.11p communications, which are more suitable for safety 

applications. Moreover, mobile controllers based on the information 

observed of current traffic conditions can collaborate each other to: (i) ensure 

better persistence and availability of emergency alert messages by accurately 

defining the danger zone extent (size) and the duration of the emergency 

alert, (ii) choose the fastest path to disseminate the alert message, and (iii) 

treat the emergency traffic with more priority in reservation of specific 

frequencies and channels over the remaining normal traffic. 



5.   Numerical Results 

In this section, we describe our simulation configuration, metrics and results. The 

simulation model is built based on the system architecture described in Section 3.A, 

and it is implemented using the network simulator NS3 [18] and the traffic simulator 

SUMO [19]. The aim of the simulations is to evaluate the reliability of the fallback 

recovery mechanism and the effect of controller distance on flow rule installation 

time. 

For simulation, we consider an infrastructure-less VANET scenario where the 

network is deployed in 1000 x 1000 m area (a cell of Manhattan Grid). The road is 

divided into equal segments of 150 m each, see Fig. 1. Node density is 200 nodes. 

Each vehicle has IEEE 802.11p based interface with a transmission range up to 300 m 

and a velocity between 10 and 30 m/s. The simulation time is 120 seconds and the 

packet generation rate is 5 packets/s. The performance metrics we used are: 

 Flow rule installation time: it represents the elapsed time since an SD-

vehicle requests the controller for a new flow rule and the time when the 

flow rule is installed in the SD-vehicle flow table, 

 Packet delivery ratio: is the ratio of packets successfully received to the total 

sent. 

5.1      Controller Failure 

In this evaluation, we study how dSDiVN with the proposed fallback recovery 

mechanism (multi-controllers cluster-based with failure anticipation and recovery 

controller pre-preparation) reacts to the controller failure. We focus on one cluster and 

we simulate a controller failure of 5 seconds at the 61st second. Afterwards, we 

compare the dSDiVN fallback recovery mechanism (we simplified dSDiVN) with that 

of self-organized cluster-based of dSDiVN without fallback recovery (we simplified 

self-organized) and with works [3–8], [10], that use one controller without fallback 

recovery mechanism (we simplified no-back-recovery) according to the packet 

delivery ratio. The comparison results are illustrated in Fig. 4. 

 
Fig. 4. Controller failure. 



As illustrated in Fig. 4, we can see that just when the controller fails, the packet 

delivery ratio in no-fall-recovery starts to decrease dramatically and it still drops until 

the controller resumes the service. For the case of self-organized, the delivery radio 

drops for a short time, which represents the time until the reelection of a new SD-

domain head and the synchronization with the newly elected controller; after that, the 

system resumes a good delivery ratio. This behavior can be justified by the fact that in 

the SDVN solution, the reliability of the system resides on one central controller and 

as soon as the controller fails, it stops installing flow rules in flow tables; therefore, 

the service is interrupted. Much more resistant, the packet delivery ratio in dSDiVN 

undergoes a very slight effect, thanks to the efficient preventive fallback recovery 

mechanism based on distributed multi-controllers, self-organized clustering and 

failure anticipation. When the controller fails, SD-vehicles can directly synchronize 

and direct their requests to the pre-selected recovery controller using the pre-installed 

identifier, see Section 3.A. 

This evaluation demonstrates the reliability and the efficiency of our fallback 

recovery mechanism and confirms the result in [1]: the use of a fallback recovery 

mechanism is primordial when operating the centralized SDN-based control in 

VANET especially when the system control lies on one central controller, more worst 

with the intermittent wireless link nature. 

5.2       Effect of Controller Distance on Flow Rule Installation Time 

In this evaluation, we aim to study the effect of controller distance, which 

represents the physical distance between the controller and SD-vehicles, on the flow 

rule installation time. Thus, we use a simple scenario when an SD-vehicle sends a 

request to its controller and we have varied the distance between the SD-vehicle and 

the controller for different request packet sizes. 

 
Fig. 5. Controller distance vs. flow rule installation time. 

Fig. 5 shows that flow rule installation time increases with the increase of the 

distance between the controller and the SD-vehicle and even with the increase of 



packet size. This evaluation is performed in a cell of Manhattan Grid with 1000 m 

using LTE communication. However, the result can be generalized for large scale 

scenarios in infrastructure-based areas. In this case, the result can be too worst and the 

system cannot ensure a packet delivery ratio that satisfies the requirements of delay-

sensitive services especially when the distance reaches hundreds of kilometers. 

From this evaluation, we can conclude that the controller should be installed the 

closet as possible to vehicles to guarantee the suitable flow rule installation time of 

delay-sensitive services and react rapidly to real-time events. 

In our architecture, the controllers are installed on the SD-domain head vehicles 

(the farthest distance of a controller is 150 m) and communicate with forwarding 

vehicles via V2V and IEEE 802.11p (more adequate to satisfy safety service 

requirements), which allows dSDiVN to ensure a good and adequate flow rule 

installation time and a better support of delay-sensitive services and real-time events. 

6.   Conclusion 

In this paper, we propose dSDiVN, distributed Software-Defined infrastructure-less 

Vehicular Network, a novel distributed multi-hop SDN-based clustered architecture 

for infrastructure-less vehicular networks with mobile multi-controllers and a reliable 

fallback recovery mechanism. Our dSDiVN bridges the gap of no SDN-based 

architecture in infrastructure-less VANET zones. Numerical results demonstrate that 

the reliability of our fallback recovery mechanism and the negative effect that 

represents the far distance of controller on the flow rule installation time which is the 

main requirement of the VANET safety applications. 

The sparse network topology that results in partitioning of the network rests an 

open challenge in front of integrating SDN in infrastructure-less VANET areas. As 

short-term perspective of this work, we plan to extend our architecture to deal with 

the network partitioning problem by introducing drones to connect isolated mobile 

controllers, as we plan to do more advanced experimentations to proof the feasibility 

and the efficiency of the proposed architecture. 
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