
dSDiVN: a distributed Software-Defined Networking

architecture for Infrastructure-less Vehicular

Networks

Ahmed Alioua1, Sidi-Mohammed Senouci2, Samira Moussaoui1

1 Computer Science Department, USTHB University,

Algiers, Algeria

{aalioua, smoussaoui}@usthb.dz
2 DRIVE Labs, University of Burgundy,

Nevers, France

Sidi-Mohammed.Senouci@u-bourgogne.fr

Abstract. In the last few years, the emerging network architecture paradigm of

Software-Defined Networking (SDN), has become one of the most important

technology to manage large scale networks such as Vehicular Ad-hoc Networks

(VANETs). Recently, several works have shown interest in the use of SDN

paradigm in VANETs. SDN brings flexibility, scalability and management

facility to current VANETs. However, almost all of proposed Software-Defined

VANET (SDVN) architectures are infrastructure-based. This paper will focus

on how to enable SDN in infrastructure-less vehicular environments. For this

aim, we propose a novel distributed SDN-based architecture for uncovered

infrastructure-less vehicular scenarios. It is a scalable cluster-based architecture

with distributed mobile controllers and a reliable fallback recovery mechanism

based on self-organized clustering and failure anticipation.

Keywords: Vehicular Ad-hoc Networks, Infrastructure-less Zones, Software-

Defined Networking, Distributed Control, Mobile Controllers, Clustering

1 Introduction

Actually, people spend more and more time in transportation, whether in personnel

vehicles or public transport. Thus, vehicles have become an important part of peoples

travel experience. In this context, Intelligent Transportation System (ITS) and more

specially Vehicular Ad-hoc Networks (VANETs) have attracted in the last past

decade lots of interests for the purpose of improving travelling safety, comfort and

efficiency via enabling communication between vehicles in an infrastructure-less

vehicle-to-vehicle (V2V) mode and / or between vehicles and infrastructure in an

infrastructure-based vehicle-to-infrastructure (V2I) mode.

Nowadays, VANET architectures suffer from scalability issues since it is very

difficult to deploy services in a large-scale, dense and dynamic topology [1]. These

architectures are rigid, difficult to manage and suffer from a lack of flexibility and

adaptability in control. Hence, it is hard to choose the adequate solution to use,

according to the actual context, because of the diversity of deployment environments

and the large panoply of solutions that are generally adapted only in a certain context

and particular situation. These constraints limit system functionality, slow down

creativity and often lead to under-exploitation of network resources. Therefore,

current VANET architectures cannot efficiently deal with these increasing challenges

and the need of a new flexible and scalable VANET architecture become an absolute

requirement.

In the last few years, the emerging network architecture paradigm of Software-

Defined Networking (SDN) has become one of the most important technologies to

manage large scale networks. SDN has been proposed as an attractive and promising

paradigm to address the previous VANET architecture challenges. SDN is mainly

based on a physical separation between control plane (network management features)

and data plane (data forwarding features) and a logically centralized control and

intelligence in a software controller. Other remaining equipment becomes simple data

transmitter \ receiver with minimal intelligence. OpenFlow [2] is the most used

standard for communication between the control plane and data plane. OpenFlow

defines two types of network equipment, the controller that centralizes the network

intelligence and vSwitchs that ensure only data forwarding. The controller handles the

vSwitchs via installing flow entries in flow tables.

Given the growing popularity of SDN, researchers are increasingly exploring the

possibility of integrating SDN in VANETs. Recently, some works have shown

interest in the use of the SDN paradigm in VANETs and propose Software-Defined

Vehicular Network (SDVN) architectures [1], [3–15]. These works have shown that

SDN can be used to bring flexibility, scalability and programmability to VANETs,

exploit the available network resources more efficiently and introduce new services in

current vehicular networks. However, almost all of the proposed SDVN architectures

are infrastructure-based and generally propose to host the controller somewhere on

the fixed infrastructure of vehicular networks. Unfortunately, the total coverage of

fixed infrastructure is not yet reached in current VANET systems. Therefore,

uncovered infrastructure-less VANET zones already exist and they must be taken into

consideration in the design of future SDVN architectures.

In this paper, we propose a novel distributed cluster-based architecture to enable

SDN in infrastructure-less VANET environments with mobile controllers and an

efficient fallback recovery mechanism based on self-organized clustering and failure

anticipation. Integrating SDN in such uncovered areas is much more difficult given

the dynamic sparse topology, the absence of the infrastructure support, and the

vehicles’ autonomous nature. To the best of our knowledge, this is the first work that

integrates SDN in infrastructure-less VANET environments.

Our key contributions can be summarized as follows:

 We propose a new distributed scalable SDN-based architecture for

infrastructure-less VANET,

 We present a novel kind of mobile multi-controllers, installed close to

mobile vehicles to ensure a reasonable end-to-end delay and better support

delay-sensitive-services,

 We furnish an efficient fallback recovery mechanism based on self-organized

clustering and controller failure anticipation.

The rest of this paper is organized as follows. First, we provide an overview of

existing related SDVN architectures in Section 2. In Section 3, the proposed

distributed SDN-based infrastructure-less VANET architecture is presented and the

fallback recovery mechanism is described. Section 4 brings two possible use-cases for

the proposed architecture. Based on experimental evaluations, we demonstrate in

Section 5 the reliability and the efficiency of our proposition. Finally, the conclusion

is drawn in Section 6.

2 Related Work

Since the first work proposed in 2014 by Ku et al. [1] that explores how to integrate

SDN in VANET scenarios, researchers investigated more and more how to benefit

from SDN advantages to improve the performance of current VANET architectures.

Recently, some SDVN works [1], [3–10] propose SDN-based architecture with the

use of one controller generally hosted somewhere on the fixed infrastructure to handle

the entire network. However, this assumption seems clearly impracticable in such

dynamic, dense and large networks. In fact, this generates a high end-to-end delay

especially when the distance between vehicles and controller is too large, which

makes this solution not suitable for most delay-sensitive services. There is also a high

risk of controller bottleneck and control overhead in case of a huge number of vehicle

requests. Given these limitations, authors in [11–15] propose to use multiple

controllers instead of a single controller and each controller handles a part of the

network. The use of multiple distributed controllers can achieve scalability and

reliability even in dense and heavy data loads. Much better, some of the previous

works [5], [12–14] propose to install controllers (all or some) in the edge of the

network, the closest as possible to vehicles to guarantee a reasonable end-to-end delay

and satisfy the delay-sensitive application requirements. Furthermore, the fully

centralized control of SDN presents a serious risk of reliability and security if the

controller is unreachable especially if the system control is based on one unique

controller, even worse with the intermittent and unstable nature of wireless

connections. For this aim, works in [1], [3], [9], [12], [14] propose to use a fallback

recovery mechanism as a backup solution if the controller is inaccessible.

Almost all proposed SDVN architectures are infrastructure-based and then host

their controllers somewhere on the fixed infrastructure and no alternative was

proposed for infrastructure-less zones, when the fixed infrastructure is totally absent

or the coverage is not available. If we admit that the total and full coverage of fixed

infrastructure is not yet reached in VANET system even with the integration of new

emerging heterogeneous technologies as cellular technologies. For example inside

tunnels when the coverage is not reachable and some rural areas where the fixed

infrastructure is totally absent either because the deployment is very difficult, costly

or not profitable. Thus, uncovered infrastructure-less VANET areas still exist and

must be taken into consideration in the design of future SDVN architectures. We

propose in the next section a distributed cluster-based SDN architecture for

infrastructure-less VANET scenarios with multiple mobile controllers.

3 Proposed Architecture

In this section, we present our novel distributed multi-hop SDN-based architecture for

infrastructure-less VANETs that uses only V2V communications via IEEE 802.11p,

called distributed Software-Defined infrastructure-less Vehicular Network (dSDiVN).

dSDiVN uses the emerging concept of SDN to introduce flexibility, facility and

scalability to the network. However, as it is well known, SDN relies on a centralized

control for network management, which seems impracticable in large scale networks

such as VANETs. Thus, dSDiVN proposes to combine SDN with clustering technique

to partition the network and assign for each partition a dedicated controller. Hence,

dSDiVN is based on a logically centralized, but physically distributed multi-hop

control plane, which can benefit from the scalability and reliability of the distributed

architecture while preserving the simplicity of the centralized management. dSDiVN

uses multiple mobile controllers that interact each other and work together to get a

global view of the network state. Partitioning the network makes it more stable,

smaller and less dynamic for a vehicle, and can reduce overhead and latency.

The dSDiVN architecture is detailed below.

3.1 dSDiVN System Architecture

dSDiVN is based on a combination of two emerging network paradigms: SDN and

clustering. Indeed, the control logic in clustering technique when the cluster head

centralizes the cluster intelligence and the cluster members have a minimal

intelligence, is very similar to that used by SDN paradigm. In this context, dSDiVN

involves to: (i) organizing and partitioning the network according to certain criteria in

partitions (i.e., segments) using the clustering technique, (ii) grouping vehicles that

are situated in the same geographic area (i.e., segment) and which have similar

characteristics (position, velocity, direction, etc.) at the same virtual group (i.e.,

cluster), (iii) choosing a leader (i.e., cluster head) for each partition, (iv) deploying a

local controller on each partition leader (i.e., cluster head), and (v) connecting the

adjacent controllers to build a backhaul for network control and enforce global

policies. By partitioning the network and using distributed controllers, dSDiVN can

better deal with scalability, handles easily increasing load, introduces efficiently

specific new services to a particular cluster and effectively offers more reliability.

For cluster's management and maintenance, dSDiVN adopts and adapts the

clustering algorithm in [16] based on CGP [17], which is a distributed multi-hop

geographic clustering algorithm. As shown in Fig.1, the uncovered road is divided

into equal size segments of 150 m each (half of IEEE 802.11p coverage area) to

ensure that adjacent controllers on cluster heads always be reachable to each other.

Each segment represents a virtual cluster (called Software-Defined domain, SD-

domain), that regroups all mobile vehicles (called Software-Defined mobile vehicle,

SD-vehicle) which roll in the same direction and are situated in the same SD-domain.

The elected cluster head (called SD-domain head, SD-DH) will be the SD-vehicle that

has the longest time to life in the SD-domain (i.e., the longest SD-domain travel time)

to minimize the cluster maintenance overhead. Upon elected, each SD-vehicle domain

head enables its local mobile controller and starts managing a backup candidate list in

order to anticipate its potential failure and prepare the recovery controller. The

identifier of the best candidate (i.e., recovery controller) is sent periodically to all

cluster members (called SD-domain members, SD-DM) via flow rules and stored in

the flow table. For that, we propose to add a novel field to the flow table entry for

storing the identifier. A replication of local mobile controller knowledge base is

compressed and backed-up periodically on the recovery controller to allow fast

service resume if the controller failed. Adjacent local mobile controllers are

connected with each other via IEEE 802.11p to build a control backhaul for dSDiVN,

see Fig. 1.

Each local mobile controller maintains a local view of the network state of its SD-

domain. A global view of the network state can be obtained by exchanging the local

view of adjacent controllers. The local mobile controller is considered in control as a

master of its SD-domain members where it collects data from the multiple members

(slaves), and equivalent to its mobile neighbor controllers where all the controllers

collaborate to get a global view of the entire network.

Fig. 1. dSDiVN System architecture.

3.2 dSDiVN SDN Architecture

dSDiVN is based on the three layers of SDN architecture, as illustrated in Fig. 2:

1) Data plane layer: It consists of all SD-vehicle SD-domain members that only

perform collection and forwarding of data information,

2) Control plane layer: It consists of all local mobile controllers deployed on the

SD-vehicle SD-domain heads that centralize the network control,

3) Service and application layer: It contains all the services and applications

such as routing, security and QoS services. To minimize the cost of installing

new services, the service is initially installed in one controller and after that

communicated hop by hop to the adjacent controllers,

4) Communication interfaces: OpenFlow is an IP-oriented protocol and there is

not a no-IP version compatible with safety VANET application features. Also,

there are no standardized SDN interfaces for directly integrating SDN into

VANETs. Therefore, we propose to use: (i) a customized version of OpenFlow

protocol adapted to V2V communications as southbound API to communicate

between the control plane and the data plane and, (ii) a customized interface as

northbound API to communicate between the control plane and applications

[9].

Fig. 2. dSDiVN 3-tier SDN architecture.

In dSDiVN, all SDN components are implemented on the unique hardware

component, i.e., the wireless mobile vehicle that the internal architecture is detailed

below.

3.3 Software-Defined Wireless Mobile Vehicle

A software-defined wireless mobile vehicle (SD-vehicle) is a traditional vehicle with

an additional SDN module which consists of hardware and software resources that

allow SDN to function on the mobile vehicle. From the hardware side, it consists of a

computing and storage unit that offers the SDN platform to install different services

(to limit hardware modification, it is preferable to reuse, if possible, the available

resources of the OBUs - on board units). From the software side, it consists of basic

SDN components: SDN operating system, virtual machines on the hypervisor,

network services, etc. Moreover, dSDiVN defines two main software SDN

components, as illustrated in Fig. 3:

1) The local mobile controller (simplified mobile controller): It is initially in

standby mode and it is enabled when the hosting SD-vehicle is selected as an

SD-domain head. It is known as mobile because it is implemented on a

mobile vehicle and can migrate from an SD-domain head to another, when it

hosting SD-vehicle leave an SD-domain. The mobile controller centralizes

the intelligence and controls all the vehicles of its SD-domain. To the best of

our knowledge, we are the first that propose a mobile controller in an SDVN

architecture.

2) The monitoring and collection agent: it ensures data forwarding and

monitoring of SD-vehicle parameters (e.g., position, velocity, direction, etc.).

This monitored information is periodically communicated to the mobile

controller. The local monitoring and collect agent receives and executes

control directives from its mobile controller via flow rule entries installed in

its flow table.

The architecture of the SD-vehicle is implemented at the facilities layer of the

standard ISO CALM (Communication Architecture for Land Mobile), which assumes

the existence of multiple wireless interfaces in a vehicle. In dSDiVN, each SD-vehicle

has several communication interfaces: (i) two broadband wireless interfaces DSRC

(i.e., IEEE 802.11p), to avoid interferences and separate control traffic from data

traffic: one for the V2V control plane communication between SD-domain members

and the mobile controller and the other for the data plane V2V communication

between vehicle SD-domain members and, (ii) a wideband wireless cellular interface

(LTE/4G), initially disabled and enabled when the coverage of fixed infrastructure is

available, as illustrated in Fig. 3.

Fig. 3. Internal architecture of software-defined mobile vehicle.

The fallback recovery mechanism of dSDiVN is presented below.

3.4 Fallback Recovery Mechanism

In a fully centralized architecture such as the one that adopts SDN, all system

reliability relies on the central controller. Therefore, it is necessary to envisage a back

recovery mechanism if this central controller is unreachable [1]. In [1], [14], authors

propose to switch to traditional VANET routing when the connection with the

controller is lost. This may increase the complexity of software and hardware design

[12]. In [9], authors use trajectory prediction to pre-install entries in the flow table that

can be used for a short period of time when the controller fails but this initiative does

not envisage any solution if the controller failure lasts after the end of the entry. In

[12], two types of hierarchical controllers are used, and if the high-level controller

fails, the low-level controllers take over to ensure service continuity but no solution is

envisaged if one of the low-level controllers failed.

Our architecture is based on a cluster-based distributed multi-hop control system.

As fallback recovery mechanism, we simply propose to profit from the self-organized

clustering technique, permanently anticipating the possible failure of each controller

and prepare in advance the recovery scenario. Thus, if a mobile controller fails, the

pre-prepared recovery controller (see section 3.A) will take over to ensure the service

continuity. When the SD-vehicles are aware of the controller failure, they will start to

send their requests directly to the recovery controller using the beforehand pre-

installed identifier as prevention recovery solution, see Section 3.A. The recovery

controller when enabled, use the knowledge base replication to immediately start to

respond the SD-vehicle requests.

Some possible use-cases of dSDiVN are presented in the next section.

4. dSDiVN Use Cases

In this section we present two possible use-cases of our dSDiVN architecture:

 SDN-assisted efficient data collection and dissemination: the data collected

at each SD-vehicle level are not useful individually. However, the

aggregation of all data of a geographical area allows having a vision on the

network state. By separating the data plane from the control plane, mobile

controllers can centralize the collection of data from various sensors installed

on SD-vehicles, each in its SD-domain. Unlike traditional networks, mobile

controllers can handle the collected data in a more informed way to extract

useful information and improve the system decision. Also, by collaborating

with each other, mobile controllers can build a global view of current

network state and can choose the most optimal path to disseminate/route this

extracted information.

 SDN-assisted VANET safety applications: dSDiVN uses only V2V based

IEEE 802.11p communications, which are more suitable for safety

applications. Moreover, mobile controllers based on the information

observed of current traffic conditions can collaborate each other to: (i) ensure

better persistence and availability of emergency alert messages by accurately

defining the danger zone extent (size) and the duration of the emergency

alert, (ii) choose the fastest path to disseminate the alert message, and (iii)

treat the emergency traffic with more priority in reservation of specific

frequencies and channels over the remaining normal traffic.

5. Numerical Results

In this section, we describe our simulation configuration, metrics and results. The

simulation model is built based on the system architecture described in Section 3.A,

and it is implemented using the network simulator NS3 [18] and the traffic simulator

SUMO [19]. The aim of the simulations is to evaluate the reliability of the fallback

recovery mechanism and the effect of controller distance on flow rule installation

time.

For simulation, we consider an infrastructure-less VANET scenario where the

network is deployed in 1000 x 1000 m area (a cell of Manhattan Grid). The road is

divided into equal segments of 150 m each, see Fig. 1. Node density is 200 nodes.

Each vehicle has IEEE 802.11p based interface with a transmission range up to 300 m

and a velocity between 10 and 30 m/s. The simulation time is 120 seconds and the

packet generation rate is 5 packets/s. The performance metrics we used are:

 Flow rule installation time: it represents the elapsed time since an SD-

vehicle requests the controller for a new flow rule and the time when the

flow rule is installed in the SD-vehicle flow table,

 Packet delivery ratio: is the ratio of packets successfully received to the total

sent.

5.1 Controller Failure

In this evaluation, we study how dSDiVN with the proposed fallback recovery

mechanism (multi-controllers cluster-based with failure anticipation and recovery

controller pre-preparation) reacts to the controller failure. We focus on one cluster and

we simulate a controller failure of 5 seconds at the 61st second. Afterwards, we

compare the dSDiVN fallback recovery mechanism (we simplified dSDiVN) with that

of self-organized cluster-based of dSDiVN without fallback recovery (we simplified

self-organized) and with works [3–8], [10], that use one controller without fallback

recovery mechanism (we simplified no-back-recovery) according to the packet

delivery ratio. The comparison results are illustrated in Fig. 4.

Fig. 4. Controller failure.

As illustrated in Fig. 4, we can see that just when the controller fails, the packet

delivery ratio in no-fall-recovery starts to decrease dramatically and it still drops until

the controller resumes the service. For the case of self-organized, the delivery radio

drops for a short time, which represents the time until the reelection of a new SD-

domain head and the synchronization with the newly elected controller; after that, the

system resumes a good delivery ratio. This behavior can be justified by the fact that in

the SDVN solution, the reliability of the system resides on one central controller and

as soon as the controller fails, it stops installing flow rules in flow tables; therefore,

the service is interrupted. Much more resistant, the packet delivery ratio in dSDiVN

undergoes a very slight effect, thanks to the efficient preventive fallback recovery

mechanism based on distributed multi-controllers, self-organized clustering and

failure anticipation. When the controller fails, SD-vehicles can directly synchronize

and direct their requests to the pre-selected recovery controller using the pre-installed

identifier, see Section 3.A.

This evaluation demonstrates the reliability and the efficiency of our fallback

recovery mechanism and confirms the result in [1]: the use of a fallback recovery

mechanism is primordial when operating the centralized SDN-based control in

VANET especially when the system control lies on one central controller, more worst

with the intermittent wireless link nature.

5.2 Effect of Controller Distance on Flow Rule Installation Time

In this evaluation, we aim to study the effect of controller distance, which

represents the physical distance between the controller and SD-vehicles, on the flow

rule installation time. Thus, we use a simple scenario when an SD-vehicle sends a

request to its controller and we have varied the distance between the SD-vehicle and

the controller for different request packet sizes.

Fig. 5. Controller distance vs. flow rule installation time.

Fig. 5 shows that flow rule installation time increases with the increase of the

distance between the controller and the SD-vehicle and even with the increase of

packet size. This evaluation is performed in a cell of Manhattan Grid with 1000 m

using LTE communication. However, the result can be generalized for large scale

scenarios in infrastructure-based areas. In this case, the result can be too worst and the

system cannot ensure a packet delivery ratio that satisfies the requirements of delay-

sensitive services especially when the distance reaches hundreds of kilometers.

From this evaluation, we can conclude that the controller should be installed the

closet as possible to vehicles to guarantee the suitable flow rule installation time of

delay-sensitive services and react rapidly to real-time events.

In our architecture, the controllers are installed on the SD-domain head vehicles

(the farthest distance of a controller is 150 m) and communicate with forwarding

vehicles via V2V and IEEE 802.11p (more adequate to satisfy safety service

requirements), which allows dSDiVN to ensure a good and adequate flow rule

installation time and a better support of delay-sensitive services and real-time events.

6. Conclusion

In this paper, we propose dSDiVN, distributed Software-Defined infrastructure-less

Vehicular Network, a novel distributed multi-hop SDN-based clustered architecture

for infrastructure-less vehicular networks with mobile multi-controllers and a reliable

fallback recovery mechanism. Our dSDiVN bridges the gap of no SDN-based

architecture in infrastructure-less VANET zones. Numerical results demonstrate that

the reliability of our fallback recovery mechanism and the negative effect that

represents the far distance of controller on the flow rule installation time which is the

main requirement of the VANET safety applications.

The sparse network topology that results in partitioning of the network rests an

open challenge in front of integrating SDN in infrastructure-less VANET areas. As

short-term perspective of this work, we plan to extend our architecture to deal with

the network partitioning problem by introducing drones to connect isolated mobile

controllers, as we plan to do more advanced experimentations to proof the feasibility

and the efficiency of the proposed architecture.

References

1. Ku, I., Lu, Y., Gerla, M., Gomes, R. L., Ongaro, F., Cerqueira, E.: Towards software-defined

vanet: Architecture and services. In: Proceedings of the 13th Annual Mediterranean Ad Hoc

Networking Workshop (MED-HOC-NET), pp. 103–110 (2014)

2. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,

Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM

Comput. Commun. 38(2), 69–74 (2008)

3. Khan, U., Ratha, B. K.: Time series prediction qos routing in software defined vehicular ad-

hoc network. In the proceeding of International Conference on Man and Machine

Interfacing (MAMI), 1–6 (2015)

4. Dong, H. Li, M., Ota, K.: Control plane optimization in software-defined vehicular ad hoc

networks. IEEE Transactions on Vehicular Technology (2016)

5. Wang, X., Wang, C., Zhang, J., Zhou, M., Jiang, C.: Improved rule installation for real-time

query service in software-defined internet of vehicles. IEEE Transactions on Intelligent

Transportation Systems (2016)

6. Luo, G., Jia, S., Liu, Z., Zhu, K., Zhang, L.: sdnmac: A software defined networking based

mac protocol in vanets. In the proceeding of the 24th IEEE/ACM International Symposium

on Quality of Service (IWQoS), 1–2 (2016)

7. Liu, Y. C., Chen, C., Chakraborty, S: A software defined network architecture for

geobroadcast in vanets. In the proceeding of IEEE International Conference on

Communications (ICC), 6559–6564 (2015)

8. Zhu, M., Cao, J., Pang, D., He, Z., Xu, M.: Sdn-based routing for efficient message

propagation in vanet. In the proceeding of WASA, 788–797 (2015)

9. He, Z., Cao, J., Liu, X.: Sdvn: enabling rapid network innovation for heterogeneous

vehicular communication. IEEE Network, 30(4), 10–15 (2016)

10. Yao-Chung, C., Jiann-Liang, C., Yi-Wei, M., Po-Sheng, C.: Vehicular cloud serving

systems with software-defined networking. In the proceeding of Second International

Conference Internet of Vehicles - Safe and Intelligent Mobility. 58–67 (2015)

11. Huang, X., Kang, J., Yu, R., Wu, M., Zhang, Y., Gjessing, S.: A hierarchical pseudonyms

management approach for software-defined vehicular networks. In the proceeding of the

83rd Vehicular Technology Conference (VTC Spring), 1–5 (2016)

12. Kazmi, A., Khan, M. A., Akram, M. U.: Devanet: Decentralized software-defined vanet

architecture. In the proceeding of IEEE International Conference on Cloud Engineering

Workshop (IC2EW, 42–47 (2016)

13. Zheng, Q., Zheng, K., Zhang, H., Leung, V. C. M.: Delay-optimal virtualized radio

resource scheduling in software-defined vehicular networks via stochastic learning. IEEE

Transactions on Vehicular Technology (2016)

14. Truong, N. B., Lee, G. M., Ghamri-Doudane, Y.: Software defined networking-based

vehicular adhoc network with fog computing. In the proceeding of IFIP/IEEE International

Symposium on Integrated Network Management (IM). 1202–1207 (2015).

15. Salahuddin, M. A., Al-Fuqaha, A., Guizani, M.: Software-defined networking for rsu clouds

in support of the internet of vehicles. IEEE Internet of Things Journal (2015)

16. Remy, G., Cherif, M., Senouci, S. M., Jan, F., Gourhant, Y.: Lte4v2x-collection,

dissemination and multi-hop forwarding. In the proceeding of IEEE ICC2012, 10–15 (2012)

17. Salhi, M. O. C. I., Senouci, S. M.: A new architecture for data collection in vehicular

networks. In 2009 IEEE International Conference on Communications, 1–6 (2009)

18. Network simulator 3 (ns-3), http://www.nsnam.org/.

19. Simulation of urban mobility (sumo), http://sumo-sim.org/.

