Integrating Online Data for Smart City Data
Marts *

Michael Scriney!, Martin F. O’Connor?, and Mark Roantree'

! Insight Centre for Data Analytics, School of Computing, Dublin City University,
Glasnevin, Dublin 9, Ireland
2 Department of Computing, Institute of Technology Tallaght, Dublin 24, Ireland
michael.scriney@insight-centre.org, mark.roantree@dcu.ie,
martin.oconnor@it-tallaght.ie

Abstract. The development of smart city infrastructures is seen as an
important strategic component for many countries with applications in
the areas of government services, healthcare, transport and traffic man-
agement, energy, water, and the management of waste services. In gen-
eral, each of these infrastructural components generates data as it de-
livers its service. The usage of this data is often crucial both to the
continued development of the service and for forward planning. While
the data sources are often not complex in structure, traditional decision
support systems are not built to handle continuous data streams, new
or disappearing data sources, or the integration of multiple online data
sources. In this work, we develop a flexible ETL process to quickly pro-
cess and integrate online smart city data sources to deliver information
that can be used in close to real-time.

1 Introduction

The Internet of Things has provided a means of collecting and analysing previ-
ously inaccessible data across a wide variety of topics. Recently, there has been
an emergence of publicly available data regarding the infrastructure of various
cities. This data, provided by governmental agencies and private industry can
lead to direct benefits for the citizens of a city. The projects which process, store
and analyse this data are known as Smart City applications. Data in a smart
city is generated from a wide variety of sources across a large number of domains
such as housing, environment, transport and so on. Similar to traditional web
data, this data is available on-line, typically in either XML, JSON or CSV for-
mat and there have been many approaches to building smart city applications
[9] and to clustering or integrating query graphs on smart city data [13]. Most
of the query or search engines are RDF based eg. [4] but recently, we have seen
the emergence of approaches to understanding JSON schemas [1] which allows
for scaling of large online datasets.

* This work is supported by Science Foundation Ireland under grant number
SFI/12/RC/2289

2 Michael Scriney, Martin F. O’Connor, and Mark Roantree

Decision makers who use smart city applications expect to have some form
of OLAP service which provides the datasets from a warehouse upon which
they make their decision. However, online data sources are not included in many
data warehouses for many reasons. These may include lack of control of the
source data, lack of understanding of how to process the data, a constantly
changing structure to the data or issues to do with quality control in terms of
the data’s content. Access to these services generally requires an API supplied by
the service provider or some form of wrapper to extract the data. In either case,
there is a time lapse between when new online information becomes available
and when it is accessible using OLAP tools for decision makers. Consider a
scenario where emergency services require the fastest route between two points
in the city: unless data is available in close to real-time it is of little use to the
route planning service. In this paper, we will present an approach to making
online data available in smart city data marts in close to real time. To deliver
this service, we update a Data Lake every 30 seconds from source data. Briefly,
a Data Lake is a data store which stores data in its original native format. By
close to real time, we mean that online information providers are checked every
30 seconds for updates, those updates (if any) are populated into data marts
that use our Star Graph format [15] to provide data immediately to decision
makers.

1.1 Background and Problem Statement

In order to deliver integrated datasets from multiple external sources, what is
required is a sufficiently robust Extract-Transform-Load (ETL) process so that
facts and dimensions can easily be identified; external sources are mapped to
some form of ontology, and an integration process to merge the specific data
sources that are needed for specific tasks. An approach advocated in [2] is to use
lightweight dynamic semantics which our system uses to maintain interoperable
descriptions of data sources inside the Data Lake. This metadata is then used
to update a data mart in close to real-time. In our approach, we do not as-
sume that a predefined schema and ETL process exists. This is traditional ETL
where the warehouse schema is designed upfront, and data is extracted from
all (known) sources in advance, integrated according to strict rules and data is
loaded whether it is required or not.

The problem with online data sources is that they evolve much more than
in-house databases. Sources can disappear or change structure; new sources can
become available; different user needs often require the construction of hetero-
geneous data marts. The problem with applications such as smart cities are that
in order to exploit the wealth of information available, it requires a more flexi-
ble approach to ETL and data mart construction. At the same time, we aim to
provide OLAP style functionality to create the datasets necessary for analysis of
long duration data or small data marts with only the most recent updates. This
solution must also take into consideration that data marts should be dropped
where data sources are no longer available or newly created where new sources

Integrating Online Data for Smart City Data Marts 3

have become available as data marts may use different combinations of source
data.

Contribution. In earlier work [15], we presented a system to automatically
create multi-dimensional data marts from online sources. We employ a graph
representation for data marts which is called a StarGraph, a graph structure
which comprises the multi-dimensional concepts of facts and dimensions. In this
work, we present a mechanism for integrating StarGraphs. While the StarGraph
has a 1-1 relationship with external sources, a second structure, the Constel-
lationGraph is an integration of StarGraphs, with 1-many mappings with the
StarGraphs which comprise it. In addition, we can operate real-time data marts
where data is pulled from the Data Lake containing online sources on demand.

Paper Structure. The paper is structured as follows: in §2, we present
related research; in §3, our case study is introduced; in §4, we describe the
processes involved in our system; in §5, we provide an evaluation of our work;
and finally, in §6, we provide some conclusions.

2 Related Research

Similar to our research, the authors in [16] use graph structures to model hetero-
geneous data sources which are to be integrated and stored in a data warehouse.
However, the authors employ the use of application designers to manually add
an ontology to each graph structure in order to produce mappings from source
to target schemas, whereas our process seeks to automatically identity facts,
dimensions and measures and provide a corresponding mappings file for further
analysis of data sources.

In [12], the authors present a means of providing multidimensional analysis
through the use of a multidimensional ontology. This ontology itself is built
from a semantic data warehouse, which provides ontologies about all source
data required for multidimensional analysis. However, this does not provide the
flexible and more lightweight approach [2] necessary for online data sources. In
[3], the authors again present a smart city ontology which is combined with
a data collection system to harvest smart city data sources to provide smart
city applications. Similarly to our paper, the authors focus on transport data.
However, while their system utilises an ontology in order to provide mappings
and integration, our system is more flexible in that it automatically generates
mapping files and identifies facts and dimensions for further analysis.

In [11] the authors present a real time smart city application which tracks
and monitors city facility utilisation. The authors use a system which provides
OLAP functionality on a data stream. However, the integration methodology for
various data sources used by the authors is a manual process, which requires a
custom wrapper to be developed per data source, whereas our system provides
both a manual and automatic means of integrating data.

In [8] the authors detail a smart city system in Barcelona. The system is
composed of a number of sensors available through HTTP/REST interfaces.
The authors note there is a difficulty in the management of the data due to

4 Michael Scriney, Martin F. O’Connor, and Mark Roantree

the large volume generated by multiple sensors. The smart-city sensors generate
data in the form of JSON which is stored in a database made available to third-
parties over XML. Similar to our integration approach, the authors note that
an intelligence module is provided which correlates data in space and time, the
authors do not however detail how this system works, neither do they detail how
the data is integrated and stored in the central database.

3 Case Study Introduction

We will now introduce our case study which will be used to conceptualise the
need for a StarGraph and provide a means of illustrating the processes involved
throughout the lifecycle of our system. Commuters use various means of trans-
port in order to reach their place of work. However, due to the ever increas-
ing number of people who commute the transport infrastructure can become
strained. This leads to increased commuting times. There are benefits to both
the transport providers and the commuters themselves for minimising travel
times across the city.

The transport infrastructure of a city can be conceptually viewed as a graph.
A node on the graph indicates a point of departure or a destination (for example,
a train station, a bus stop, a road junction and so on). An edge between two nodes
indicates a path. A contiguous sequence of two or more paths is a route. This
topological graph may be used to find a path for the commuter between their
departure and destination with the shortest distance. However, when commuting,
distance covered is not the only feature of interest. For many commuters, the
minimum time taken to commute is preferable to distance covered.

In order to determine the most efficient route at time ¢ a collection of histor-
ical transport data must be collected. To satisfy this case study, the following
functionality must be provided:

1. Harvesting of multiple domain-related data sources.
2. Integration and contextual enrichment of the data.
3. Population of the integrated data warehouse.

4. Provision of a Query Service.

A number of Ireland’s transport providers publish real-time data, available
through the use of public APIs. For the purposes of this case study the following
datasets have been chosen.

Dublin bus RTPI [6], details the next buses due at a specified bus stop.

— Dublin Bikes [5], provides real time indication of bike availability.

LUAS (Tram line) [17], Details the next arrivals along a tram line.
Motorway travel times [18], The travel time taken to traverse the motorways.
— Dublin City Travel Times [7], Time taken to traverse junctions on Dublin
Roads.

Irish Rail API [10], Details the upcoming arrivals at a given train station.

In this paper we will demonstrate how our system can be used to find the
most time-effective means of getting a commuter to their destination.

Integrating Online Data for Smart City Data Marts 5
4 Process Framework

There are four main processes to our system as shown in Fig. 1.

N Pla. StarGraph P2. StarGraph
P1. StarGraph Creation Extension Integration

Data P3. StarGraph
Sources Population

- Data Data
— Mart ﬁ Cube
Lake

Data Extraction &
Transformation

Fig.1: A StarGraph-based ETL System

1. P1. StarGraph Creation. The first process in our system creates a Star-
Graph from the source schema.

2. Pla. StarGraph Transformation. This is an optional step which can
be used to enhance the structure of the StarGraph by allowing a user to
manually edit the graph, or add supplementary information necessary for
further analysis.

3. P2. StarGraph integration. This process takes one of two forms: inte-
gration of 2 StarGraphs to form a ConstellationGraph; or the integration of
a StarGraph and ConstellationGraph which allows continued growth of the
final schema.

4. P3. StarGraph Population. This process populates a fact table based on
the mapping rules. It has two inputs: the mapping rules corresponding to the
data mart (P3) and the data stream from which the data is to be extracted.

4.1 StarGraph Creation (P1)

A StarGraph represents the facts, dimensions and measures found inside a data
source. In addition, it provides a mappings file which can be used to transform
the source data into the StarGraph representation. For the case study presented
here, when the last source file is updated, the StarGraph is then updated from
all sources. For the 6-source example shown in Table 1, updates occur between
30 and 300 seconds.

Table 1 details the StarGraphs created from the data sources detailed in §3
along with the time taken to populate from the data streams and the number of
new instances constructed for 1 sample update.

6 Michael Scriney, Martin F. O’Connor, and Mark Roantree

Table 1: Constructed StarGraphs

Name ID |Format|Nodes|Edges|Dimensions|Measures|Population(ms) | Rows
Dublin Bikes| bik | JSON | 14 14 2 4 69 245
Dublin Bus |bus| JSON | 23 23 2 0 24 101

LUAS lus |[HTML| 3 3 1 0 7 2
City Roads |rds| CSV 7 0 1 7 64 902

Motorway [mot| JSON | 18 2 10 3 14 25
Irish Rail | ril | XML | 22 23 1 2 10 2

Generating Mappings. In addition to the multidimensional representation
produced by the StarGraph process, a corresponding series of mapping rules
are produced to facilitate the data extraction and transformation from source
to target. When a schema is first read, a list of all possible paths through the
schema and their corresponding points in the StarGraph is produced. This meta-
data is used as a basis when formulating the Mapping Rules for the StarGraph.
Mappings are stored in JSON format.

Mappings are only generated once the fact table has been constructed from
the StarGraph. The mappings database contains:

— Dimension - Indicates a full dimension object.

— name - Indicates the name of either an attribute or measure.

— src-This attribute details the location of the relevant data in the data stream.
It can take the form of an xpath query, JSON dot notation or a function
definition (§4.2).

— id - Id denotes the primary key of a table. The id attribute can only be found
inside an Dimension object or Subdimension. This can either be automat-
ically generated (in the absence of a defined key) or is created using a src
query.

— table - The name of the table to store the data

— atts - Atts is a list of attributes associated with a dimension or subdimension

— type - Type is the data type of the attribute.

— subdimensions - This is a list of subdimension objects.

— measures - These are a list of measures which are found.

4.2 Enrichment & Transformation (Pla)

Data Transformation For some datasets, the measure may not immediately
be detected. This issue can arise when a transformation function is necessary to
expose the measure. For example, the Dublin Bus dataset does not provide a
unique measure (i.e. when the next bus is due) but rather provides two times-
tamps one named scheduledarrivaldatetime which refers to the time the bus
is expected at a stop, and another named timestamp which refers to the current
timestamp. A useful measure would be when the next bus is due in terms of
seconds (or minutes). With a created StarGraph and mappings file, this file can
be extended by an application developer to provide a transformation function
(Fig. 2).

Integrating Online Data for Smart City Data Marts 7

{"name":"timeInSeconds",
"src":function(){ return
$scheduledarrivaltime.getTime () - $timestamp.getTime(); },
"type":"int"}

Fig. 2: Example of user defined transformation

By placing this function under the Measures section of the mappings file, the
code will be executed. This result will then be stored in the fact table under the
name timeInSeconds. If it is placed in the Dimension or Subdimension areas
of the mappings file, it will be stored as an attribute of the Dimension.

At present, the mapping files are stored as JSON, and transformation func-
tions are written in JavaScript. When new data is introduced to the system,
the mappings file extracts all the source data for population. In addition, these
transformation functions are evaluated in order to produce new measures for
analysis as the system is being populated.

Providing Streaming Context Many smart city data streams provide data
in a format coded by an application designer, and not by a business user. An
example of data coding would be providing unique id’s to objects. However,
oftentimes supplementary data relevant to the code is not provided as part of
the data stream, but as a static file. These static files can contain geolocation
data, fully resolved addresses etc. which are tied to the unique ids provided by the
stream. Static file integration seeks to resolve these differences by re-combining
the static supplementary data to the data stream.

An example of static file integration can be seen if we examine the City Roads
dataset. The City Roads dataset is a CSV file which provides little information
about the data being accessed (Fig. 3). This is very similar to body sensor
applications which produce very high volumes of information [14] but where the
data generated is very simplistic and requires external semantics to increase its
impact.

#Route|Link|Direction|STT|AccSTT|TCS1|TCS2
1 1 1 128 128 2127 | 175

Fig. 3: Example of the CityRoads Dataset

In this data, the headers TCS1 and TCS2 refer to real world locations. However,
without the supplementary descriptive data, the numeric data lacks meaning.
The data provider (Dublin City Council) also provides a KML file (geographic
annotation) (Fig. 4) which provides the additional data necessary to understand
the real time data. This supplementary data can be used to enrich the existing
CSV file with latitudes and longitudes linking the data TCS1 and TCS2. The
supplementary data is supplied by the same provider as the stream, as such there
is a one-to-one mapping between the terminology used for the stream and the
static file, therefore, this data can be integrated using a simple text matching
operation which can be used to link the coordinates tag to the existing data.

8 Michael Scriney, Martin F. O’Connor, and Mark Roantree

Additionally the mappings file associated with the StarGraph has been extended
to map the data stream to the provided context.

<SimpleData name="TCS1">6006</SimpleData>
<SimpleData name="TCS2">2031</SimpleData>
<coordinates>-6.172557196923532,53.291529410712464
-6.184390631942438,53.296472990543961</coordinates>

Fig. 4: KML file (truncated) provided by Dublin City Council

4.3 StarGraph Integration (P2)

Two or more StarGraphs are integrated to produce a Constellation Graph
with a process that can be either manual or automatic. For manual integration,
a user selects an integration attribute for both StarGraphs and they are joined on
that attribute. Once the StarGraphs have been joined, changes to dimensions and
measures require the generation of new mappings. These mappings are similar
to the mappings described in §4.1. They are generated in a similar fashion to
that of a StarGraph, except in this instance an attribute may have multiple src
properties. Automatic integration combines StarGraphs using an ontology and
matching attributes based on name, location or date. For example Figures 5
and 6 represent two StarGraphs which are to be merged. The nodes datetime
from the Bikes StarGraph and timestamp from the Bus StarGraph are merged
because they occupy the same date dimension.

EHe &

Fig. 5: Bikes StarGraph

Fig.6: Dublin Bus StarGraph

4.4 Populating and Updating (P3)

As indicated earlier, the trigger for updating a ConstellationGraph is when the
last source file has been updated. The mappings database is used to transfer
data from the Data Lake into the warehouse (StarGraph).

Querying. Once a StarGraph (or ConstellationGraph) has been populated, the
location data found inside the StarGraph can be used to construct a topology
representing the physical distribution of the data. If there are multiple latitudes
and longitudes occupying the same instance, an edge is created between them.
Recall the inputs for the case study are a points of departure and destinations
and the datetime of departure. The first step in completing any valid query is to
examine the topological graph to determine all possible paths which lead from

Integrating Online Data for Smart City Data Marts 9

Fig. 7: ConstellationGraph constructed from the bikes and bus StarGraphs

the departure point to the destination. For the purposes of this case study this is
achieved using a depth first search to determine all simple paths. Once all simple
paths have been constructed, these are stored as a series of possible routes.

The next step is to examine which route is the fastest for the departure time
the user provided. The historical aggregate of the travel time for each route at
time t is evaluated and the minimum route is returned.

5 Evaluation

The goal of our evaluation was to measure how close to real-time, we can de-
liver the datasets necessary to compute information for travel requirements.
The travel case study has six data sources and we used 57 different Constella-
tionGraph (schema) configurations to measure the usability of the system and
potential scalability. Table 2 reports from a representative batch of 12 of these
configurations. In each case, we report the time taken in milliseconds to refresh
each schema when an update is detected. An update in this case is where change
was detected in all data sources with the trigger occurring when the final data
source has changed. Our experiments were completed using Node v6.10.0 64-bit,
Mongo v3.4.2 64-bit on a SONY VAIO with 12GB RAM and Intel i7-3632QM
2.20GHz, Windows 10 Home edition 64-bit

Datasets were separated into large and small, based on the number of new
instances, with bus, bik and roads constituting the large dataset, and the re-
mainder making up the small one. We are not loading large data volumes as
updates occur no longer than 5 minutes apart: the goal is to make current data
available.

Column 2a was created from combining two sources from the large datasets
(specifically, the bus and bik datasets). 2b was created from combining one large
and one small dataset (bus and 1lus). This update generated 270 new instances
and was completed in 76ms. Interestingly, for population of two data sources, 2c
which was created by combining two small data sources (lus and ril) took the
largest time of 157ms which resulted in a fact table consisting of only 4 rows.
This indicates that it is not the number of rows generated that impacts more
on time but rather the format of the data sources itself. As these sources are
HTML and XML respectively, the time taken to parse these schemas compared
their JSON and CSV counterparts has a large impact on the integration times.

10 Michael Scriney, Martin F. O’Connor, and Mark Roantree

Columns 3a, 3b and 3c show the times taken to populate a schema (data
mart) composed of three sources. 3a was created from all three of the large data
sources (bus, bik and rds), 3b was created from two large and one small data
source (bus, bik and mot) and 3¢ was created from all of the small data sources
(lus, mot, ril). Once again, the time taken to populate a fact table composed
of all the large data sources, and the small ones were comparable (156 and 159ms
respectively). These times were despite the fact that the large data sources result
have 1219 more instances than small sources.

Columns 4a , 4b and 4c show the times taken to construct a schema from
four data sources, with 4a being created from 3 large datasets, and one small; 4b
was created from three small datasets and 1 large; and 4c was created from two
small and two large datasets. The times taken to populate each fact table were
173ms, 210ms and 188ms respectively, with 4b (bik,lus;mot and ril) taking
the largest time. This fact table was constructed from 2 JSON sources, 1 XML
source and 1 HTML source while 4c (which was constructed from 2 JSON files,
1 CSV file and 1 XML file) proved to be faster by 22ms. Once again, the time
difference between 4b and 4c indicates that the time taken to populate a data
mart is largely due to the format of the source data streams. We can see this if
we compare the times taken for both 4b and 3b as they both used the same data
sources (apart from the HTML source lus. With 3b being populated in 88ms,
and the addition of a fourth source 1lus as shown in 4b increases the population
time by 122ms.

Columns 5a and 5b show the times taken and the number of rows constructed
for schemas created from 5 data sources, with 5a being created from 3 large
datasets and 2 small ones and 5b being constructed from 3 small datasets and
2 large ones. Interestingly at this point, it appears that the number of instances
created appears to surpass the initial bottlenecks provided by the source data
formats, with 5a being populated in 310ms and 5b in 254ms. In short, as the
number of data sources increases, the largest factor on population time, changes
from the formats of the source schemas, to the number of rows produced by the
population.

Finally, column 6 shows the time taken to populate the schema created from
all 6 sources. The population time for all sources was 350ms and resulted in
a a fact table of 1277 rows. Undoubtedly this configuration yielded the largest
results for both population time and rows produced, when compared to 5a which
is made from all data sources apart from ril the difference in time between the
two is 40ms, while the differing number of rows is only 2 rows. This indicates
that, as the number of data sources increases, the number of rows new instances
has a noticeable impact on performance.

With respect to the individual data sources presented. The inherent complex-
ity of each schema does not seem to pose a problem during population, most
likely due to the fact that the mappings file details the exact location of the
data in each stream which is required for population. Overall, the time taken to
populate a fact table from combined data sources is not so much limited by the
number of individual facts (rows) per data source, but rather the format and

Integrating Online Data for Smart City Data Marts 11

structure of the source data provided. With formats such as XML and HTML
taking a longer time to process than those which are published as JSON or
CSV files. However, it appears that as the number of sources involved in the
fact table population increases, the resultant number of instances to be created
becomes the dominant factor in population time rather than the format of the
data stream.

In summary, our system integrates and makes available in close to real-time
the data produced by the different transport services, and experiments show a
linear rise in times with an increase in the size of the update. The evaluation
also demonstrated that:

— XML and HTML sources (bold font in table 2 increase the cost of updates
(157ms for only 4 new instances in 2c)

— The HTML dataset (lus) performed notably worse than XML showing that
more structured data performs better (5a vs 5b).

— Larger data marts with more data sources have less of an effect than an
increase in new data instances (3b vs 2¢).

Table 2: Update Times for Various Data Mart configurations

Config ID 2a|2b|2c| 3a |3b|3c| 4a |4b | 4c | 5a | Bb | 6

bus | bus bus
bus | bik | bus | . . bik
bus |bus|lus]| . . bik | lus
bus|bus|lus| ;. . bik |lus | mot lus
Souces . .+ | bik | bik {mot lus | mot
bik |lus| ril .. | rds |mot| rds mot
rds |mot| ril . .. | mot | rds
mot | ril | ril . | rds
rds | ril vil

Population 91|76 |157| 156 | 88 |159| 173 |210| 188 | 310 | 254 | 350
(ms)
Rows 346|270 4 [1248|371| 29 (1273|130(1174|1275|1176|1277

6 Conclusions

In this paper, we demonstrated how StarGraphs can be used to create the Con-
stellationGraph which serves as a Data Mart in decision support systems. In
addition, we provide a fast method for incorporating new data sources as they
come online and our evaluation shows that these sources are in our data marts
(almost) immediately after update. Our future work involves a project that uses
200 Agri (agricultural) data sources to provide more of a scalable stress test for
this system. Secondly, we are investigating how the system can suggest to the
user which combinations of datasets should be incorporated into the same data
mart.

References
1. Baazizi, M.A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema

inference for massive json datasets. In: Extending Database Technology (EDBT)
(2017)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Michael Scriney, Martin F. O’Connor, and Mark Roantree

Barnaghi, P.M., Bermudez-Edo, M., Ténjes, R.: Challenges for quality of data in
smart cities. J. Data and Information Quality 6(2-3), 6:1-6:4 (2015)

. Bellini, P., Benigni, M., Billero, R., Nesi, P., Rauch, N.: Km4city ontology

building vs data harvesting and cleaning for smart-city services. Journal of Visual
Languages & Computing (2014)

Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M.: A path-oriented rdf
index for keyword search query processing. In: Database and Expert Systems
Applications. pp. 366-380. Springer (2011)

Dublin Bikes API [Online] (originally available in XML, now only available in
JSON): http://api.citybik.es/v2/networks/dublinbikes

Dublin Bus RTPI [Online]:
http://dublinked.ie/real-time-passenger-information-rtpi/

Dublin City travel times [Online]:
http://opendata.dublincity.ie/TrafficOpenData/CP_TR/trips.csv

Gea, T., Paradells, J., Lamarca, M., Roldan, D.: Smart cities as an application of
internet of things: Experiences and lessons learnt in barcelona. In: Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 Seventh
International Conference On. pp. 552-557. IEEE (2013)

Hernéndez-Mufioz, J.M., Vercher, J.B., Mufoz, L., Galache, J.A., Presser, M.,
Gémez, L.A.H., Pettersson, J.: Smart cities at the forefront of the future internet.
Springer (2011)

Irish Rail [Online]:
http://api.irishrail.ie/realtime/index.htm?realtime_irishrail
Komamizu, T., Amagasa, T., Shaikh, S.A., Shiokawa, H., Kitagawa, H.: Towards
real-time analysis of smart city data: A case study on city facility utilizations. In:
HPCC/SmartCity/DSS, 2016 IEEE 18th International Conference. pp.
1357-1364. IEEE (2016)

Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M.J., Pedersen, T.B.:
Multidimensional integrated ontologies: A framework for designing semantic data
warehouses. In: Journal on Data Semantics XIII, pp. 1-36. Springer (2009)
Roantree, M., Liu, J.: A heuristic approach to selecting views for materialization.
Software: Practice and Experience 44(10), 1157-1179 (2014)

Roantree, M., McCann, D., Moyna, N.: Integrating sensor streams in phealth
networks. In: Parallel and Distributed Systems, 2008. ICPADS’08. 14th IEEE
International Conference on. pp. 320-327. IEEE (2008)

Scriney, M., O’Connor, M.F., Roantree, M.: Generating cubes from smart city
web data. In: Proceedings of the Australasian Computer Science Week
Multiconference, ACSW 2017, Australia, 2017. pp. 49:1-49:8 (2017)

Skoutas, D., Simitsis, A.: Ontology-based conceptual design of etl processes for
both structured and semi-structured data. International Journal on Semantic
Web and Information Systems (IJSWIS) 3(4), 1-24 (2007)

Transport for Ireland [Online]:
http://www.transportforireland.ie/real-time/real-time-ireland/
Transport Infrastructure Ireland [Online]:
https://www.tiitraffic.ie/travel_times/

