
The University of Manchester Research

Towards Automatic Data Format Transformations: Data
Wrangling at Scale
DOI:
10.1093/comjnl/bxy118

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Bogatu, A., Paton, N. W., Fernandes, A. A. A., Koehler, M., & Wood, P. (Ed.) (2019). Towards Automatic Data
Format Transformations: Data Wrangling at Scale. The Computer Journal, 62(7), 1044–1060.
https://doi.org/10.1093/comjnl/bxy118

Published in:
The Computer Journal

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1093/comjnl/bxy118
https://research.manchester.ac.uk/en/publications/b2928bfa-b5ef-4ed4-8fed-ecf5281857fc
https://doi.org/10.1093/comjnl/bxy118

Towards Automatic Data Format
Transformations: Data Wrangling at

Scale
Alex Bogatu, Norman W. Paton, Alvaro A.A. Fernandes and

Martin Koehler

School of Computer Science, University of Manchester, Manchester, M13 9PL, UK

Email: alex.bogatu@manchester.ac.uk, norman.paton@manchester.ac.uk,

alvaro.a.fernandes@manchester.ac.uk, martin.koehler@manchester.ac.uk

Data wrangling is the process whereby data is cleaned and integrated for analysis.
Data wrangling, even with tool support, is typically a labour intensive process.
One aspect of data wrangling involves carrying out format transformations on
attribute values, for example so that names or phone numbers are represented
consistently. Recent research has developed techniques for synthesising format
transformation programs from examples of the source and target representations.
This is valuable, but still requires a user to provide suitable examples, something
that may be challenging in applications in which there are huge data sets or
numerous data sources. In this paper we investigate the automatic discovery
of examples that can be used to synthesise format transformation programs. In
particular, we propose two approaches to identifying candidate data examples and
validating the transformations that are synthesised from them. The approaches

are evaluated empirically using data sets from open government data.

Keywords: format transformations; data wrangling; program synthesis

1. INTRODUCTION

Data wrangling is the process of data collation and
transformation that is required to produce a data set
that is suitable for analysis. Although data wrangling
may be considered to include a range of activities,
from source selection, through data extraction, to data
integration and cleaning [1], here the focus is on format
transformations. Format transformations carry out
changes to the representation of textual information,
with a view to reducing inconsistencies.

As an example, consider a scenario in which
information about issued building permits is aggregated
from different data sources. There can be different
conventions for most of the fields in a record (e.g.
the format of the date when the permit was issued:
2013-05-03 vs. 05/03/2013; the cost of the building:
83319 vs. $83319.00; or the address of the building:
730 Grand Ave vs. Grand Ave, Nr. 730). Such
representational inconsistencies are rife within and
across data sources, and can usefully be reduced during
data wrangling.

Data wrangling is typically carried out manually
(e.g. by data scientists) with tool support; indeed data
wrangling is often cited as taking a significant portion

of the time of data scientists1. An example of a tool
that supports the authoring of format transformations
is Wrangler [2], commercialised by Trifacta, in which
data scientists author transformation rules with support
from an interactive tool that can both suggest, and
illustrate the effect of, the rules. Such an approach
to data wrangling should lead to good quality results,
but is labour intensive where there are multiple data
sources that manifest numerous inconsistencies.

In this paper we address the question can the pro-
duction of such format transformations be automated?
Automatic solutions are unlikely to be able to match
the reach or quality of transformations produced by
data scientists, but any level of automation provides
the possibility of added value for minimal cost. We
build on some recent work on the synthesis of transfor-
mation programs from examples, which was originally
developed for use in spreadsheets (e.g. FlashFill [3],
BlinkFill [4]). In the commercial realisation of Flash-
Fill as a plugin to Excel, the user provides example
pairs of values that represent source and target repre-
sentations, from which a program is synthesised that
can carry out the transformations. The published eval-
uations have shown that effective transformations can
often be produced from small numbers of examples.

1http://nyti.ms/1Aqif2X

The Computer Journal, Vol. ??, No. ??, ????

2 A. Bogatu, N. Paton, and A. Fernandes

An issue with this is that there is a need for examples
to be provided by users. While this is potentially
fine for spreadsheets, where there is typically a single
source and target, and the source is of manageable size,
identifying suitable examples seems more problematic
if there are large data sets or many sources. How
do we scale program synthesis from examples to work
with numerous sources? The approach investigated
here is to identify examples automatically. To this
end, we propose two techniques for identifying pairs of
values from two different data sources that represent
the same real world entity. The first proposal makes
use of matching candidates and hypothesised functional
dependencies to identify pairs of equivalent values.
Specifically, given two datasets S and T in which we
identify two functional dependency candidates, S.a →
S.b and T.c → T.d, and two matching candidates
(S.a, T.c) and (S.b, T.d), we pair together values from
the right-hand sides of the functional dependencies, S.b
and T.d, where their corresponding left-hand sides, S.a
and T.c, have equal values. For example, in Figure 2
(a) and (b) from Section 3, in order to pair together the
values from S.Date and T.Date, we need the functional
dependency relationships S.Permit Nr.→ S.Date and
T.Permit Nr. → T.Date, and the matching instances
(S.Permit Nr., T.Permit Nr.) and (S.Date, T.Date).
Notice that the values of the Permit Nr. columns have
equal values. We argue that the resulting pairs can be
used as examples for synthesis algorithms to transform
the format(s) of the values from S.Date to the format
represent in T.Date.

While the previous solution proves to be effective
when certain conditions are met, functional dependency
candidates are often hard to obtain using specialised
tools due to data inconsistencies or simply because such
relationships do not exist. To address this possibility,
we propose a second, less restrictive technique,
based on string similarities and candidate matching
relationships, which proves to have comparable
effectiveness with better scalability. Specifically, for
each matching pair candidate (S.a, T.b), we do a string
similarity-based fuzzy pairing of values from S.a and
T.b. Then we assign a confidence measure to each pair of
values and use it to select a subset of pairs as examples
for synthesis algorithms. For instance, in Figure 2 from
Section 3, we pair the values of S.Date and T.Date that
represent the same date using their similarity, without
requiring a common tuple identifier such as Permit Nr.

In summary, the main contributions of this paper are:

(i) the identification of the opportunity to deploy
format transformation by program synthesis more
widely through automatic discovery of examples;

(ii) the description of two approaches that support (i)
- an effective, but conditional algorithm, and a less
effective, more scalable technique;

(iii) the evaluation of the above approaches with real

world data sets.

Although this paper focuses on a fully automated ap-
proach, in which the user is not in-the-loop, the au-
tomated approach could be used to support the boot-
strapping phase of pay-as-you-go approaches, in which
users subsequently provide feedback on the results of
the automatically synthesised transformations.

The rest of the paper is organised as follows.
Section 2 reviews the work on synthesis programming
on which this paper builds. Section 3 describes
the first proposal for generating examples based on
functional dependency candidates. In Section 4 the
previously mentioned technique is evaluated with real
world datasets. Section 5 describes an alternative to
functional dependency-based examples generation in
the form of a string similarity-based technique. We
evaluate this method in Section 6 and finally discuss
the related work in Section 7 and conclude in Section
8.

This paper is an invited extended version of [5], the
main additional contributions being the inclusion of an
additional method for generating examples in Section
5, and its evaluation in Section 6.

2. TECHNICAL CONTEXT

In this section, we briefly review the work on
synthesis of programs for data transformation on which
we build; full details are provided with the individual
proposals (e.g. [3, 4]). In essence, the approach has
the following elements: (i) a domain-specific language
within which transformations are expressed; (ii) a data
structure that can be used to represent a collection of
candidate transformation programs succinctly; (iii) an
algorithm that can generate candidate transformation
programs that correspond to examples; and (iv) a
ranking scheme that supports the selection of the
more general programs. Starting from a set of user
provided examples, where an example represents a
pair (ein, eout), with ein the value to be transformed,
and eout the expected transformation result, this
language can express a range of operations for
performing syntactic manipulations of strings such as
concatenation, e.g. Concatenate, which links together
the results of two or more atomic expressions, e.g.
SubStr, Pos, or more complex expressions that involve
conditionals such as Switch and loops, e.g. Loop. A
brief description of the available language constructors
is provided in Table 1 - more details are provided in [3].

To illustrate the approach in practice, in Figure 1,
the user provided the first two rows as examples for
transforming the Address column and the synthesizer
will try to learn one or more programs consistent with
the examples. To this end, for each example ei provided,
the algorithm will start by tokenizing the input value,
eini , and the output value, eouti , using the character
classes depicted in Table 2. Then, it will generate
all possible programs, expressed using the domain-

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 3

Expressions Description

Concatenate(e1...en)
Concatenates the results
of multiple expressions

SubStr(v, p1, p2)
The sub-string

of v at p1 : p2 − 1

Pos(r1, r2, c)

The index t of a given
string s such that r1
matches some prefix

s[0 : t− 1], r2 matches

some suffix
s[t : length(s)− 1] and t

is the cth such match.

SubStr2(v, r, c)
The cthoccurrence of

regular expression r in v

ConstStr(s) The constant string s

TABLE 1: FlashFill expressions

Address Transformed Address

1 730 Grand Ave Grand Ave, Nr. 730

2 5257 W Eddy St W Eddy St, Nr. 5257

3 362 Schmale Rd

4 612 Academy Drive

5 3401 S Halsted Rd

FIGURE 1: Transformation scenario

specific language, that are consistent with the provided
examples. Given that the number of such expressions
can be huge, the algorithm chooses the most suitable
expressions according to the ranking scheme. For
instance, for row 1, in FlashFill, the following expression
is a possible inferred program:

Concatenate (t1 ,ConstStr (” ,\ Nr .\ ”) , t2)
where :
t1 ≡ SubStr (v1 ,Pos(Alph , ε , 1) ,

Pos(EndTok , ε , 1)) ,
t2 ≡ SubStr2 (v1 ,Num, 1) ,
v1 ≡ ”730 Grand Ave”
EndTok ≡ the end o f s t r i n g

The logic here is to extract the street name, as t1,
using the SubStr function, i.e., the sub-string that
starts at the index specified by the first occurrence
of an alphabet token and ends at the end of string,
then to extract the street number, as t2, using the
SubStr2 function, i.e., the first occurring number,
and concatenate these two sub-strings separated by
the constant string ”, Nr. ” using the Concatenate
function.

Although for the scenario in Figure 1, the above
program is consistent with both examples, it is possible
for the algorithm to synthesise more than one expression
for a set of provided examples. This happens, especially,
when the examples describe different formats according
to the primitives from Table 2. In such cases, the final
program will include all the synthesised expressions,
joined by a conditional directive, e.g. Switch. This

Primitive Regex Description

Alph [a–zA–Z]+ One or more letters

LowAlph [a–z]+
One or more

lowercase letters

UppAlph [A–Z]+
One or more

uppercase letters

Num [0–9]+ One or more digits

AlphNum [a–zA–Z0–9]+
One ore more

letters or digits

Punct [\p{Punct}]+
One or more

punctuation signs

Space [\s]+ One or more spaces

TABLE 2: Token primitives

enables the interpretation of data that is in multiple
formats. For the rest of the paper, we describe the
formats of the examples using the notion of format
descriptor:

Definition 2.1. A format descriptor is a unique
sequence of regular expression primitives, i.e., from
Table 2, that describes one or more values from the
column to be transformed, i.e., the source column.

For example, the format descriptor for values such
as 730 Grand Ave would be <Num Space Alph Space
Alph> describing a number followed by a space,
followed by two words separated by another space.

While the above example illustrates a case in which
the program learned is able to correctly transform all
the values, this is not always the case. In general, the
generated transformations are more likely to succeed
to the extent that the following hold: (a) the correct
transformation program is expressible in the underlying
transformation language, (b) both elements in the
example pairs denote values in the domain of the
same real-world property, and (c) taken together, the
example pairs cover all or most of the formats used for
the column.

3. DISCOVERING EXAMPLES - FD BASED
SCHEME

The approach described in Section 2 synthesizes
transformation programs from examples, where an
example consists of pairs of source and target values,
〈s, t〉, where s is a literal from the source and t is a
literal from the target. In our running example, s =
730 Grand Ave and t = Grand Ave, Nr. 730. In the
spreadsheet setting, given a column of source values,
the user provides target examples in adjacent columns,
and FlashFill synthesises a program to transform the
remaining values in ways that are consistent with the
transformations in the examples. Of course, it may take
several examples to enable a suitable transformation (or
suitable transformations) to be synthesised. In fact,
the user needs to provide enough examples to cover all
the relevant patterns existing among the values to be
transformed.

The Computer Journal, Vol. ??, No. ??, ????

4 A. Bogatu, N. Paton, and A. Fernandes

3.1. Examples Generation

In this section we propose an approach to the
automatic identification of examples, drawing on
data from existing data sets. Our aim is to use
transformation program synthesis in more complex
scenarios than spreadsheets. For example, consider a
scenario in which we would like to integrate information
about issued building permits from several different
sources, and for the result to be standardised to a
single format per column. Specifically, we want to
represent the columns of the resulting dataset using
the formatting conventions used in one of the original
datasets, which acts as the target. Providing manual
examples to synthesise the transformations needed can
be a tedious task that requires knowledge about the
formats of the values existing in the entire dataset. In
our first approach, the basic idea is to identify examples
from the different sources, where the source and target
values for an attribute can be expected to represent the
same information.

To continue with our running example, assume we
have two descriptions of an issued building permit,
as depicted in Figure 2(a) and (b). To generate a
transformation that applies to the Address columns,
we need to know which (different) values in the source
and target Address columns are likely to be equivalent.
There are different types of evidence that could be
used to reach such a conclusion. In the approach
described here, we would draw the conclusion that 730
Grand Ave and Grand Ave, Nr. 730 are equivalent
from the following observations: (i) the names of the
first columns in the two tables match (because of the
identical sub-string Permit Nr. they share); (ii) there
is a functional dependency, on the instances given,
Permit Nr. → Address in each of the tables; (iii)
the names of the fifth columns (Address) of the two
tables match; and (iv) the values for the first columns
in the two tuples are the same. Note that this is a
heuristic that does not guarantee a correct outcome –
it is possible for the given conditions to hold, and for
the values not to be equivalent; for example, such a case
could occur if the Address attributes of the source and
target tables had different semantics.

More formally, assume we have two data sets, source
S and target T . S has the attributes (sa1, ...san),
and T has the attributes (ta1, ...tam). We want values
from S to be formatted as in T . Further, assume that
we know instances for S and T . Then we can run a
functional dependency discovery algorithm (e.g. [6])
to hypothesise the functional dependencies that exist
among the attributes of S and T . This gives rise to
collections of candidates functional dependencies for S
and T , S.FD = {sai → saj , ...} and T.FD = {tau →
tav, ...}. Note that, in general, sai and tau can be lists
of attributes.

In addition, assume we have a function, Matches,
that given S and T , returns a set of pairwise

Algorithm 1 Example discovery using functional
dependencies.

1: function FdEgsGen(S,T)
2: Egs← {}
3: for all sa ∈ S and ta ∈ T do
4: if 〈sa, ta〉 ∈Matches(S, T) then
5: for all (sa→ sad) ∈ S.FD and
6: (sa→ sad) ∈ T.FD do
7: if 〈sad, tad〉 ∈Matches(S, T) then
8: EgV als← select distinct

9: S.sad, T.tad from S, T where

10: S.sa = T.ta

11: EgPairs← (sad, tad, 〈EgV als〉)
12: Egs← Egs ∪ {EgPairs}
13: end if
14: end for
15: end if
16: end for
17: return Egs
18: end function

matches between the attribute names in S and T ,
Matches(S, T) = {〈sai, taj〉, ...}. Matches can be
implemented using a schema matching algorithm, most
likely in our context making use of both schema and
instance level matchers [7]. In the case where the left
hand sides of the two functional dependencies sai → saj
and tau → tav are lists of attributes, we say that
sai matches tau if both lists have the same number of
elements and there are pairwise matches between the
attributes of the two lists. Then Algorithm 1 can be
used to compute a set of examples for transformations
between S and T . If S.sa and T.ta are list of attributes,
then the join condition used in the SQL query at lines
8 − 10 is a conjunction of comparisons between the
matching elements. While this may seem restrictive,
it is a necessary condition for finding suitable example
candidates.

For the example in Figure 2(a) and (b), (c) illustrates
the intermediate results used by or created in Algorithm
1.

3.2. Examples Validation

Although Algorithm 1 returns sets of examples
that can be used for synthesising transformations (for
example, using FlashFill [3] or BlinkFill [4]) there is no
guarantee that the transformation generation algorithm
will produce effective transformations. The synthesised
transformations may be unsuitable for various reasons,
e.g., (a) the required transformation cannot be
expressed using the available transformation language,
(b) the data is not amenable to homogenisation (e.g.
because there is no regular structure in the data), or
(c) there are errors in the data. As a result, there
is a need for an additional validation step that seeks
to determine (again automatically) whether or not a

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 5

S.Permit Nr. S.Date S.Contractor S.Cost S.Address S.Permit Type

100484472 2013-05-03 BILLY LAWLESS 83319 730 Grand Ave Renovation

(a) Source

T.Permit Nr. T.Date T.Cost T.Contractor T.Address T.Type

100484472 05/03/2013 $83319.00 BILLY LAWLESS Grand Ave, Nr. 730 Renovation

(b) Target

Matches(S, T)

{〈S.Permit Nr., T.Permit Nr.〉, 〈S.Date, T.Date〉,
〈S.Cost, T.Cost〉, 〈S.Address, T.Address〉, ...}

S.FD = T.FD

{Permit Nr.→ Date, Permit Nr.→ Cost,

Permit Nr.→ Address, Permit Nr.→ Contractor, ...}

Generated
Examples

{〈S.Date, T.Date, 〈”2013− 05− 03”, ”05/03/2013”〉〉,
〈S.Cost, T.Cost, 〈”83319”, ”$83319.00”〉〉,

〈S.Address, T.Address, 〈”730 Grand Ave”, ”Grand Ave, Nr. 730”...}

(c) Partial intermediate and final results from the algorithm

FIGURE 2: Building permits example

suitable transformation can be synthesised.
In our approach, the set of examples returned by

Algorithm 1 is discarded unless a k-fold cross validation
process is successful. In this process, the set of
examples is randomly partitioned into k equally sized
subsets. Then, transformations are synthesised, in
k rounds, using the examples from the other k − 1
partitions, and the synthesised transformation is tested
on the remaining partition. Although k-fold cross
validation can be used with different thresholds on the
fraction of correct results produced, in the experiments,
we retain a set of examples only if the synthesised
transformations behave correctly throughout the k-fold
validation process. In our experiments, we used k = 10.

4. EVALUATION OF FD BASED SCHEME

In this paper, we hypothesise that the process of
transforming data from one format into another using
the recent work on program synthesis can be automated
by replacing the user-provided examples with those
identified by Algorithm 1. In a scenario in which
information from multiple, heterogeneous data sets is to
be integrated, in Wrangler[2] or FlashFill[3], it falls on
the data scientists either to identify values that need to
be transformed in one data set and their corresponding
versions in a second data set, or to provide the target
versions for some of the source values. Our approach
removes the user from the process by automating the
identification of examples for use by program synthesis.

To illustrate and evaluate this method we use
open government web data, available as CSV files,
and we build a process pipeline which makes use
of several existing pieces of work. Specifically, the
process starts by using an off-the-shelf matcher to
identify column level matches between a source data
set and a target one (Match), then for each data
set an off-the-shelf profiling tool is used to identify
functional dependencies, which are then used together

with the previously discovered matching column pairs
to generate input-output examples for the desired
transformations using Algorithm 1. The resulting sets
of examples are then validated using a k-fold cross-
validation process, as described in Section 3. Note
that, in practice, the first two steps of our pipeline
are necessary only if the input data doesn’t explicitly
contain pre-discovered matching correspondences or
functional dependency candidates, e.g. a relational
database that contains explicit FDs for its relations.

Finally, the validated pairs are fed to a synthesis
algorithm. Note that only the generation of examples is
claimed as our main contribution and, hence, evaluated
in this section. Although they are relevant to the
use of the approach in practice, we do not seek to
directly evaluate the off-the-shelf components we use:
(i) the effectiveness of the implementation of Match; (ii)
the effectiveness of the functional dependency detector;
or (iii) the effectiveness of the format transformation
synthesizer. In all cases, these works have been
evaluated directly by their original authors and/or in
comparative studies, and we do not seek to replicate
such studies here. Rather, we carry out experiments
that investigate example discovery, validation and the
quality of the synthesised program, for the approach
described in Section 3.

4.1. Experimental Setup

In the experiments we use data from the open
government data sets listed in Table 3. For each
domain, the URLs represent the location of the source
and target datasets, respectively. The last two columns
illustrate the size (cardinality and arity) of each dataset.
Recall from Section 3 that the FD-based technique relies
on the information overlap existing between source and
target datasets. Consequently, for the evaluation we
picked data on similar domains from different sources
that have different levels of overlap. For example, the

The Computer Journal, Vol. ??, No. ??, ????

6 A. Bogatu, N. Paton, and A. Fernandes

Domain URLs Card. Arity

Food
Hygiene

ratings.food.gov.uk,
data.gov.uk

12323
61

7
10

Lobby

data.cityofchicago.org,
data.cityofchicago.org

(different years)
7542
210

12
19

Doctors/

Addresses
www.nhs.uk,
data.gov.uk

7696
17867

19
3

Building
Permits

app.enigma.io,
data.cityofchicago.org

10000
1245

13
13

Citations

dl.acm.org/results.cfm,

ieeexplore.ieee.org
1072
2000

16
11

TABLE 3: Data sources

source dataset for the Food Hygiene domain contains
details about food hygiene ratings from 2015 across
the whole U.K., while the target dataset illustrates
information from a certain area, e.g. a single council
or county. Therefore the overlap between source and
target datasets might not be very large. In other words,
the size of the source/target is not an accurate estimator
of the expected overlap.

For Matching, we used COMA 3.0 Community
Edition 2, with schema and instance level matchers,
and the following parameter values: MaxN = 0 and
Threshold = 0.2. The first parameter specifies that
attributes can only be in 1:1 matching relationships
with each other. The second value specifies the minimal
confidence a correspondence between two elements must
reach in order to be accepted as a match. For functional
dependency discovery we used HyFD3[6] with the Null
Semantics setting set to null 6= null. This last setting
is needed because real-world data often contains null
values. So for a schema S(A,B), if there are two tuples
r1 = (null, 1) and r2 = (null, 2), if null = null then
A→ B is not a functional dependency. In order to avoid
discarding functional dependencies in such situations
we assume null 6= null. For synthesising and running
transformations, we used a Java implementation of
FlashFill described in [8]. All experiments were run
on Ubuntu 16.04.1 LTS installed on a 3.40 GHz Intel
Core i7-6700 CPU and 16 GB RAM machine.

4.2. Experiment 1

Can Algorithm 1 identify candidate column pairs?
To evaluate this, we report the precision (TP

TP+FP)

and recall (TP
TP+FN) of the algorithm over data sets

where there are known suitable candidates. For this
experiment, true positive (TP), false positive (FP) and
false negative (FN) are defined as: TP – the two
columns represent the same concept; FP – the two
columns do not represent the same concept; and FN –
a correct result that is not returned. The ground truth
for computing precision and recall in this experiment

2http://bit.ly/2fLVvtl
3http://bit.ly/2f5DwJW

was manually created for the domains in Table 3 - a
column from the source and a column from the target
create a pair in the ground truth if they represent the
same concept, e.g. Business Name columns in Food
Hygiene, Author Names columns in Citations, etc.

Examples of candidate columns pairs that are
identified by Algorithm 1, are given in Table 4. The
last column illustrates the number of unique example
pairs generated by Algorithm 1 for each case.

The results for this experiment are presented in
Table 5, for the data sets in Table 3. In general,
both precision and recall are high. In the case of the
Building Permits domain, there are 3 attributes in each
dataset representing a cost (see Row 9 in Table 4 for an
example). Although there are 9 possible source column-
target column alignments, Algorithm 1 was able to
identify the correct ones and returned no false positives.
Food Hygiene precision is 0.86 due to a FP match
identified by COMA. An example of this match is on
the second row of Table 4. The two columns have
the same name (AddressLine1), but different semantics.
The precision and recall for Citation are reduced by one
FP match identified by COMA (represented in the last
row of Table 3) and 2 FNs (i.e. 2 pairs of columns that
were not reported as matches by COMA).

4.3. Experiment 2

Is the validation process successful at identifying
problematic column pairs? A column pair is problematic
if we cannot synthesise a suitable transformation. Note
that in Experiment 1 we measured the effectiveness
of Algorithm 1 at identifying correct column pairs.
Here we check whether the alignment of values, i.e.
the result of the select at lines 8-10 in Algorithm 1,
denotes suitable examples for synthesizing a correct
transformation. To evaluate this we run a k-fold cross
validation task, with k = 10, on each pair of columns
from Experiment 1. We investigate here the candidate
pairs for which validation has failed; the cases for which
validation has passed are discussed in Experiment 3.
A pair of columns is considered to pass the validation
step if all transformations are correct for each of the 10
iterations.

The fraction of the candidate column pairs that pass
validation is reported in the last column of Table 5.
Column pairs have failed validation for the following
reasons: (i) The matched columns have different
semantics, and thus incompatible values, for which no
transformation can be produced. This is the case for 2
of the 8 column pairs that fail validation (for example
see Row 2 and Row 14 in Table 4). (ii) The matched
columns have the same semantics, but FlashFill has
failed to synthesise a suitable transformation. This is
the case for 2 of the column pairs that fail validation (for
example, consider the lists of author names from Row
11 in Table 4). (iii) There are issues with the specific
values in candidate columns. This is the case for 4 of

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 7

Domain Src Semantics Source Example Target Semantics Tgt Example # egs.

1 Food Hyg. Rating Date 2015-12-01 Rating Date 01/12/2015 57

2 Food Hyg. Building Name Royal Free Hospital Street Pond Street 59

3 Food Hyg. Business Name Waitrose Business Name Waitrose 60

4 Lobby Person Name Mr. Neil G Bluhm Person Name Bluhm Neil G 206

5 Lobby Phone Nr. (312) 463-1000 Phone Nr. (312) 463-1000 191

6 Docs/.Addrs. Address 55 Swain Street,Watchet Street Swain Street 41

7 Docs./Addrs. City Salford City Manchester 28

8 Build. Permits Address 1885 Maud Ave Address Maud Ave,Nr. 1885 26

9 Build. Permits Cost 6048 Cost $6048.00 22

10 Build. Permits Issue Date 2014-06-05 Issue Date 06/05/2014 26

11 Citations Author Names Sven Apel and Dirk Beyer Author Names S. Apel; D. Beyer 56

12 Citations Conf. Date ” ” Conf. Date 2-8 May 2010 32

13 Citations Pub. year 2011 Pub. year 2011 56

14 Citations Nr. of pages 10 Start page 401 56

TABLE 4: Transformation candidates

Domain Candidates Precision Recall Valid

Food Hyg. 6 0.83 1.00 5/6

Lobby 9 1.00 1.00 9/9
Docs./

Addrs. 2 1.00 1.00 1/2
Build.
Perm. 12 1.00 1.00 12/12

Citations 7 0.86 0.75 1/7

TABLE 5: Experiments 1 and 2

the column pairs that fail validation (as an example
consider the missing information from Row 12 in Table
4) and inconsistent values (in Row 7 in Table 4).

It is important to note that in practice, the
effectiveness of the off-the-shelf tools that we used here
can be impacted by characteristics of the data such
as the ones exemplified above. This evaluation shows
that the validation method we employ is able to filter
out example sets that otherwise would produce invalid
transformations or no transformations at all.

4.4. Experiment 3

Do the synthesised transformations work on the
complete data sets (and not just the training data)?
To evaluate this, we report the precision and recall of
validated transformations in Table 6; the missing row
numbers are the examples from Table 4 for which the
transformations failed validation. In computing the
precision and recall, we use the following definitions:
TP – the transformation produces the correct output;
FP – the transformation produces an incorrect output;
FN – the transformation results in an empty string.

Of the 28 validated transformations from Table 5, all
but 6 are identity transformations, i.e. the source and
target data values are the same (e.g.Rows 3, 5 and 13
in Table 6). This can often happen in practice. For
instance, Row 13 represents the year for a publication
which is most commonly represented as a four digit

number. In such cases, FlashFill proved to be able
to identify that the transformation is only a copying
operation. Of the 6 cases where the values are modified,
the precision and recall are both 1.0 in 3 cases (Rows
1, 8 and 10 in Table 6). For rows 1 and 10 the
transformations rearrange the date components and
replace the separator. Our experiments confirmed the
results of [3] according to which FlashFill is effective
in such simple cases. For Row 8, the transformation is
more complicated given that the street name does not
always have a fixed number of words, or that the street
number can have several digits. In this case Algorithm
1 was able to identify enough examples to cover all
the existing formats. There were problems with the
transformations generated in 3 cases. For Row 4, a few
source values do not conform to the usual pattern (e.g.
the full stop is missing after the salutation). For Row 9,
not all source values are represented as integers, giving
rise to incorrect transformations. For Row 6, similarly
to Row 9, the examples do not cover all the relevant
address formats, i.e. 41 examples are used to synthesise
a program to transform a rather large number of values
(approx. 7700).

4.5. Discussion

The technique evaluated above proves to be effective
in scenarios where certain conditions are met. The most
important of these is that the source and target contain
overlapping information on some of the tuples, i.e. the
left-hand sides of the functional dependencies used in
Algorithm 1, and format diversity on the corresponding
right-hand side.

Another important condition is for FlashFill to be
able to synthesise transformations from the pairs of
generated examples. The evaluation shows that as long
as these conditions are met, we can delay the need for
user intervention in the cleaning process by synthesizing
and applying some transformations automatically.

The Computer Journal, Vol. ??, No. ??, ????

8 A. Bogatu, N. Paton, and A. Fernandes

Src Semantics Src Value Tgt Semantics Tgt Value Precision Recall

1 Rating Date 2015-12-01 Rating Date 01/12/2015 1.0 1.0

3 Business Name Waitrose Business Name Waitrose 1.0 1.0

4 Person Name Mr. Neil G Bluhm Person Name Bluhm Neil G 0.98 0.84

5 Phone Nr. (312) 463-1000 Phone Nr. (312) 463-1000 1.0 1.0

6 Address 55 Swain Street,Watchet Street Swain Street 0.68 1.0

8 Address 1885 Maud Ave Address Maud Ave,Nr. 1885 1.0 1.0

9 Cost 6048 Cost $6048.00 0.97 1.0

10 Issue Date 2014-06-05 Issue Date 06/05/2014 1.0 1.0

13 Pub. year 2011 Pub. year 2011 1.0 1.0

TABLE 6: Experiment 3

5. DISCOVERING EXAMPLES -
WEIGHTED SCHEME

The technique described in the previous section uses
a set of hypothesised functional dependencies to pair
values from a source dataset S : (sa1, ...san) and a
target dataset T : (ta1, ...tam), that represent the same
real world entity. While the evaluation from Section
4 showed that Algorithm 1 can be effective in some
scenarios, there are cases where the conditions required
by the algorithm are not satisfied. For instance,
candidate functional dependencies may be missing or
state-of-the-art algorithms are unable to find them due
to inconsistencies in values. Furthermore, the number
of example pairs generated by Algorithm 1 can be
very large, while the number of cases covered by the
examples is small. For instance, for row 1 in Table 4,
the algorithm generated 57 example pairs, all describing
a single date format. Since the complexity of synthesis
algorithms such as FlashFill is known to be exponential
in the number of examples and high degree polynomial
in the size of each example[9], not only is it the case
that many such examples are useless, but they increase
the runtime of the synthesis process.

To address these scenarios, in this section we propose
an approach to the automatic identification of examples
using syntactic similarities existing between values of
matching column pairs, as returned by the Matches
function introduced in the previous section. We also
propose an incremental example selection algorithm
which, once the example pairs are generated, selects a
subset from which there is evidence that FlashFill can
synthesise effective transformations.

The objective of the example discovery technique,
described in subsection 5.1, is, given two columns
from different tables, to heuristically identify pairs of
values that are equivalent. To this end, we start
by tokenizing each column value, where each token
is a substring of the original value delimited by
punctuation or spaces. The tokens enable the grouping
of values into blocks, where each block contains values
from both columns with common tokens. An intra-
block, pair-wise comparison of values is conducted to
determine potentially equivalent instances. Given the
fact that the syntactic comparison does not guarantee

the optimal pairing of equivalent values, each candidate
pair obtained will have an associated weight. This
measure is used in the second phase, described in
subsection 5.2, to determine the minimal sub-set of
candidate value pairs that can be used as examples to
synthesise an effective transformation program.

5.1. Weighted Examples Generation

Consider a pair of columns (S.sa, T.ta), described
in Figure 3, between which there is a matching
correspondence as returned by the Matches function.
The objective is to identify which values in sa and ta
are likely to be equivalent. Starting from the assumed
matching relationship between the two columns, we can
pair values based on their string representations and
determine that, for example, 730 Grand Ave and Grand
Ave, Nr. 730 represent the same address.

More formally, assume we have two datasets, source
S and target T . S has the attributes (sa1, ...san), and
T has the attributes (ta1, ...tam). We want values from
S to be formatted as in T . Further, assume we have
a function, Matches, that returns a set of pairwise
matches between the attribute names in S and T . Then,
we can use Algorithm 2 to pair values from sai and taj
that are likely to be equivalent. The obtained pairs
can then be used as examples for synthesis algorithms
to generate transformation programs that will format
values from sai as in taj . Figure 3 depicts a pair of
matching columns, each with 4 values. Notice that
in a real world case, the number of tuples of sa and
ta will most likely be different. For the rest of this
paper, we define the example set as the collection of
pairs (eini , e

out
i), with eini a value from sa and eouti its

equivalent value from ta. For example, if eini is row 1
from sa, then eouti is row 4 from ta. Analogously, we
define the test set as the collection of values from sa
for which there are no corresponding values identified in
ta, i.e. the set of values that will be transformed by the
transformation program synthesised using the example
set.

When applied on the column pair from Figure 3,
Algorithm 2 comprises of the following steps:
Tokenise - lines 4,5: For each value in columns sa
and ta, the Tokenise method transforms the string

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 9

Algorithm 2 Weighted examples discovery using
string similarities.

1: function wEgsGen(S,T)
2: Egs← {}
3: for all 〈sa, ta〉 ∈Matches(S, T) do
4: Toks ← Tokenise(sa)
5: Tokt ← Tokenise(ta)
6: Idx← Index(Toks, T okt)
7: Egs← Egs ∪WeightedPairing(Idx)
8: end for
9: return Egs

10: end function

sa

1 730 Grand Ave

2 93 Roland St

3 21 Duke Ave

4 44 Park Rd

ta

1 Robinson St, Nr. 14

2 Park Rd, Nr. 44

3
Grand Central Ave,

Nr. 331

4 Grand Ave, Nr. 730

FIGURE 3: Matching column pair

representation of the value into an array representation,
where each element of the array is a token as defined
by the list of regular-expression-based primitives from
Table 2. The last primitives, punctuation and space,
are being used as separators. The intuition is that a
punctuation sign has small significance in determining
the similarity of two values, e.g. the separators
have a small weight in determining the equivalence of
24/04/1989 and 04.24.1989. To illustrate this, Figure
4, describes the tokenised representations of values from
Figure 3.
Index - line 6: The tokens are then used to create
an inverted index I(sa, ta) for the pair of matching
columns. For each token t, the inverted list I[t] is
a list of all values from sa and ta which contain
t. For example, if t =Ave, I[t] = [sai.’730 Grand
Ave’,taj .’Grand Ave, Nr. 730’, ...] - all values from sa
and ta containing token Ave. Figure 5 shows three index
entries for tokenised values from Figure 4 - each row
denotes an index entry with the Token column being the
key and Inverted list being the list of values containing
the token.
Weighted Pairing - line 7: Each source value in
each index entry is paired, by Algorithm 3, with the
most similar target value according to a confidence
measure described below. For instance, if t = Ave and
I[t] = [sa.’730 Grand Ave’, ta.’Grand Ave, Nr. 730’,
ta.’Grand Central Ave, Nr. 331’], then the returned
pair would be (sa.’730 Grand Ave’, ta.’Grand Ave, Nr.
730’). Similar examples can be seen in Figure 6 for
indexed values from Figure 5.
Weight - Each pair of values (sa.x, ta.y), returned at
the previous step, will have a weight σ assigned to
it, computed in the SimPairing method (line 3 in
Algorithm 3), as described by Equation 1. We define

Algorithm 3 The WeightedPairing function of Alg. 2

1: function WeightedPairing(Idx)
2: for all e ∈ Idx.entries do
3: pairs← SimPairing(e)
4: maxPair ← null
5: for all p ∈ pairs do
6: if maxPair.weight < p.weight then
7: maxPair ← p
8: end if
9: end for

10: Egs← Egs ∪ {maxPair}
11: end for
12: return Egs
13: end function

sa - tokenised

1 [730,Grand,Ave]

2 [93,Roland,St]

3 [21,Duke,Ave]

4 [44,Park,Rd]

ta - tokenised

1 [Robinson,St,Nr,14]

2 [Park,Rd,Nr,44]

3

[Grand,Central,Ave,

Nr,331]

4 [Grand,Ave,Nr,730]

FIGURE 4: Tokenised values

θ, in Equation 2, as the overlap coefficient between two
strings of characters which divides their intersection by
the size of the smaller of the two sets4; M as the number
of tokens under which the pair is indexed; IDFrk, in
Equation 3, as the inverse document frequency of a
token rk, under which the pair (sa.x, ta.y) has been
indexed, computed as a logarithmically scaled fraction
obtained by dividing the total number of values from
both columns by the number of values containing token
rk; and φ as a similarity measure5 of two strings
obtained by removing token rk from the two original
values (if by removing the token from one of the values
the result is the empty string, then φ is computed
using the original strings). In Equation 1, θ is used to
penalise pairs with very dissimilar values, and IDFrk

is used to weight down pairs indexed under a very
common token, e.g. St, Ave. For instance, pair (sa.’730
Grand Ave’,ta.’Grand Ave, Nr. 730’) from Figure 6
has been indexed under two tokens, Grand and Ave.
The first entry will have a higher weight because there
are four occurrences of Ave in Figure 3, while only
three of Grand. Notice that the proposed weight is not
intended to be a normalised similarity measure between
two strings, but identify the pairs of value instances
that are more likely to be valid examples for synthesis
algorithms.

σ = θ(sa.x, ta.y)× max
1≤k≤M

(IDFrk × φ(sa.x, ta.y)) (1)

4In computing the overlap we only consider alpha-numeric,
lowercase characters

5In our experiments we used the Euclidean distance metric

The Computer Journal, Vol. ??, No. ??, ????

10 A. Bogatu, N. Paton, and A. Fernandes

Algorithm 4 Examples selection

1: function EgsSelection(Egs)
2: Egs← Sort(Egs)
3: minEgs← InitEgs(Egs)
4: p← Synthesise(minEgs,Egs \minEgs)
5: while p 6= ε do
6: if GetFormat(p.in) /∈ GetFormats(Egs \
minEgs) then

7: return REJECT Egs
8: end if
9: minEgs← minEgs ∪ {p}

10: p← Synthesise(minEgs,Egs \minEgs)
11: end while
12: return minEgs
13: end function

Token Inverted list

Grand

[sa.’730 Grand Ave’,ta.’Grand Central

Ave, Nr. 331’,ta.’Grand Ave, Nr. 730’]

Ave

[sa.’730 Grand Ave’,sa.’21 Duke Ave’,

ta.’Grand Central Ave, Nr. 331’,

ta.’Grand Ave, Nr. 730’]

Park [sa.’44 Park Rd’,ta.’Park Rd, Nr. 44’]

FIGURE 5: Indexed values

θ(X,Y) =
|X ∩ Y |

min (|X|, |Y |)
(2)

IDFrk = log

(
N

nrk

)
(3)

To illustrate the behaviour of Equation 1 in practice,
Table 7 shows examples of cases we encountered and
their respective coefficient values. In the table, the first
column depicts the token, i.e., key, under which the
pair from the second column has been stored in the
index, as presented in the Index method above. The last
three columns are the values for θ - overlap coefficient;
IDFrk - IDF of the key token; and φ - string similarity.
For both θ and φ we only considered alpha-numeric
characters, i.e., non-separators. In computing φ, the
key token is also removed from the strings, unless the
result is the empty string. All coefficients are computed
using lowercase strings.

Of particular interest in Table 7 is row 2 where,
while the two strings represent the same address, the
key token is very common, therefore having a small
IDF. Thankfully, the same pair will appear in a bucket
identified by token morgan as well, which appears less
frequent than st, hence having a higher IDF - note that
in equation (1) we only consider the maximum product
of IDF and φ. The difference in string sizes for the
third row leads to a relatively small φ, but the high
overlap and token IDF compensate. The last two rows
indicate pairs that should not be considered examples,
i.e. false positives. Here the dissimilarity of strings

Algorithm 5 The Synthesise method of Alg. 4

1: function Synthesise(Egs,TestEgs)
2: τ ← FlashFill(Egs)
3: for all p ∈ TestEgs do
4: if τ(p.in) 6= p.out then
5: if IsF irst(p) then
6: return p
7: end if
8: end if
9: end for

10: return ε
11: end function

Token Value pairs

Grand [(sa.’730 Grand Ave’,ta.’Grand Ave, Nr. 730’)]

Ave

[(sa.’730 Grand Ave’,ta.’Grand Ave, Nr. 730’),

(sa.’21 Duke Ave’,

ta.’Grand Central Ave, Nr. 331’)]

Park [(sa.’44 Park Rd’,ta.’Park Rd, Nr. 44’)]

FIGURE 6: Paired values

is being demonstrated by a low value for at least one
coefficient. In general, high values for θ and/or φ denote
strong evidence of the validity of the example instance,
while a combination of low/mid-range values suggests
false positives. Whenever the dissimilarity is not caught
by equation (1), we rely on Algorithm 4 to eliminate
false positives, as described in the next section.

The final example set, returned by Algorithm 3 for
the two columns from Figure 3 will include three pairs,
i.e. the set of distinct pairs from Figure 6, each one
having an assigned weight, which will be used in the
selection process as described in the next section.

5.2. Incremental Examples Selection

Algorithm 2 returns sets of examples that can be
used for synthesizing transformation programs using
FlashFill [3] or BlinkFill [4], but, as with the functional
dependency based technique, there is no guarantee that
effective transformations will be produced from these
examples. Furthermore, Algorithm 2 can generate a
high number of example pairs (the smallest number of
examples obtained in our experiments was 21) which
can exponentially increase the synthesis time. As a
result, we propose a selection technique that aims to
refine the example set produced by Algorithm 2 by
selecting only the smallest subset for which there is
evidence that it will produce effective transformations.
We define the evidence as the effectiveness of the
synthesis algorithms, using the selected subset, to
produce a transformation program that will correctly
transform the original set of examples generated by
Algorithm 2.

More formally, given an example set E =
{e1, e2, ..., en} produced by Algorithm 2, with ei =

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 11

Token rk Value pair θ IDFrk φ

2016

(2016-01-04,

04/01/2016) 1.0 1.27 1.0

st

(71 Morgan St,

Morgan St, Nr. 71) 1.0 0.32 0.60

mckeon

(Howard P.

Mckeon (R-Calif),

Mckeon) 1.0 2.67 0.55

robert

(Kruzel, Robert,

Robert L Danley Jr) 0.5 3.84 0.36

neal

(Tatum O’Neal,

neal h brian) 0.33 2.55 0.29

TABLE 7: Weight examples

(
eini , e

out
i

)
, the incremental selection technique, de-

scribed in Algorithm 4, returns an example set F =
{f1, f2, ...fm}, with F ⊆ E and m ≤ n, such that when
F is used as the input to a synthesis algorithm produces
a set of transformation expressions T = {τ1, τ2, ..., τp}
so that ∀ei ∈ E,∃τj ∈ T with τj

(
eini

)
= eouti .

The objective of Algorithm 4 is twofold: (i) to purge
pairs of values returned by Algorithm 2 which are not
equivalent; and (ii) to minimise the set of examples by
purging redundant pairs. For (ii), recall from Section 2
that a synthesised program is more likely to correctly
transform all the test values if the example pairs cover
all of the formats existing in the test data. But if there
are too many example pairs covering the same format,
this will exponentially increase the complexity of the
synthesis. In Algorithm 4, we consider two examples to
be redundant if they cover the same format, e.g. the
first 3 rows of Figure 9 describe the same format and a
single transformation: extract the second token from a
string of two tokens.

To illustrate the technique in practice, consider the
pair of columns depicted in Figure 7. The values of sb
represent full names of U.S. congress members, while
tb contains person last names. The objective is to
generate examples for synthesizing a transformation
program that will extract the last names from sb.
For this purpose, we start by applying Algorithm
2, which will produce a set of example pairs, 11 of
which are represented in Figure 9, together with their
corresponding weights. Next, Algorithm 4 follows the
steps described below:
Sort - line 2: The set of example pairs returned by
Algorithm 2 is sorted into descending order based on
the pair weights. The result of this step is shown in
Figure 9.
Initialise Examples - line 3: The algorithm starts
by selecting one example pair, i.e. the pair with the
highest weight, for each format present in the example
set - where a format is defined by its format descriptor
- see the format descriptor definition from Section 2.
Specifically, the pairs depicted in Figure 9 describe three
formats, i.e. rows 1-3 (< Alph Space Alph >), rows
4-7 (< Alph Space Alph Punct Alph >), and rows

sb

1 Jim K. Lee

2 Billy W. Tauzin

3 Clarence Thomas

4
Joe

Ackerman-Specter

5 Tommy Thompson

6 George W. Bush

7 Alphonso Jackson

n ...

tb

1 Benjamin-Stock

2 Bush

3 Millender-Cramer

4 Jackson

5 Thomas

6 Lee

7 Ackerman

m ...

FIGURE 7: Matching column pair

Source Value Target Value

Condoleezza Rice Rice

Juanita Millender-Cramer Millender-Cramer

George W. Bush Bush

FIGURE 8: Initialization phase

8-9 (< Alph Space UppAlph Punct Space Alph >).
Note that the pairs with the same format are grouped
together for clarity - this might not be the case in a real
world scenario. Note also that both the punctuation
and space count as token types rather than separators
(as was the case for the tokenization step in previous
section). The three examples from Figure 8 have the
highest weights for their respective formats.
Synthesise - lines 4,10: This method, illustrated in
Algorithm 5, takes as input a set of example pairs,
e.g. the pairs with the highest weights as returned
by the InitEgs method, and a set of test pairs, e.g.
the pairs with lower weights than the ones considered
as examples. Then, a transformation program is
synthesised using FlashFill from the example set (line 2
in Algorithm 5). The resulting program is then tested
against each pair from the test set. If the result of
a transformation is different from the expected test
output (line 4 in Algorithm 5), and if there has not been
a previous value describing the same format which was
correctly transformed (line 5 in Algorithm 5), then that
failing pair is returned. The IsF irst(p) method at line
5, checks if pair p has the highest weight for the format
it describes.
Increment - line 9: Every time the Synthesise method
returns a failing pair, it is added to the previous set
of examples. The intuition is that the initial set
of examples did not cover the format described by
the failing pair, therefore, by considering the pair an
example, the format will be covered.
Halting Condition - line 6: Algorithm 4 ends when
there are no failing test pairs, or when the halting
condition is met: all the pairs describing a failing format
have been used as examples. This means that there
are not enough examples for that format, the algorithm
returns and the example set is rejected.

To continue with our US Congress example, when
Synthesise is called at line 4 in Algorithm 4, the

The Computer Journal, Vol. ??, No. ??, ????

12 A. Bogatu, N. Paton, and A. Fernandes

sb tb W

1 Condoleezza Rice Rice 2.21

2 Michael Leavitt Leavitt 2.16

3 Clarence Thomas Thomas 2.09

4
Juanita

Millender-Cramer Millender-Cramer 1.76

5
Joe

Ackerman-Specter Ackerman 1.34

6 Tammy Liu-Vitter Liu-Vitter 1.32

7
Walter

Ben-Stock Benjamin-Stock 0.84

8 George W. Bush Bush 0.81

9 Joe K. Pitts Pitts 0.79

FIGURE 9: Algorithm 2 sorted results

pairs from Figure 8 will be used as the example set to
synthesise a transformation program τ , which will then
be tested against the rest of the values from Figure 9.
Notice that for row 5 of Figure 9, it is likely that the
transformation synthesised from the examples depicted
in Figure 8 will fail, i.e., τ(Joe Ackerman-Specter) 6=
Ackerman, because Ackerman is not the last name. The
pair at row 4 has the highest weight from the test pairs
describing the same format f , meaning that f has not
been covered by the previous example set, so the pair
will be added to the example set at line 9 in Algorithm
4, and a new iteration started. Of particular interest
is row 7 in Figure 9. Notice that, given the values
exemplified so far, there is no transformation program
that can transform Walter Ben-Stock to Benjamin-
Stock. If the previous pair (row 6), which has a higher
weight, is correctly transformed, i.e. τ(Tammy Liu-
Vitter) =Liu-Vitter, then the pair at row 7 will be
considered a false-positive returned by Algorithm 2,
ignored, and the algorithm will continue towards a
successful result. This result will include rows 1, 4,
5, and 8 of Figure 9, i.e. the minimal set of examples
that can produce a transformation program that can
correctly transform the rest of pairs. Otherwise, if
τ(Tammy Liu-Vitter) 6=Liu-Vitter and τ(Walter Ben-
Stock) 6=Benjamin-Stock, the halting condition is met,
i.e. there are no more pairs for the format described by
these two failing pairs, and the example set generated
by Algorithm 2 is rejected.

At this point we consider that there is no need for
further validation of the returned set of examples, e.g.,
employing a k-fold cross-validation step similar to the
one from Section 3. The intuition is that if Algorithm
4 was successful, there is enough evidence to consider
that FlashFill can synthesise a transformation program
that will correctly transform the source values covered
by the obtained examples. Furthermore, if applied
on the output of Algorithm 4, the cross-validation, as
described in Section 3, will fail because it requires at
least two example pairs per format in the candidate
example set. In other words, the validation technique
requires redundant example candidates which is exactly
what Algorithm 4 tries to remove.

Domain URLs Card. Arity

Food
Hygiene

ratings.food.gov.uk,
data.gov.uk

12323
61

7
10

Lobbyists
data.cityofchicago.org,
data.cityofchicago.org

7542
210

12
19

Doctors/

Addresses
www.nhs.uk,
data.gov.uk

7696
17867

19
3

Building
Permits

app.enigma.io,
data.cityofchicago.org

10000
1245

13
13

US
Congress

opensecrets.org

govtrack.us/congress
620
11870

9
10

Restaurants
app.enigma.io
data.ny.gov

25000
21000

19
18

Movies
imdb.com
imdb.com

75000
15000

4
5

Employment
data.cityofchicago.org
data.cityofchicago.org

31000
12000

8
7

TABLE 8: Data sources used in experiments

6. EVALUATION OF WEIGHTED SCHEME

In this section we evaluate the effectiveness of
Algorithms 2 and 4. As was the case with the
functional dependency based proposal, we hypothesise
that the task of providing examples by the user,
which is often required in current wrangling tools,
can be partly replaced by Algorithms 2 and 4. Note
that only the examples generation technique, from
Algorithms 2 and 3, and the examples selection
technique from Algorithms 4 and 5, are claimed as
our contributions. We use an off-the-shelf schema
matcher to identify column level matches between
a source data set and a target data set, and the
implementation of a synthesis algorithm described in
[8] to determine the transformation programs, but we
do not evaluate the effectiveness of these solutions.
Rather, we carry out experiments that investigate
the approaches on examples generation and selection
described in the previous section, and the quality of the
transformation programs synthesised from the results
of our approaches.

6.1. Experimental setup

In the experiments we used publicly available data
from 9 different domains, describing 5 types of data in
different formats, such as addresses, monetary values,
person names, dates, and numbers. Table 8 summarises
the used datasets. For each domain, the URLs
represent the location of the source and target datasets,
respectively. The last two columns illustrate the size
(cardinality and arity) of each dataset.

Once again, similarly to the experiments in Section 4,
for Matching we used COMA 3.0 Community Edition
with a similar set of parameters. For synthesis, we
used the FlashFill implementation described in [8]. All
experiments were run on Ubuntu 16.04.1 LTS installed
on a 3.40 GHz Intel Core i7-6700 CPU and 16 GB RAM
machine.

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 13

6.2. Experiment 1

The question we try to answer in this section
is: does the synthesis algorithm produce effective
transformation programs from the example pairs
generated by Algorithms 2 and 4? This is equivalent
to the question analysed in Experiment 3 of Section
4. Analyzing how effective the weighted scheme is
at identifying candidate column pairs, i.e., similar to
Experiment 1 from Section 4, would mean to measure
the effectiveness of Match, since Algorithm 2 produces
example instances for each matching pair returned by
Match. While the matching function is an essential part
of our end-to-end method, schema matching evaluation
is not our primary focus in this paper. As for the
validation part, the weighted approach doesn’t employ
a k-fold cross validation stage and relies on Algorithm
4 to discard candidate pairs if there is not enough
evidence for synthesizing transformations (as described
in the previous section). Some candidate pairs for which
example selection failed are discussed below.

For each matching column pair returned by the
Matches function, we first run Algorithm 2, the result
is passed to Algorithm 4, then, using the output
from the latter and the FlashFill implementation, a
transformation program is synthesised and applied
on the test set. Recall that, for each matching
column pair (sa, ta), the test set represents the set of
values from sa for which there are no corresponding
values from ta determined by Algorithm 2. We
report the precision and recall of the result of
transformations applied on each test set using the
following definitions: TP - the transformation produces
the correct output; FP - the transformation produces
an incorrect output; FN - the transformation resulted
in an empty string. The results of the experiment are
illustrated in Table 9. Note that the cases illustrated
here include only candidate column pairs for which the
synthesised transformation is different from the identity
transformation, e.g., rows 3 and 13 from Table 4. Our
proposed algorithms can trivially identify examples for
the identity transformation, i.e. where source and
target strings are the same, and we have seen in
Section 4 that FlashFill is able to synthesise such simple
transformations. Therefore, our focus here is on more
challenging ones.

The columns from Table 9 (starting with the second
column) represent the domain of the matching column
pair, their data type, a source instance value, the
corresponding target instance value, the number of
example pairs returned by Algorithm 2, the number of
example pairs returned by Algorithm 4, the precision,
and the recall, respectively.

6.3. Discussion

Of the 14 cases exemplified in Table 9, Algorithm
4 rejected 3 example sets: rows 3, 9, and 11. For
rows 3 and 11 the halting condition was met, while in

the case of row 9, FlashFill was unable to synthesise a
transformation program. For the rest of the matching
column pairs, the recall descended below 0.98 only in
one case: row 2. This is due to the fact that person
names often contain common tokens which can lead to
highly weighted false positives returned by Algorithms
2 and 4. This is also true for precision. In fact, all
of the cases with precision lower than 0.80 describe
person names as well. This means that providing false
positive examples to FlashFill decreases the accuracy of
transformations.

Notice that columns 6 and 7 from Table 9 denote
large differences between the number of example pairs
generated by Algorithm 2 and the pairs selected by
Algorithm 4. This suggests that many of the pairs
generated by the former are covering a relatively small
number of formats. For instance, for the Food Hygiene
domain, all source values of the 57 example pairs
generated by Algorithm 2 are describing a single date
format, e.g., row 1. Therefore, Algorithm 4 returned a
single pair. It is important to understand that while
the source values of the example pairs contain dates
in a single format, the test set might contain values in
different formats. If that was to be the case, then we
would see a decrease in recall, e.g. row 12: some names
from the source column have a middle name, but this
format is not represented in the examples. This suggests
that, for all cases exemplified in Table 9 that returned
a perfect recall, each format present in the test set is
represented at least once in the examples set.

6.4. Scheme comparison

In this section we provide a comparative study of
the two schemes for generating examples presented
in this paper. We analyse the computational cost
of each technique, i.e., Algorithms 1, 2, and 4,
the computational cost of transformation synthesis
using examples generated by each method, and the
consequences (if any) of removing redundant examples
- Algorithm 4. We do not analyse here the complexity
of the other algorithms used in our experiments, e.g.
Match, FlashFill, as this has been done in their original
papers.

Table 10 gives details on cases from Table 9 for which
examples have been generated using both schemes. The
other cases from Table 9 have only been used with the
weighted technique because the conditions for the FD-
based approach were not met, e.g. FDs could not be
discovered. We report the row identifier from Table
9 on the first column, while the rest of the columns
represent the source/target cardinality, the number of
example pairs returned by Algorithm 1, the number of
example pairs returned by Algorithm 2 and Algorithm
4, and the time in seconds required to generate the
examples by each algorithm. Note that we only analyse
cases for which the validation stage has been passed
(for FD-based scheme) and for which the selection stage

The Computer Journal, Vol. ??, No. ??, ????

14 A. Bogatu, N. Paton, and A. Fernandes

Domain Type Source Target Alg.2 Alg.4 Prec Rec

1 Food Hyg. Date 2015-12-01 01/12/2015 57 1 1.00 1.00

2 Lobbyists Pers. Name Mr. Neil G Bluhm Bluhm Neil G 206 25 0.75 0.71

3 Docs./Addr. Address 55 Swain Street, Watchet Swain Street 2819 N/A N/A N/A

4 Build. Perm. Address 1885 Maud Ave Maud Ave,Nr. 1885 1051 14 0.90 1.00

5 Build. Perm. Cost 6048 $6048.00 257 3 0.99 1.00

6 US Congress Pers. Name Pete Stark (D-Calif) Stark 473 34 0.77 1.00

7 US Congress Pers. Name Pete Stark (D-Calif) Pete 279 25 0.75 1.00

8 US Congress Pers. Name Pete Stark (D-Calif) Calif 23 6 0.94 1.00

9 Restaurants Address 41 Page Avenue, Delhi Page Avenue 1401 N/A N/A N/A

10 Restaurants Date 2014-06-23 00:00:00+00 06/23/2014 1148 1 1.00 1.00

11 Movies Actor Name James Brown james brown 1872 N/A N/A N/A

12 Movies Pers. Name Perry Lang perry lang 1680 17 0.79 0.98

13 Employment Pers. Name OUTTEN, MIA G Mia G Outtent 8903 22 0.97 0.99

14 Addresses Address 2440 N Cannon Drive Cannon Dr 21 4 0.87 1.00

TABLE 9: Evaluation results

#

Source/Target

Size Alg.1 Alg.2 Alg.4 Alg.1 (s) Alg.2 (s) Alg.4 (s)

1 12323/61 57 57 1 0.006 0.2 2.3

2 7542/210 206 206 25 0.005 0.15 42.2

4 10000/1245 26 1051 14 0.006 12.5 8.9

5 10000/1245 22 257 3 0.005 0.15 2.9

TABLE 10: Scheme comparison

(weighted scheme) returned at least one example pair.

The complexity of Algorithm 1 is given by the number
of matching relationships of the source and target and
by the number of functional dependency candidates for
each dataset (lines 3 and 5-6). In practice, the numbers
of matches and FDs tend to be small, meaning that
the time required to run Algorithm 1 is dominated
by the select query at lines 8-10. Conversely, the
complexity of Algorithm 2 is defined by the number
of records of the two datasets, i.e., the more instance
values two columns have, the more entries the index
will contain, which translates into more pairwise string
similarity comparisons. The first two rows of Table 10
show that if we don’t use functional dependencies and
resort to fuzzy string matching, generating the same
number of examples takes 30 times longer. Often (last
two rows), the pairs generated by Algorithm 2 contain
false positives, i.e. example instances for which the two
strings don’t represent the same thing. To mitigate
such cases we employ Algorithm 4, the complexity of
which is given by FlashFill - exponential in the number
of examples and highly polynomial in the length of
examples [9]. The number of seconds required to refine
the examples generated by Algorithm 2 using Algorithm
4 is reported in the last column of Table 10.

The benefit of minimizing examples can be observed
in Figure 10, where the synthesis time, i.e. the time it
takes FlashFill to synthesise a transformation program,
is reported. We compare synthesizing transformations
from the examples generated by Algorithm 1 against
synthesizing transformations from examples generated

by Algorithm 2 and refined by Algorithm 4. It can be
observed that eliminating redundant example instances
substantially improves synthesis time, especially when
there are many examples per format: the fact that for
row 2 Algorithm 4 reduced 206 examples to 25 suggests
that there are almost 9 examples per format.

With respect to the transformations synthesised,
for cases 1 and 2 from Table 10 the transformation
resulting from the examples returned by Algorithm 1
was equivalent to the transformation obtained from
the examples returned by Algorithm 4. For the last
two cases, the transformation synthesised from the
examples returned by Algorithm 4 was more complex6.
This is unsurprising, as the number of candidate
pairs generated by Algorithm 2 contains more formats
that the ones from Algorithm 1, and these formats
are successfully identified in Algorithm 4. Recall
from Section 2 that FlashFill is able to synthesise
transformations that cover multiple cases, i.e., formats,
through conditional expressions, e.g. Switch.

Overall, the experiments from this section, together
with the evaluation from Section 4, show that
the functional dependency based approach efficiently
generates more effective example pairs, as long as
FDs can be discovered. This approach can lead to
an increase in synthesis complexity due to redundant
example instances, but the problem can be solved in
practice by combining Algorithm 1 with the example
selection technique from Algorithm 4. For cases where

6We consider a transformation to be complex if it contains
more conditional branches.

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 15

1 2 4 5
0

20

40

60

80

22

81.5

6.3 7.2
2.3

12

4 2.4

Table 10 rows

se
co

n
d
s

Alg.1 Alg.2+4

FIGURE 10: Synthesis time (s)

functional dependencies are not available, the weighted
solution can prove viable at the expense of effectiveness.
For example, row 2 of Table 10 represents a case where
the weighted scheme proves less effective than the FD-
based scheme: the precision decreased with 23% and the
recall decreased with 15% (row 4 of Table 6 compared
with row 2 of Table 9).

7. RELATED WORK

In recent years, there has been an increasing number
of proposals that use declarative, constraint-based
quality rules to detect and repair data problems (e.g.
[14, 15, 12, 13], see [10] and [11] for surveys). For many
of these heuristic techniques, rule-based corrections are
possible as long as the repairing values are present either
in an external reference data set or in the original one.
For example, in [13] the correct values are searched for
in a master data set using editing rules which specify
how to resolve violations, with the expense of requiring
high user involvement. While the semantics of editing
rules can be seen as related to our approach described in
Algorithm 1, there are at least two essential differences.
First, editing rules address instance-level repairs, i.e.
every tuple is checked against every rule and the values
of the attributes covered by the rule are replaced with
correct ones from the reference data set (if they exist).
Our approach determines pairs of values from which we
learn transformations that hold for entire columns, so
we do not search for the correct version of every value
that needs to be cleaned, but for a small number of
values that describe the syntactic pattern of the correct
version. Second, we determine these transformations
automatically, without any intervention from the user.

A related proposal on program synthesis is the work
by L. Contreras-Ochando et al. [16]. In their solution,
they address the problem of generality characteristic

to domain specific languages, such as the one used
by FlashFill. Specifically, they propose the use of
domain-specific background knowledge to synthesise
more specific transformations for fixed data types such
as dates, emails, names, etc.

An important body of work close to our proposal for
example selection, i.e., Algorithm 4, and built on the
transformation synthesis methods, is the research by
B. Wu et al. [17]. In their approach, they propose
an example recommending algorithm to assist the user
in providing enough examples for the entire column to
be transformed. To this end, the approach samples
a set of records for automatic inspection. It then
uses machine learning techniques to identify potentially
incorrect records and presents these records for the
users to examine. This proposal can be considered
orthogonal to our approach. In fact, one can see our
technique as an automatic initialization phase of a pay-
as-you-go process, while the work by B. Wu et al. [17]
could represent the refinement phase where previous
results are improved with user support. We leave this
idea for future work.

Recent work on transformation-driven join operations
by E. Zhu et al. [18] resulted in a technique for automat-
ically joining two tables using fuzzy value pairing and
synthesis of transformation programs. Their approach
leverages sub-string indexes to efficiently identify can-
didate row pairs that can potentially join, and then it
synthesises a transformation program whose execution
can lead to equi-joins. Although their principle is sim-
ilar to our approach, their focus is on join operations
which can be considered as part of the mapping gen-
eration phase of a data wrangling pipeline, while our
proposal is presented as being part of the format trans-
formation and normalization task of the pipeline. More-
over, their focus on joining operations requires that the
columns from which examples for the transformation
are being searched, have to be candidate keys in their
respective datasets (or one key and one foreign-key).
Our approaches, especially the weight based one, aim
to enable normalization for any column which has a cor-
responding match in the target dataset.

Closer to our solution are the tools for pattern en-
forcement and transformation, starting with traditional
ETL tools like Pentaho7 or Talend8, but especially
Data Wrangler [2], its ancestor Potter’s Wheel [19], and
OpenRefine9. Data Wrangler stands out by proposing
a transformation language and an inference algorithm
that aids the user in transforming the data. Although
the automated suggestion mechanism, described in [20],
avoids manual repetitive tasks by actively learning from
the decisions the user makes, or from the transforma-
tions the user writes, the user must know what transfor-
mation is required and how to express that operation.
Our work is a first step towards a solution in which

7http://www.pentaho.com/
8https://www.talend.com/
9http://openrefine.org/

The Computer Journal, Vol. ??, No. ??, ????

16 A. Bogatu, N. Paton, and A. Fernandes

such transformations are synthesised without up-front
human involvement.

An important body of related work is the research on
synthesis programming introduced in Section 2. The
algorithms and languages proposed in [3] and [4], and
extended in [8] have been developed with spreadsheet
scenarios in mind. We build on these solutions and
argue that such techniques can be applied on real world
big data as well, where the amount of inconsistency and
format heterogeneity is higher.

8. CONCLUSIONS

Recent advancements in areas such as big data
management have increased the importance of data
integration and data wrangling techniques. The
challenges caused by data volume and variety require
(semi)automatic, cost-effective processes to prepare the
data before the analysis process. In this respect,
data wrangling is important, as a precursor to data
analysis, but is often labour intensive. The creation
of data format transformations is an important part
of data wrangling and in the data cleaning landscape
there are important recent results on techniques to
support the creation of such transformations (e.g. [2,
3]). These solutions are user-centric and many of
the transformations that can be automatically learned
from examples provided by Algorithms 1 and 2 can be
obtained using the above solutions as well, but with a
much greater level of human involvement. In this paper
we build on and complement these results by describing
two approaches that can automate the creation of
format transformations. Thus we do not replace human
curators, but we reduce the number of cases in which
manual input is required. In several domains, we
have described how candidate sets of examples can
be discovered and refined automatically, how these
examples can be used to synthesise transformations
using FlashFill, and how the resulting transformations
can be validated automatically. The evaluation showed
that, when certain conditions are met, Algorithm 1 can
generate effective examples from which transformation
programs can be synthesised. When the conditions are
not fulfilled, a heuristic technique was proposed, which
proved to have comparable effectiveness while being
aligned with synthesis’s performance requirements.

The approaches described in this paper can poten-
tially be applied in different settings. For example,
transformations could be identified in the background
by a platform such as Trifacta’s Wrangler10, and of-
fered as candidate solutions to users. However, the ap-
proach can also be used as part of more general extract-
transform-load platforms, in which format transforma-
tion is only one aspect. Indeed, the methods described
here have been incorporated into the VADA system, to
support a pay-as-you-go approach to wrangling in which
the results from several initially automated steps are re-

10https://www.trifacta.com/products/wrangler/

fined in the light of data context [22] and user feedback
on the data product [21].

ACKNOWLEDGEMENTS

This work has been made possible by funding from
the UK Engineering and Physical Sciences Research
council, whose support we are pleased to acknowledge.

REFERENCES

[1] Furche, T. and Gottlob, G. and Libkin, L. and Orsi,
G. and Paton, N. W. (2016) Data wrangling for
big data: Challenges and opportunities. Advances in
Database Technology EDBT 2016: Proceedings of the
19th International Conference on Extending Database
Technology, Bordeaux, France, March 15-16, pp. 473–
478. OpenProceedings.org.

[2] Kandel, S and Paepcke, A. and Hellerstein, J.M.
and Heer, J. (2011) Wrangler: Interactive visual
specification of data transformation scripts. CHI ’11
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Vancouver, BC,
Canada, May 07-12, pp. 3363–3372. ACM New York,
NY, USA.

[3] Gulwani, S. (2011) Automating string processing
in spreadsheets using input-output examples. POPL’
11: Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, Austin, Texas, USA, January 26 - 28, pp.
317–330. ACM New York, NY, USA.

[4] Singh, R. (2016) Blinkfill: Semi-supervised program-
ming by example for syntactic string transformations.
Proceedings of the VLDB Endowment, Volume 9 Issue
10, June 2016, 816–827.

[5] Bogatu, A. and Paton, N.W. and Fernandes, A.A.A.
(2017) Towards automatic data format transforma-
tions: Data wrangling at scale. BICOD Proceed-
ings of the 31st British International Conference on
Databases, London, United Kingdom, July 10-12, pp.
36–48. Springer International Publishing, Basel.

[6] Papenbrock, T. and Naumann, F. (2016) A
hybrid approach to functional dependency discovery.
SIGMOD ’16 Proceedings of the 2016 International
Conference on Management of Data, San Francisco,
California, USA, June 26 - July 01, pp. 821–833. ACM
New York, NY, USA.

[7] Rahm, E. and Bernstein, P.A. (2001) A survey of
approaches to automatic schema matching. The VLDB
Journal, Volume 10 Issue 4, December 2001, 334–350.

[8] Wu, B. and Knoblock, C.A. (2015) An iterative
approach to synthesize data transformation programs.
Proceedings of the 24th International Joint Conference
of Artificial Intelligence, Buenos Aires, Argentina, July
25-31, pp. 1726–1732. AAAI Press.

[9] Raza, M. and Gulwani, S. and Milic-Frayling, N.
(2014) Programming by example using least general
generalizations. AAAI’14 Proceedings of the 28th
AAAI Conference on Artificial Intelligence, Quebec,
Canada, July 27-31, pp. 283–290. AAAI Press.

[10] Fan, W. (2008) Dependencies revisited for improving
data quality. PODS ’08 Proceedings of the twenty-
seventh ACM SIGMOD-SIGACT-SIGART symposium

The Computer Journal, Vol. ??, No. ??, ????

Towards Automatic Data Format Transformations: Data Wrangling at Scale 17

on Principles of database systems, Vancouver, Canada,
June 09-12, pp. 159–170. ACM New York, NY, USA.

[11] Fan, W. (2015) Data quality: From theory to practice.
ACM SIGMOD Record. Volume 44 Issue 3, September
2015, 7–18.

[12] Chu, X. and Ilyas, I.F. and Papotti, P. (2013)
Holistic data cleaning: Putting violations into context.
ICDE IEEE 29th International Conference on Data
Engineering, Brisbane, QLD, Australia, April 8-12, pp.
458–469. IEEE.

[13] Fan, W. and Li, J. and Ma, S. and Tang, N. and Yu,
W. (2012) Towards certain fixes with editing rules and
master data. The VLDB Journal, Volume 21 Issue 2,
April 2012, 213–238.

[14] Fan, W. and Geerts, F. and Jia, X. and Kementsietsidis,
A. (2008) Conditional functional dependencies for
capturing data inconsistencies. ACM TODS, Volume
33 Issue 2, June 2008, Article No. 6.

[15] Yakout, M. and Elmagarmid, A.K. and Neville, J. and
Ouzzani, M. and Ilyas, I.F. (2011) Guided data repair.
Proceedings of the VLDB Endowment, Volume 4 Issue
5, February 2011, 279–289.

[16] Contreras-Ochando, L. and Ferri, C. and Hernandez-
Orallo, J. and Martinez-Plumed, F. and Ramirez-
Quintana, M.J. and Katayama, S. (2017) Domain
specific induction for data wrangling automation.
AutoML@ICML, Sydney, Australia, Aug 10.

[17] Wu, B. and Knoblock, C.A. Maximizing correctness
with minimal user effort to learn data transformations.
IUI ’16 Proceedings of the 21st International Confer-
ence on Intelligent User Interfaces, Sonoma, California,
USA, March 07-10, pp. 375–384. ACM New York, NY,
USA.

[18] Zhu, E. and He, Y. and Chaudhuri, S. (2017) Auto-
join: Joining tables by leveraging transformations.
Proceedings of the VLDB Endowment, Volume 10
Issue 10, June 2017, 1034–1045.

[19] Raman, V. and Hellerstein, J.M. (2001) Potter’s
wheel: An interactive data cleaning system. VLDB
’01 Proceedings of the 27th International Conference
on Very Large Data Bases, Roma, Italy, September
11-14, pp. 381–390. Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA.

[20] Heer, J. and Hellerstein, J.M. and Kandel, S. (2015)
Predictive interaction for data transformation. CIDR
7th Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 4-7.

[21] Konstantinou, N. et al. (2017) The VADA architecture
for cost-effective data wrangling. SIGMOD ’17
Proceedings of the 2017 ACM International Conference
on Management of Data, Chicago, Illinois, USA, May
14-19, pp. 1599–1602. ACM New York, NY, USA.

[22] Koehler, M. et al. (2017) Data context informed data
wrangling. 2017 IEEE International Conference on Big
Data, Boston, MA, USA, December 11-14, pp. 956–
963.

The Computer Journal, Vol. ??, No. ??, ????

