Skip to main content

A Normalisation Strategy to Optimally Design Experiments in Computational Biology

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 616))

Abstract

In this work we describe a new methodology to improve predictive capabilities of dynamic models when parameters differ in orders of magnitude. The main idea is to normalise the model unknown parameters before solving the classical problem of optimal experimental design based on the Fisher information matrix. The normalisation improves the relative confidence intervals of the estimated parameters and the conditioning of the Fisher matrix, especially for those criteria aiming to decorrelate the model parameters. Using the so-called core predictions, we show how the new approach improves the final model predictive capabilities in two terms: predictions are closer to the real dynamics and with better confidence intervals.

We illustrate the concepts using two toy examples linear and non-linear in their parameters. Finally we test the performance of the normalisation in a model simulating the bacterial SOS response. This pathway remains of main relevance to work towards a predictive model of antimicrobial resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Apgar, J.F., Witmer, D.K., White, F.M., Tidor, B.: Sloppy models, parameter uncertainty, and the role of experimental design. Mol. Biosyst. 6(10), 1890–1900 (2010)

    Article  Google Scholar 

  2. Balsa-Canto, E., Alonso, A.A., Banga, J.R.: Computational procedures for optimal experimental design in biological systems. ET Syst. Biol. 2(4), 163–172 (2008)

    Google Scholar 

  3. Balsa-Canto, E., Alonso, A.A., Banga, J.R.: An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol. 4(1), 1 (2010)

    Article  Google Scholar 

  4. Balsa-Canto, E., Henriques, D., Gabor, A., Banga, J.R.: Amigo2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 32(21), 3357 (2016)

    Article  Google Scholar 

  5. Brännmark, C., Palmér, R., Glad, S.T., Cedersund, G., Strålfors, P.: Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J. Biol. Chem. 285(26), 20171–20179 (2010)

    Article  Google Scholar 

  6. Chis, O.T., Villaverde, A.F., Banga, J.R., Balsa-Canto, E.: On the relationship between sloppiness and identifiability. Math. Biosci 282, 147–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Egea, J.A., Martí, R., Banga, J.R.: An evolutionary method for complex-process optimization. Comput. Oper. Res 37(2), 315–324 (2010)

    Article  MATH  Google Scholar 

  8. Galvanin, F., Ballan, C.C., Barolo, M., Bezzo, F.: A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models. J. Pharmacokinet. Biopharm. 40(4), 451–467 (2013)

    Article  Google Scholar 

  9. García, M.R., Vilas, C., Herrera, J.R., Bernárdez, M., Balsa-Canto, E., Alonso, A.A.: Quality and shelf-life prediction for retail fresh hake (Merluccius merluccius). Int. J. Food Microbiol. 208, 65–74 (2015)

    Article  Google Scholar 

  10. García, M.R.: Identification and real time optimisation in the food processing and biotechnology industries. Ph.D. dissertation. University of Vigo (2008)

    Google Scholar 

  11. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kay, S.M.: Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  13. Kremling, A., Saez-Rodriguez, J.: Systems biology—an engineering perspective. J. Biotechnol. 129(2), 329–351 (2007)

    Article  Google Scholar 

  14. Kreutz, C., Timmer, J.: Systems biology: experimental design. FEBS J. 276(4), 923–942 (2009)

    Article  Google Scholar 

  15. Kutalik, Z., Cho, K.H., Wolkenhauer, O.: Optimal sampling time selection for parameter estimation in dynamic pathway modeling. Biosystems 75(1), 43–55 (2004)

    Article  Google Scholar 

  16. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.: BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)

    Article  Google Scholar 

  17. Martínez, J.L., Baquero, F., Andersson, D.I.: Predicting antibiotic resistance. Nat. Rev. Microbiol. 5(12), 958–965 (2007)

    Article  Google Scholar 

  18. van Riel, N.A.: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief. Bioinform. 7(4), 364–374 (2006)

    Article  Google Scholar 

  19. Shimoni, Y., Altuvia, S., Margalit, H., Biham, O.: Stochastic analysis of the SOS response in Escherichia coli. PLoS One 4(5), e5363 (2009)

    Article  Google Scholar 

  20. Telen, D., Van Riet, N., Logist, F., Van Impe, J.: A differentiable reformulation for e-optimal design of experiments in nonlinear dynamic biosystems. Math. Biosci. 264, 1–7 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Walter, E., Pronzato, L.: Identification of Parametric Models from Experimental Data. Springer, London (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Innovation throughout project RESISTANCE (DPI2014-54085-JIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Míriam R. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García, M.R., Alonso, A.A., Balsa-Canto, E. (2017). A Normalisation Strategy to Optimally Design Experiments in Computational Biology. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics