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Abstract. Thanks to the rapid advances in sequencing technologies, ge-
nomic data is now being produced at an unprecedented rate. To adapt
to this growth, several algorithms and paradigm shifts have been pro-
posed to increase the throughput of the classical DNA workflow, e.g. by
relying on the cloud to perform CPU intensive operations. However, the
scientific community raised an alarm due to the possible privacy-related
attacks that can be executed on genomic data. In this paper we review
the state of the art in cloud-based alignment algorithms that have been
developed for performance. We then present several privacy-preserving
mechanisms that have been, or could be, used to align reads at an in-
cremental performance cost. We finally argue for the use of risk analysis
throughout the DNA workflow, to strike a balance between performance
and protection of data.
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1 Introduction

Genome sequencing evolved at an unprecedented rate with the advances of Next-
Generation Sequencing (NGS) technologies. These new technologies allowed the
sequencing costs to fall down to less than $1000 per genome, the machines
throughput to increase from MB to TB of raw data produced per day, and the
development of optimized parallelized procedures [19]. Medicine and biomedical
research are benefiting from this evolution and started including sequenced data
in their workflows [5]. However, to produce more comprehensive analysis us-
ing the large amount of NGS data generated, clinical and research entities faced
new technical challenges. Indeed, they now have to share data and collaborate to
improve the quality of their studies and the development of larger datasets [13].

Going further than traditional sharing schemes, domain experts established
the e-biobanking vision [4], which calls for multi-research environment models
and architectures facilitating the sharing of data. However, biomedical data (e.g.
genomic sequences, medical reports, diseases information) is sensitive, as it is
unique for each person and reveals information about herself and her relatives
(e.g., predispositions to diseases). Therefore, a collaborative environment needs



not only to enable the storage, the access and the analysis of biomedical data,
but also be secure and reliable. Developing such an environment still remains a
challenge.

As this integrated environment does not yet exist, scientists mostly relied on
clouds to store and analyse sequencing data, due to their data sharing platform
and improved computing schemes. However, the question remains on their ability
to store and exploit genomes without breaking privacy policies. Despite the best
efforts of cloud providers, the challenge is now set to accurately determine a
threshold between the privacy and the openness of genomic data [23].

In this paper, we focus on the first step of the DNA analysis workflow —
read alignment — which finds the location of a sequenced portion of DNA or
RNA in a reference sequence. Section 2 summarizes the privacy-related features
of genomic data, and describes the privacy attacks that have been presented in
the literature, highlighting the importance of protecting genomic data. Section 3
describes cloud-based alignment algorithms which first emerged in response to
the fast growth of sequenced data, highlighting their lack of consideration for
privacy. Section 4 introduces the more costly algorithms that have been devel-
oped with privacy in mind. Finally, Section 5 gives some final remarks for the
development of genomic data protective cloud environments, and argues for a
risk-scale analysis that would be both practical and efficient. Section 6 concludes
this paper.

2 Privacy attacks on genomic data

Protecting genomic data is a non-trivial task, due to its many specificities which
have been exploited in recent attacks. The attacks performed in order to obtain
private information from genomic data all rely on one or several of the following
characteristics.

Long-lived and static data. Genomic data stays sensitive at least as long
as her owner lives, and contains particular properties, which make standard
encryption mechanisms insufficient to protect it on the long term. Furthermore,
once the privacy of genomic data has been compromised, there is no way to
recover it, as the genome of a subject evolves very slightly during her life.

Hereditary information. Genomic information is transmitted from gener-
ation to generation. Thus, privacy leaks also affect the relatives of a victim.

Revealing diseases risk. Hereditary diseases are embedded in genes. The
possession of even parts of a person’s genome makes it possible to infer about
her/his risk to develop certain disease. This information can lead to discrimina-
tion, for example, an employer might not offer a job to someone suffering from a
chronic disease, or a health insurance could be denied to a person whose genome
revealed a high risk to develop a disease. The same can occur with mortgage, if
a person has a disease which decreases her lifespan.

Revealing personal response to medicines and risks to diseases.
Prospects of personalized medicine show the benefits of using genomic informa-
tion to adapt a patient’s treatment to his particular expected reactions to it.



However, this information could also be used for less glorious goals, since know-
ing the patient’s reaction to a set of medicines can expose potential weaknesses.

Prone to manipulation. Ongoing research led to the belief that in the
near future it will be possible to artificially recreate the DNA of any sequenced
subject. As DNA samples are now used in forensics investigation to study crime
scenes, artificial DNA samples could be introduced to influence investigations.
This practice would compromise the ongoing investigations, by obfuscating any
potential result or worse, lead to a wrong accusation.

In practice, the approach that has been followed by the existing platforms
or services that work on genomic data until now has been a reactive one: data
is made available and once a new attack is discovered, sensitive data is removed
from public access. Several privacy-related attacks have been studied and de-
scribed in the literature, we summarize them here.

Identification attacks are performed to determine the relation between the
DNA profile of an individual and a data set. Taking as example a disease study
case, an identification attack would reveal if a person is in the case or control
data set, therefore breaking the privacy policies. Such an attack would typically
reveal that a subject has a given disease [11].

Identity tracing attacks use records of genetic information and personal
published information, which is available, for example, on genealogical databases
(Ancestry3), diseases studies databases (DisGenet4), and surnames databases
(e.g. Surname Navigator5). In the past, those databases reacted to reported
attacks — such as the one determining Dr. Watson’s APOE gene status [18]
or the one using identification by surname inference [10] — by removing the
detailed information used for the concerned attack from the database.

Recovery attacks determine a subject’s sensitive genomic sequences using
statistics and frequency information combined with released sensitive data (e.g.
single nucleotide polymorphisms). Once the sequence is known, the attacker can
use this information to launch the two previously mentioned attacks [25].

These attacks alerted the research community and the databases administra-
tors of the possible data privacy threats. However, they cannot protect genomic
data against future unknown attacks, as an attacker could collect and save data,
and run an attack on it once it has been made public. Therefore, several privacy-
preserving approaches to handle genomic data have appeared, which propose to
protect data preventively.

In the next section, we discuss the existing cloud-based alignment solutions
that the scientific community has adopted in order to leverage their high through-
put, and we study them from a privacy-related point of view.

3 Ancestry – https://www.ancestry.com
4 DisGeNet – http://www.disgenet.org
5 Surname Navigator – http://www.surnamenavigator.org



3 Alignment in the cloud

Aligning reads to a reference genome is one of the most important steps, and the
first, of the sequencing analysis workflow that ultimately leads to genomic in-
sights. Due to the throughput of NGS technologies and computational resources
of research centers being unable to follow it, reads alignment is now often a
bottleneck [21] and traditional algorithms, like BLAST [2] cannot be used as is.
Hence, researchers started to offload the alignment of reads to cloud providers.
Clouds are scalable computing infrastructures that allow users to adapt the re-
sources they use to each of their analysis. These infrastructures allow users to
benefit from their important computational power and storage space provided
on demand through a simple internet connection, and at a manageable cost.

Several popular alignment tools have been adapted to run in clouds using
Hadoop’s MapReduce to execute code in parallel (Cloud-MAQ [22], Cloud-
BLAST [15]). MapReduce’s performance can be affected by the large amounts of
data that has to be uploaded in the cloud, before executing the processing step.
In addition, this data transfer increases cloud storage costs and causes increased
latencies. This main limitation of MapReduce algorithms can be partly addressed
using stream processing engines, which have also been explored in combination
with alignment algorithms. Kienzler et al. [14] proposed a stream-based sequence
analysis approach where the transfer step is replaced by data streaming, thus
avoiding the huge amount of data transfer. Even though streaming approaches
improved performance, since they apply data compression and decompression,
read alignment remains computationally intensive and time consuming.

Although cloud processing improves performance and provides more storage
space, it poses security concerns. A cloud infrastructure is controlled by a Cloud
Service Provider (CSP), which does not provide the users full control over their
own data. Additionally, CSPs can copy, transfer and store the data into multiple-
locations (for fault-tolerance or economic reasons), and do not guarantee that the
data cannot be accessed by the CSP or an intruder [20]. Thus, researchers need
to consider a cloud as an untrusted, and possibly insecure, environment. To deal
with genomic data on clouds, researchers and CSPs should discuss and adapt
the privacy policies (eg. data control, security, confidentiality, transferring) to
guarantee data protection [8].

Cloud computing offers the best solution in terms of modularity concerning
computational power and costs to analyse large quantities of data. However, the
algorithms described in this section require the client to upload his data into
the cloud, where it is treated in plain text (i.e., without using any encryption
mechanism). Considering that the user-cloud communications are made via in-
ternet, where communications could be intercepted and genomic data decrypted,
given enough time, and the trust we give to the cloud provider, using such an
infrastructure presents privacy issues which need to be addressed.



4 Privacy-preserving alignment in the cloud

Privacy-preserving methods for execution in the cloud can involve cryptographic
or non-cryptographic mechanisms and client-CSP agreements that must be fol-
lowed. Both, client and CSP need to be aware of the sensitivity of biomedical
data to ensure the adequate privacy protection [1]. In this section, we introduce
the current privacy-preserving methods that could be applied to biomedical data,
and then present real-life applications of these mechanisms.

The non-cryptographic techniques include data anonymization, the control
of accesses, and privacy agreements.

Data anonymization consists in removing the personal information (e.g.
name, surname, birth data, address, age) to avoid direct associations between
genomes and their donors. Some portions of genomes have been considered
privacy-critical information as well [10], which raises the challenge of identifying
such genomic portions.

Access control consists in specifying who is allowed to access the data,
often with different access levels, to limit and track its usages. For example, a
medical center may have access to the disease genes of a patient and another
research unit would only have access to the genes related to a particular disease
under investigation [9].

Privacy agreements are signed documents specifying that a donor grants
access to his data. All the entities (e.g. donor, researcher, medical institution)
that can access the data sign the agreement, and it is assumed that all the
concerned parties are trustworthy. Historically, privacy agreements were the
first privacy-preserving technique developed around genomic data. However, the
necessary uses of untrusted machines and communications links render privacy
agreements unable to fully protect data.

These three methods are considered insufficient to protect genomic data
alone, however it is believed that when combined with cryptographic privacy-
preserving techniques they increase the protection of sensitive data [9]. Cryp-
tographic techniques provide high privacy guarantees to very specific scenarios.
However, the scientific community has been working towards extending their
range of applicability to study genomic data.

Keyed-hash functions convert clear-text to hashes and combine them with
a secret key. This technique however relies on the assumption that the key is
never stolen, since in that case all the data would be accessible [6]. In addition,
this approach does not allow direct collaboration between multiple entities.

Differential privacy introduces randomness to the input of a function in
order to protect its privacy-sensitive features. Intuitively, the output of a function
must not vary much whether an individual is part of the study or not. The main
issue of this technique is to control the amount of randomness introduced in
human genomes, so that studies can produce meaningful results [17, 23].

Garbled circuits are a cryptographic technique for two-party secure com-
putation. This technique allows a user to send his data to a receiver (e.g. cloud
service) to make some computations and receive back the final output. During
this process, neither the input nor intermediate values are revealed [3].



Lastly, homomorphic encryption schemes have been explored as a security
method for genomic data. These schemes allow a computation to be executed
on encrypted data, and its result to be decrypted, therefore providing insight on
the plaintext data. However, their performance is currently unsatisfactory and
it only allows a limited number of operations [3].

Several privacy-preserving cloud alignment solutions have been recently pub-
lished. Those solutions rely on hybrid clouds environments where the most sensi-
tive data computations are performed on a private cloud and the less sensitive is
processed on a public cloud [24]. Some solutions apply keyed-hash functions on
the sensitive data and then send the hash-values to the cloud [6]. Homomorphic
encryption has also been applied on other steps of the analysis of genomic data,
e.g. for disease susceptibility tests [16]. However, these examples still present
some limitations: the most CPU intensive task (i.e., the extend step) has to be
performed in the private cloud; the need of an efficient and reliable sensitive data
classifier; the use of hash algorithms that may be broken before the expiration
of the genomic data they protect.

5 Towards a differentiated protection of genomic data

Several privacy-preserving methods have been developed, however their limited
usability stills cannot address all the different issues found in the workflow anal-
yses steps. In this section, we describe how classifying the sensitivity of genomic
data would contribute to a thorough use of the potential of existing algorithms,
at the best possible cost.

Enabling technologies. A filtering approach that classifies reads as embed-
ding sensitive or non-sensitive information has been described in [7]. Adding this
filtering step would allow the reduction of data encryption costs by encrypting
only the critical information and improve the data usability, while ensuring the
protection of genomic data. In addition, the level of sensitivity of reads could be
determined according to the attack power it provides to an attacker through a
risk-analysis study. Doing so, however, requires further work. We are convinced
that such approaches will be developed in the future, and now present the ben-
efits they would bring to different stages of the DNA workflow.

Privacy-preserving alignment can be obtained in mainly two ways: rely
on plaintext conventional algorithms in a secure environment (e.g. local com-
puter, private cloud) [22, 14], or protect data through cryptographic methods.
In the former there is always a risk for an adversary to get access to the machines,
and therefore to the sensitive data. The second solution can be too costly or even
unpractical since encryption makes data unavailable for some operations [12, 3].
Classifying data into sensitivity levels would allow both approaches to be com-
bined, globally improving performance, as the more-costly algorithms would be
applied only to the most sensitive data, while improving the performance of the
low-sensitivity reads.

Storage security requires long-term protection techniques. The most sen-
sitive data could be stored in highly restricted and protected areas, while less



sensitive data could be stored encrypted on the cloud. Splitting data and differ-
entiating the way it is stored based on its sensitivity would reduce the storage
costs as the most secure environments are usually more costly.

Release of and access to sensitive data require an extensive understand-
ing of genomic data privacy breaches. For a privacy protective data release it is,
of course, necessary to hide all the unique individual information (e.g. names,
address, genes) [25]. Differentiating the sensitivity of genomic data would allow
more data to be released to scientists, while the most sensitive one would still
be protected. Data aggregation was also purposed as a secure solution for data
release, however it remains in a early stage of understanding and application. For
example, a human genome contains around 10 million single nucleotide polymor-
phisms (SNPs), and therefore a secure aggregate of full genomes would have to
involve more than 80 millions of subjects [25] (≈1.15% of the world population).

6 Conclusion

The migration of read alignments to the clouds and the parallelization of the
process using MapReduce, have greatly improved the performance of this es-
sential step of the DNA workflow. However, these solutions require data to be
manipulated in plain-text in the cloud, which poses privacy concerns, which
were highlighted by the genomic privacy attacks reported in the last years. As
researchers became more aware of those data vulnerabilities, the last years saw
the development of privacy-preserving solutions to replace the typical alignment
algorithms, which are deprived of privacy measures. Until now, it seems that
privacy protection and performance are inversely related, since the improvement
of one leads to the decrease of the other. Thus, the golden question is how to
provide data privacy protection while taking advantage of the storage and com-
putational power that cloud environments provide. Accurately determining the
level of sensitivity of genomic information seems to be a way to go to benefit en-
tirely for the broad range of algorithmic, storage and access solutions that have
been developed. Such a secure cloud environment for biomedical data analysis
is still an open challenge.
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