Skip to main content

A Two-Stage Feature Extraction Approach for ECG Signals

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 565))

Abstract

This paper investigate various techniques of extracting features from the electrocardiogram (ECG) signal in order to analyze the ECG signals to detect the heart disease. Feature extraction, is a one of the widespread process of decompose the ECG data. This paper introduce a two-stage feature extraction approach to extract features from ECG signals for different types of arrhythmias. Firstly, Modified Pan-Tomkins Algorithm (MPTA) is implemented to remove noise and extract nine features. Then the proposed Improved Feature Extraction Algorithm (IFEA) is applied to extract additionally ten different features from the ECG signal. The MIT-BIH arrhythmia database have been used to test the proposed approach. It is obvious from the results that the proposed approach shows a high classification in terms of the following four statistical measures: Accuracy (Ac) 98.37%, Recall 48.29%, Precision 43.91%, F Measure 45.31%, and Specificity (Sp) 93.30%, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anand, S.S., Yusuf, S.: Stemming the global tsunami of cardiovascular disease. Lancet 377(9765), 529–532 (2011)

    Article  Google Scholar 

  2. Cvetkovic, D., Übeyli, E.D., Cosic, I.: Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to elf pemf exposures: a pilot study. Dig. Sig. Process. 18(5), 861–874 (2008)

    Article  Google Scholar 

  3. De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  4. Elgendi, M., Eskofier, B., Dokos, S., Abbott, D.: Revisiting qrs detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS ONE 9(1), e84018 (2014)

    Article  Google Scholar 

  5. Hasan, M., Mamun, M.: Hardware approach of r-peak detection for the measurement of fetal and maternal heart rates. J. Appl. Res. Technol. 10(6), 835–844 (2012)

    Google Scholar 

  6. Homaeinezhad, M.R., Atyabi, S., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: Ecg arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)

    Article  Google Scholar 

  7. Ince, T., Kiranyaz, S., Gabbouj, M.: A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans. Biomed. Eng. 56(5), 1415–1426 (2009)

    Article  Google Scholar 

  8. Karpagachelvi, S., Arthanari, M., Sivakumar, M.: Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput. Appl. 21(6), 1331–1339 (2012)

    Article  Google Scholar 

  9. Khamene, A., Negahdaripour, S.: A new method for the extraction of fetal ECG from the composite abdominal signal. IEEE Trans. Biomed. Eng. 47(4), 507–516 (2000)

    Article  Google Scholar 

  10. Khandoker, A.H., Palaniswami, M., Karmakar, C.K.: Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 13(1), 37–48 (2009)

    Article  Google Scholar 

  11. Kohler, B., Hennig, C., Orglmeister, R.: QRS detection using zero crossing counts. Applied Genom. Proteom. 2(2), 138–145 (2003)

    Google Scholar 

  12. Kritika Bawa, P.S.: R-peak detection by modified pan-tompkins algorithm. Int. J. Adv. Res. Technol. 3(5), 30–33 (2014)

    Google Scholar 

  13. Kutlu, Y., Kuntalp, D.: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Programs Biomed. 105(3), 257–267 (2012)

    Article  Google Scholar 

  14. Lim, J.S.: Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system. IEEE Trans. Neural Networks 20(3), 522–527 (2009)

    Article  Google Scholar 

  15. Lin, H.Y., Liang, S.Y., Ho, Y.L., Lin, Y.H., Ma, H.P.: Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. IRBM 35(6), 351–361 (2014)

    Article  Google Scholar 

  16. Long, Z., Liu, G., Dai, X.: Extracting emotional features from ECG by using wavelet transform, pp. 1–4 (2010)

    Google Scholar 

  17. Mali, B., Zulj, S., Magjarevic, R., Miklavcic, D., Jarm, T.: Matlab-based tool for ECG and HRV analysis. Biomed. Signal Process. Control 10, 108–116 (2014)

    Article  Google Scholar 

  18. Martis, R.J., Acharya, U.R., Lim, C.M., Suri, J.S.: Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowl.-Based Syst. 45, 76–82 (2013)

    Article  Google Scholar 

  19. Moody, G.B., Mark, R.G., Goldberger, A.L.: Physionet: a web-based resource for the study of physiologic signals. IEEE Eng. Med. Biol. Mag. 20(3), 70–75 (2001)

    Article  Google Scholar 

  20. Nehe, N.S., Holambe, R.S.: DWT and LPC based feature extraction methods for isolated word recognition. EURASIP J. Audio Speech Music Process. 2012(1), 1–7 (2012)

    Article  Google Scholar 

  21. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  22. Rai, H.M., Trivedi, A., Shukla, S.: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier. Measurement 46(9), 3238–3246 (2013)

    Article  Google Scholar 

  23. Rodríguez-Bermúdez, G., García-Laencina, P.J., Roca-González, J., Roca-Dorda, J.: Efficient feature selection and linear discrimination of EEG signals. Neurocomputing 115, 161–165 (2013)

    Article  Google Scholar 

  24. Senhadji, L., Carrault, G., Bellanger, J., Passariello, G.: Comparing wavelet transforms for recognizing cardiac patterns. IEEE Eng. Med. Biol. Mag. 14(2), 167–173 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Houssein, E.H., Kilany, M., Hassanien, A.E., Snasel, V. (2018). A Two-Stage Feature Extraction Approach for ECG Signals. In: Abraham, A., Haqiq, A., Ella Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Third International Afro-European Conference for Industrial Advancement — AECIA 2016. AECIA 2016. Advances in Intelligent Systems and Computing, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-60834-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60834-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60833-4

  • Online ISBN: 978-3-319-60834-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics