

University of Birmingham

HumIDIFy: A Tool for Hidden Functionality
Detection in Firmware
Thomas, Sam; Garcia, Flavio D.; Chothia, Tom

DOI:
10.1007/978-3-319-60876-1_13

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Thomas, S, Garcia, FD & Chothia, T 2017, HumIDIFy: A Tool for Hidden Functionality Detection in Firmware. in
14th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA '17), Proceedings.
Lecture Notes in Computer Science, vol. 10327, Springer, pp. 279-300, 14th Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA '17), Bonn, Germany, 6/07/17.
https://doi.org/10.1007/978-3-319-60876-1_13

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final publication is available at link.springer.com via http://dx.doi.org/10.1007/978-3-319-60876-1_13

Eligibility for repository: Checked on 2/5/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-319-60876-1_13
https://doi.org/10.1007/978-3-319-60876-1_13
https://birmingham.elsevierpure.com/en/publications/0864820c-0dc9-47b2-adfc-7f079a4f987b

HumIDIFy: A Tool for Hidden
Functionality Detection in Firmware

Sam L. Thomas �, Flavio D. Garcia, and Tom Chothia

School of Computer Science
University of Birmingham

Birmingham
United Kingdom

B15 2TT
{s.l.thomas,f.garcia,t.p.chothia}@cs.bham.ac.uk

Abstract. This paper presents a semi-automated approach to detect
hidden functionality (such as backdoors) within binaries from consumer
off-the-shelf (COTS) embedded device firmware. We build a classifier us-
ing semi-supervised learning to infer what kind of functionality a given
binary has. We then use this classifier to identify binaries from firmware,
so that they may then be compared to an expected functionality profile,
which we define by hand for a range of applications. To specify these
profiles we have developed a domain specific language called Binary
Functionality Description Language (BFDL), which encodes the static
analysis passes used to identify specific functionality traits of a binary.
Our tool, HumIDIFy achieves a classification accuracy of 96.45% with vir-
tually zero false positives for the most common services. We demonstrate
the applicability of our techniques to large-scale analysis by measuring
performance on a large data set of firmware. From sampling that data
set, HumIDIFy identifies a number of binaries containing unexpected func-
tionality, notably a backdoor in router firmware by Tenda. In addition
to this, it is also able to identify backdoors in artificial instances known
to contain unexpected functionality in the form of backdoors.

1 Introduction

Embedded devices are not only part of our everyday life but also part of our
critical infrastructure. Internet routers, network switches, sensors and actuators
assembled overseas are part of our electricity, banking and telecommunication
infrastructure. When introducing a new device in a security critical environment
you are implicitly trusting the device manufacturer together with the whole
production and distribution chain.

In recent years there have been a number of incidents where hidden, unex-
pected functionality has been detected in both the software (firmware) [13,1] and
hardware [18] of embedded devices. In many cases, this additional functionality
is often referred to as a backdoor. In other cases, this functionality is consid-
ered undocumented functionality; but both types of functionality can manifest

as real-world threats. Additional functionality inserted into hardware is notori-
ously hard to detect, but requires a much more powerful adversary – such as
a nation-state, or chip manufacturer. Conversely, inserting hidden functionality
into binary software, while still difficult to detect is much easier for an adversary.
The most common types of such functionality found in the real-world are au-
thentication bypass vulnerabilities and additional, undocumented functionality
added to common services that weaken a system’s security – such as so-called
debugging interfaces (arguably) left over from development. This work focuses
on the detection of the latter threat class.

Many companies and governmental organisations need to ‘manually’ analyse
the firmware used in devices which are to be deployed in security-critical loca-
tions. This is a tedious and time-consuming task which requires highly-skilled
employees. When we say a piece of software contains unexpected functionality,
or a backdoor we require context to make this statement. Certain behaviour
found in one piece of software that is considered abnormal, might be considered
standard functionality in another. The formalisation of this notion of expected
functionality inevitably requires a degree of human intervention, but the thor-
ough analysis of the whole firmware can, to a large extent, be automated. One
big challenge in developing techniques to perform this automation is the huge
diversity in the binaries themselves that arise from having different embedded
architectures, operating system versions, compiler options and optimisation lev-
els. Another challenge is the fact that a large portion of the firmware which is
readily available online only consist of partial updates, containing just modified
files and not a complete system image. A further challenge is the sheer quantity
of firmware available. In this paper we aim to provide a useful tool to automate
as much of the process of finding hidden/unexpected functionality as possible,
that is able to handle different architectures and compiler optimisations and is
lightweight enough to scale to analyse large amounts of firmware in reasonable
time. The approach we propose is nessessarily semi-automated and requires a
human analyst to confirm identified abnormalities; despite this, when compared
to manual analysis alone, we find the overall time taken to analyse firmware is
greatly reduced.

1.1 Our contribution

This paper presents a novel approach to detect unexpected, hidden functionality
within embedded device firmware by using a hybrid of machine learning and hu-
man knowledge. Our techniques support an expert analyst in a semi-automated
fashion: automatically detecting where common binaries from Linux-based em-
bedded device firmware deviate from their expected functionality. While the
proof-of-concept tool supports only Linux-based firmware, the techniques we
present can easily be generalised to support other systems. Concretely our tool,
HumIDIFy implements the following components which are used to identify un-
expected functionality:

– A classifier for common classes of binaries contained within COTS embed-
ded device firmware images, that is resilient to the heterogeneity of device

architectures, including those binaries that contain unwanted data due to
the current deficiencies in firmware extraction methods.

– A domain-specific language, BFDL and a corresponding evaluator for speci-
fication of so–called functionality profiles that encode expert human knowl-
edge to aid with the identification of hidden/unexpected functionality in
binaries.

HumIDIFy takes as input a firmware image, which it unpacks and runs each
binary extracted through the (previously trained) classifier in order to infer
what kind of well-known services it provides, e.g., FTP, HTTP, SSH, Telnet,
etc. The classifier will assign to each binary file a functionality category label
and a confidence value – representing the degree of certainty that the binary
contains functionality associated with the assigned category.

The binary file is then subject to static analysis against the functionality
profile corresponding to its assigned functionality category. This profile is defined
by a human for each functionality category in our domain-specific language. In
this way we provide enough flexibility for the tool to capture a wide range of
abnormalities and allow it to be refined and adapted to the evolving threats.

We have collected a data set of 15,438 firmware images for COTS embedded
devices from 30 different vendors. Of this dataset a total of 800 were selected
uniformly at random to train a semi-supervised classifier. An additional 100
were selected to be a hold-out test set to evaluate the performance of the final
classifier.

The classifier has been developed from extensive evaluation of a suite of 17
existing supervised learning algorithms alongside an adaptation of the semi-
supervised self-training [21] algorithm which we show produces a classifier with
significantly better performance than supervised learning alone.

In addition to real-world sample binaries, we evaluated the effectiveness of
HumIDIFy on binaries we have embedded hidden functionality into. These were
produced using the methodology proposed in [16] and manifested as backdoors
in both the mini httpd web server and the utelnetd Telnet daemon. In both
cases HumIDIFy was able to accurately flag the binaries as containing hidden
functionality – across both different architectures and differing compiler optimi-
sation levels. Finally we used a further random sample of 50 firmware images
which HumIDIFy was executed on resulting in detection of 9 binaries potentially
containing hidden functionality one of which being a previously discovered back-
door present within Tenda routers1.

We intend to release HumIDIFy as an open source tool under the LGPL v2.1
licence.

1.2 Expectations of Our Approach

Our approach does not claim to solve the problem of automating the identifi-
cation of unexpected, hidden functionality within firmware, rather it lessens the
effort of an analyst by automating as much of the process as possible.

1 http://www.devttys0.com/2013/10/from-china-with-love/

http://www.devttys0.com/2013/10/from-china-with-love/

Further, we do not claim to detect all kinds of hidden functionality such as
authentication bypass vulnerabilities (like Firmalice [17]), cryptographic back-
doors, highly complex backdoors [19] or functionality that is hidden due to obfus-
cation. From our analysis, complex and cryptographic backdoors on embedded
devices are non-existent and thus, we conjecture are very rare.

We note that on many devices, the mere presence of a Telnet or SSH dae-
mon should signify a real threat—a large portion of firmware does not contain
firewall rules for protecting such services—many of which, are Internet-facing.
In addition, we have found that on many devices, user accounts generally have
weak passwords—some not even protected by cryptographic hashing and on al-
most all devices, the only user available has privileges equivalent to the root

user on UNIX-like systems. Again, we do attempt to detect such threats with
our approach.

A generic approach to detecting all kinds of hidden, potentially backdoor-like
functionality is infeasible for any approach. Instead we focus on a class of threat
that covers hidden, additional functionality that deviates from the expected
functionality of a binary.

Finally, we do not evaluate the effectiveness of our approach in the case of
an adversary introducing the hidden functionality; we address the problem of
detecting if device vendor, deliberately or otherwise has inserted unexpected
functionality into common firmware services.

1.3 Related Work

Schuster and Holz [16] propose a dynamic analysis technique based on delta de-
bugging to identify regions within binaries which may contain backdoors. They
illustrate this technique by introducing backdoors in popular software tools such
as ProFTPD and OpenSSH and then apply their methodology to identify them.
Zaddach et al. [20] describe their framework, Avatar which allows for semi-
automatic analysis of embedded device firmware. The framework is capable of
performing complex dynamic analysis which is facilitated by insertion of a min-
imal debugger stub into the firmware itself and thus requires a live system; for
this reason Avatar requires physical access to the device under analysis. Avatar
relies on KLEE [4], where execution is performed both on commodity hardware
through emulation, symbolic execution and in a standard manner upon the de-
vice itself. FIE, a tool developed by Davidson, et. al. [8] is also based upon
KLEE and is designed to locate vulnerabilities in embedded microcontrollers by
means of symbolic execution. FIRMADYNE [5] is another framework proposed
by Chen, et al., which like Avatar, allows for dynamic analysis via emulation of
embedded device firmware. However, by restricting itself to Linux-based firmware
mitigates the need for physical access to the device under analysis; as a result,
a higher degree of automation is possible when compared to Avatar.

Costin et al. [6] presented the first large-scale simple static analysis of em-
bedded device firmware whereby they studied 32, 000 firmware images. Their
analysis technique is based upon a variant of fuzzy hashing and what essentially

amounts to pattern matching. These techniques are ineffective in identifying bi-
nary similarities when modifications are more widespread, for example, different
compiler optimisation levels. Shoshitaishvili et al. [17] present Firmalice, which
focuses on the identification of firmware authentication bypass backdoors—in
contrast to the potential backdoors identified by the system presented in this
paper—which focuses on backdoors that manifest as hidden functionality. We
also note that our tool HumIDIFy is better suited to larger scale analysis due to
the inherent complexity of identifying authentication bypass backdoors.

Pewny, et al. [14] propose a method to identify bugs and vulnerabilities over
multiple CPU architectures. They apply their technique to firmware from various
vendors. Similarly, Eschweiler, et al. [9] also devise a method of cross-architecture
discovery of known bugs within binaries, and [6,7] provide details of a large-
scale analysis of consumer embedded device firmware, however restricts itself
specifically to the identification of web-frontend vulnerabilities.

2 Overview of HumIDIFy

Where f is a firmware image from the set
of all possible firmware F

and (E × E × . . .× E) the tuple representing
all distinct executables extracted from f .

Unpacking Engine
unpack : F → (E × E × . . .× E)

Classifier
classify : E → (E × C × [0, 1])

Profile-Evaluator
profile : (E × C × [0, 1])→ (E × C × [0, 1]× {true, false})

For all executables ei ∈ (E × E × . . .× E),
the classify function is applied

sequentially (with ci ∈ C being a classification and
vi ∈ [0, 1] being the confidence in that classification).

Profile Database
lookup : C → P

Where bi ∈ {true, false} is true
if the executable ei is said to contain

unexpected/hidden functionality
with the profile pj given the

classification cj and confidence vj .

f

e0 e1 . . . en

(ei, ci, vi)

ci

pi

(ei, ci, vi, bi)

Fig. 1: HumIDIFy system architecture

Fig. 1 provides an overview of our system architecture. Our system takes as
input a firmware image as obtained directly from a device vendor or a compressed
file system extracted from a device, then:

1. We use our unification of unpacking tools (BinWalk2, Firmware Mod Kit3

and Binary Analysis Toolkit4) with the improvements detailed in Section 3.5.
This process yields a file-system which we scan for ELF binaries; these bi-
naries are used as input to both the classifier and the profile evaluator.

2. The classifier takes as input a binary executable and outputs a corresponding
category label and confidence value. The set of categories match one-to-one
with possible functionality profiles of the profile evaluator and represent
general functionality classes such as web-server or secure-shell daemon. The
executable, label and confidence value are used as input to the profile eval-
uator.

3. The profile evaluator first locates the appropriate profile description for the
input category from the profile database. It then performs static analysis
passes upon the input binary dependent on the given profile. If hidden/un-
expected functionality is detected, it is reported along with the confidence
in the assigned label to the analyst.

The output of HumIDIFy for a firmware image is a list of binaries that contain
potential hidden/unexpected functionality along with the assigned classification
label and the classifier’s confidence in that assigned label.

3 Classification of Binaries

3.1 Data set Composition

In order to train and evaluate the classifier, a set of binaries taken from firmware
is required. To obtain these binaries, we built custom HTTP and FTP crawlers to
download firmware from 30 different vendors. This firmware was then processed
by our unpacking engine—which acts as a unification layer over the previously
described unpacking tools. Firmware which could not be unpacked due to tool
failure, or exceeded a reasonable threshold of time taken to unpack was discarded.
In total our data set consisted of 15,438 firmware images, of those 7,590 could
successfully be unpacked; giving us a total of 2,451,532 binaries.

3.2 Scope and Device Functionality

Through the manual analysis of samples of our data set we observe that in
general, the firmware obtained (although targeted at performing a number of
domain-specific functions) tends to adhere to a common structure: device con-
figuration is usually performed via a web-interface and firmware upgrades are
integrated into this same interface. Other common services present include file-
servers, Telnet and SSH daemons.

A major problem in the analysis of binaries within embedded device firmware
is the heterogeneousness of the architectures they are compiled for. Unlike more

2 https://github.com/devttys0/binwalk
3 https://code.google.com/p/firmware-mod-kit/
4 http://www.binaryanalysis.org/en/home

https://github.com/devttys0/binwalk
https://code.google.com/p/firmware-mod-kit/
http://www.binaryanalysis.org/en/home

traditional malware analysis, where the predominant architectures are x86 and
x86-64 which have been studied extensively in the literature, embedded devices
are deployed on more esoteric architectures such as ARM, MIPS and PowerPC.
Further, the predominant deployment Operating Systems are variants of Linux—
so, the possibility to utilise existing tooling across such platforms is significantly
hampered. Our implementation targets the predominant architectures: ARM
and MIPS and restricts itself to Linux-based firmware. Although these choices
may appear as limitations in our approach, we observe that the vast majority of
firmware falls within these boundaries, as highlighted in [6].

3.3 Choice of classification domain

A näıve approach would be to classify binaries based on their filename: for ex-
ample, FTP daemons might be called ftpd, vsftpd, etc.. However, a significant
amount of the firmware we examined does not unpack cleanly, that is we could
extract files, but not the filenames. Additionally, for firmware that did unpack
cleanly we saw a range of names for the same service. For example, we saw web
servers called webs, httpd, mini httpd, goahead and web server. Having at-
tempted to use just filenames initially, we found the classifer constructed overfit
the data set with bias towards detecting services from particular vendors.

We considered two approaches to classifier construction: supervised learning
and semi-supervised learning. Supervised learning demands a subset of the input
data set be labelled, and a reasonable number of examples collected for each such
label. Thus, the labels chosen for classification do not cover all possible binary
types found within firmware. From a manual analysis of 100 firmware images
we create an initial data set with 24 labels. This process yields an inital set of
419 unique binaries to train from; cryptographic hashing is used to ensure the
uniqueness of the binaries. A number of labels we construct are meta-labels in
that they encode a particular functionality: one such label is web-server which
itself covers a number of distinct example binaries within our data set: from very
simple servers such as uhttpd to more complex such as lighttpd; the reasoning
for this is that we wish to construct a classifier that is robust to different, not
seen before examples of labels. While we acknowledge our initial training set is
relatively small in proportion to the overall number of firmware images collected,
manual analysis of binaries is very time consuming for a human analyst and one
of the problems we attempt to address with this work.

An alternative to the techniques proposed in this paper would be to follow the
example of others (such as [15]) who use supervised learning to classify binaries as
anomalous. While this approach is applicable for binaries on commodity systems
due to exsitence of large, balanced data sets of malicious binaries; such large data
sets do not exist for binaries found on embedded systems. Further, supervised
learning requires roughly equal sized input sets for each label; in the case of
binaries for embedded device firmware this is also not possible to construct due
to the relatively small number of binaries known to contain hidden functionality
or backdoors on such systems.

Our approach overcomes the issues with supervised learning by employing
semi-supervised learning to classify binaries based on general classes—using ma-
chine learning as a filter to aid in more precise, targeted static analysis—which
can be used to detect anomalous binaries irrespective of the inital number of
anomalous binaries known.

We use IDA Pro5 to manually analyse the binaries used to construct the
initial data set. Those binaries analysed are used to derive set of labels. The
set of labels corresponds to those services that are prevalent amongst our initial
data set.

3.4 Attribute selection

To perform both attribute selection and construction of the classifier, we utilise
the open-source machine learning toolkit WEKA [11].

Since our technique aims to extend to multiple architectures, we restrict
the possible attributes to those that are homogeneous among binaries across
different architectures. These consist of high-level meta-information: strings and
the contents of function import and export tables, these are obtained using
IDAPython. Our technique demonstrates that this meta-information is sufficient
to derive a classifier capable of inferring the general class of an arbitrary binary
taken from a firmware image with high precision.

Although the number of possible attribute types that are considered for con-
structing the classifier is small, the number of distinct values associated with
each class of attributes is impractically large. To overcome this, we apply fea-
ture selection methods to remove needless, non-discriminating attributes that
do not characterise a general category.

We use two passes of attribute filtering. The first pass filters attributes based
on their association with a given class. For each binary of a given class, if an
attribute is to be included in the set of all possible attributes, it must be present
in a relatively high proportion of examples of that given class. For example,
for web servers, the string GET / HTTP/1.1 is included in a large proportion
of examples whereas, in those same binaries there exist unique compiler strings
which are irrelevent. Thus we define a threshold delta to filter the initial features:
this delta is selected based upon constructing a supervised classifier using the
BayesNet classifier (chosen arbitrarily and kept consistent for uniform results)
and seeing which delta produces the best performing classifier when evaluating
using 10-fold cross validation. Concretely the selected delta that performed best
(in respect to maximising the precision of the classifier) was 0.6 when used as
input to the second stage of attribute selection. Fig. 2 details the quantities of
remaining features for each evaluated value for the delta.

The second pass utilises a standard feature selection algorithm found in
WEKA. From evaluation of all algorithms available, we found CfsSubsetEval

combined with the BestFirst ranker using default parameters performed best.
Fig. 3 outlines the results of this evaluation; the overall evaluation was performed

5 https://www.hex-rays.com/products/ida/

https://www.hex-rays.com/products/ida/

with data sets produced using thresholds from 0 to 0.7 from the first stage of pro-
cessing and utilisation combined with attribute selection algorithms. In the in-
terest of space, we omit the results of evaluation of all but CfsSubsetEval; the re-
maining algorithms used (CorrelationAttributeEval, GainRatioAttributeEval,
InfoGainAttributeEval, OneRAttributeEval, ReliefAttributeEval, SymmetricU-
ncertAttributeEval all used with Ranker) resulted in classifiers that perfomed
considerably worse than those trained following use of CfsSubsetEval and
BestFirst ranking. We also note that we did not evaluate the performance
of those processed data sets from the first stage of attribute selection due to the
absence of API features.

Threshold API count String count

0.0 2391 38040
0.1 1688 14328
0.2 1513 11074
0.3 1209 8522
0.4 442 5624
0.5 442 4843
0.6 231 3001
0.7 14 2020
0.8 0 1920
0.9 0 1830
1.0 0 1790

Fig. 2: First stage attribute filtering

Threshold Correct (%)

0.1 87.8788
0.2 87.8788
0.3 87.8788
0.4 87.8788
0.5 85.4545
0.6 88.4848
0.7 85.4545

Fig. 3: Second stage attribute filtering
with CfsSubsetEval

The CfsSubsetEval algorithm outlined in [12] evaluates the merit of subsets
of features by correlating the predictive nature of individual features with respect
to the relative redundancy amongst the subset. Those subsets that are highly
correlated with a given class whilst maintaining a low degree of intercorrelation
are considered the most useful. The BestFirst ranking algorithm searches the
subsets of features by hill climbing; that is, starting from an inital solution
attempts to find a better solution incrementally by changing a single element
upon each iteration until a fix point is reached. For BestFirst, hill climbing is
performed in a greedy manner with backtracking.

Our feature, or attribute vectors as input to the classification algorithm con-
sist of nominal attributes representing if a given API name or string is present
in the binary being represented. That is, for each attribute ai within the feature
vector: ai ∈ {0, 1} with 1 representing inclusion and 0 the converse. As a spe-
cific example, suppose the API names: socket, bind and puts are selected as
attributes and a given training instance is given the label web-server, import-
ing only the first two API names, we would represent its corresponding feature
vector as: 〈1, 1, 0,web-server〉.

3.5 Construction of the classifier

Prior to classifier construction, we evaluated an extensive set of supervised learn-
ing algorithms on the initally labelled set following processing from attribute
selection. We attempt to maximise the precision of the classifier in assigning
labels: maximising the number of correctly classified instances and minimising
the number of incorrectly classified instances, whilst attempting to minimise the
time taken to train the classifier. We note that minimisation of the traning time
for semi-supervised learning is particularly important: training is an iterative
process with each iteration processing more input data. Concretely, we trained
each classifier upon the same labelled data set, and evaluated using 10-fold cross-
validation; Fig. 4 details the results.

Classifier Correct (%) Time (s)

BayesNet [10] 88.4848 0.00
NaiveBayes 79.3939 0.01
IBk 84.2424 0.00
KStar 84.2424 0.00
LWL 51.5152 0.00
DecisionTable JRip 66.6667 0.08
OneR 21.2121 0.00
PART 77.5758 0.04

Classifier Correct (%) Time (s)

ZeroR 10.9091 0.00
DecisionStump 20.6061 0.00
HoeffdingTree 79.3939 0.00
J48 76.9697 0.00
LMT 85.4545 0.90
RandomForest [2] 88.4848 0.11
RandomTree 78.7879 0.00
REPTree 64.8485 0.03

Fig. 4: Supervised learning algorithm evaluation

Amongst the possible choices for classification algorithm, the two best per-
forming in terms of optimising the number of correctly/incorrectly classified
instances were BayesNet and RandomForest. Of those, the time taken to train
the BayesNet classifier was less than that using RandomForest: 0.00s compared
to 0.11s.

From the inital classifier, we used binaries from a further 700 firmware images
as input to construct the final classifier; all of which were previously unlabelled.
Final evaluation of the classifier was performed on an additional set of labelled
binaries from 100 firmware images. We adapted the self-training algorithm as
outlined in [21] using the BayesNet classifier as the supervised learning algo-
rithm and a threshold bound on the iteration. We detail that algorithm in Algo-
rithm 1. The number of iterations required to reach our chosen threshold bound
of 0.05 was 8 iterations; that is between the 7th and 8th iterations the percentage
difference was less than 0.05% we count the inital supervised learning step as the
first iteration. We use a value of 0.9 as the required confidence bound to move
a given binary from the set of unclassified data to the set of classified data; a
value less than 1.0 is required in order to avoid over-fitting the training data.
A value of 1.0. would produce a classifier that after being trained over multiple
iterations would learn to only correctly classify instances that were of high sim-
ilarity to those used to initially train the supervised classifier. After running the

first stage of semi-supervised learning on a range of values we found 0.9 to be
the most suitable—lower values in fact produced classifiers that performed worse
when using 10-fold cross-validation. Fig. 5 details the monotonic nature of the
number of correctly classified instances at each iteration of training. The final
classifier acheived a correct classification rate of 99.3691% when evaluated using
10-fold cross-validation. Evaluation on a completely unseen hold-out test set of
labelled binaries resulted in the correctly classified rate dropping marginally to
96.4523%. The resulting drop in performance is observed due to a number of
instances being mislabelled; of those instances mislabelled the maximum confi-
dence the classifier supplied in the label it assigned was 0.65 which resulted in
a binary manually labelled as a dhcp-daemon being incorrectly classified as a
upnp-daemon.

Algorithm 1 Bounded self-training

function boundedSelfTraining(labelledData, unlabelledData, v, bound)
L ← labelledData, U ← unlabelledData, k ← 0
loop

train f from L using supervised learning
(k’, L’, U’) ← apply f to unlabelled instances in U where u ∈ U’ if confi-

dence(f(u)) ≥ v
if U = U’ ∨ k’ − k ≤ bound then return f
end if
k ← k’, L ← L’, U ← U’

end loop
end function

Iteration 1 2 3 4 5 6 7 8

Correct (%) 88.4848 95.4819 97.0760 97.9021 98.5462 99.2366 99.3256 99.3691

Fig. 5: Semi-supervised iterations

Avoiding over-fitting As with any use of machine learning, over-fitting can
become a problem when the classifier becomes biased to the data presented to it
during the training phase, and thus, the chance of introducing such a bias needs
to be minimised in order to produce a useful classifier. In the case of identifying
classes of binaries, we identify two sources of bias. The first, is that by only
using firmware from a small subset of vendors, which generally use the same web
servers, Telnet daemons, and so on, on their devices our classifier shall be biased
towards identifying a limited number of binaries from each class. Further, by
using only particular types of firmware, for example for routers or IP cameras,
the aforementioned problem manifests in that the types of service present in

such firmware would be non-representative of those found if all possible types of
firmware was considered. Thus, in training our classifier we ensure that our data
set is representative of the overall state of COTS embedded device firmware in
terms of vendor and device type selection. We do this by random sampling of
the firmware data set. Additionally, our data set includes firmware from some 30
device vendors and includes firmware from all embedded devices they produce,
thus has sufficient representation.

Overcoming limitations in the classification method A limitation in the
classification method selected is the fact that a label must be assigned to every
input instance; thus, if a binary that contains functionality never seen before
is presented to the classifier, rather than returning an unknown classification
label, it must assign a known label. We overcome this deficiency by using the
confidence value in the results returned by our system. Namely, an analyst is able
to see those binaries classified as a given label with low confidence not matching
their functionality profiles are less likely to contain unexpected functionality and
require further manual analysis. Conversely those labelled with high confidence
not matching their expected functionality profiles are likely to contain additional
functionality.

Overcoming limitations in data collection Our system can handle binaries
that are carved from raw binary files—which do not have an assigned file name.
We observe that BinWalk fails to correctly extract binaries in cases such as that
shown in Fig. 6.

. E L F ? ? ? ? ? ? . E L F

ELF binary

Additional data

Extracted ELF binary

Next ELF binary

Fig. 6: ELF binary carving

BinWalk operates by identifying contiguous files by locating so-called “magic
numbers”. Unfortunately if it happens that an ELF binary is followed by a chunk
of data that does not contain a “magic number” that data is appended to the
binary. Thus, when we extract strings from the binary additional strings found
within the appended data can potentially corrupt the classification result. We
overcome this by parsing the ELF file header and calculating the correct file
size: if the calculated size is smaller than the extracted binary we remove the
additional data.

4 Hidden and Unexpected Functionality Detection

The result of the classification method we described in the last section is a
tuple, (ei, ci, vi), where ei is the binary itself from the firmware image, ci is
an identifier representing the label assigned by the classifier and vi represents
the confidence of the classifier in the assigned label. We have built functionality
profiles pi for all classification labels, these are obtained via a lookup into a
profile database P . Generation of these profiles has been performed manually.
Adding additional binary classes to the system assumes a knowledgeable analyst
capable of describing the expected functionality of that binary class. Hence when
a binary being analysed does not conform to the expected functionality profile,
potential unexpected functionality has been detected. As a concrete example,
suppose a given binary has been classified as a web-server, then an analyst
might expect that is a TCP-only service—something classified as a web-server
additionally performing UDP networking should then (in this case) be considered
as unexpected and further analysed to ascertain if this additional functionality
is malicious or benign.

4.1 Binary Functionality Description Language

We encode the description of the expected functionality of a given class of bina-
ries using our domain specific language. The syntax of our Binary Functionality
Description Language (BFDL) is shown in Fig. 7. A functionality profile for a
given class of binary is defined by the use of the rule top-level expression, where
the name supplied corresponds to the class of binary. The body of these rules will
evaluate to true if the binary matches the profile, and it will evaluate to false if
the binary shows evidence of deviating from the profile. Rules may additionally
be parametrised; making available parameter names as bound variables within
the body of the rule. Rules may also be used to define reusable components
that can be used within multiple other rules. The import keyword allows for
further rule reuse: it allows rules to be defined within separate files—essentially
providing a facility to implement libraries of predefined rules for common static
analysis passes.

The key feature of the language are the built-in rules that test specific
properties of binaries. The most primitive are: import exists, export exists and
string exists. These rules do not constitute program analysis per se, rather,
their results are derived from parsing the underlying binary file format. Both
import exists and export exists check for the existence of strings representing
imported or exported function names within the import and export tables of
the ELF file format. string exists disregards the file format entirely—essentially
searching for a given string within the entire binary file. The architecture takes a
case-insensitive string argument representing the architecture name—evaluating
to true if the binary under analysis is indeed of said architecture, otherwise
false—this rule allows for architecture-specific analysis passes to be performed.

For implementation of more complex analysis rules, we leverage both BAP
[3]—a binary analysis library for the OCaml language which supports code–

〈top-level〉 ::= rule 〈ident〉(〈arg-list〉) = 〈expr〉
| import 〈string〉

〈expr〉 ::= 〈rule〉(〈values〉)
| let 〈ident〉 = 〈expr〉 in 〈expr〉
| if 〈expr〉 then 〈expr〉 else 〈expr〉
| ! 〈expr〉
| 〈expr〉 〈logic-op〉 〈expr〉
| 〈value〉 〈comp-op〉 〈value〉
| forall 〈ident〉(〈arg-list〉) ⇒ 〈expr〉
| exists 〈ident〉(〈arg-list〉) ⇒ 〈expr〉

〈type-name〉 ::= bool | int | string

〈arg〉 ::= 〈ident〉 : 〈type-name〉
〈arg-list〉 ::= ε | 〈arg-list1〉
〈arg-list1〉 ::= 〈arg〉 | 〈arg〉, 〈arg-list1〉

〈narg〉 ::= | 〈arg〉
〈narg-list〉 ::= ε | 〈narg-list1〉
〈narg-list1〉 ::= 〈narg〉 | 〈narg〉, 〈narg-list1〉

〈value〉 ::= 〈const〉
| 〈variable〉
| 〈value〉 〈arith-op〉 〈value〉

〈rule〉 ::= 〈base-rule〉
| 〈ident〉

〈base-rule〉 ::= import exists
| export exists
| string exists
| function ref
| string ref
| architecture
| endianness

〈const〉 ::= 〈bool〉
| 〈int〉
| 〈string〉
| error

〈arith-op〉 ::= + | − | × | ÷ | % | & | ˆ | | | ∼ | << | >>
〈comp-op〉 ::= == | != | < | > | <= | >=
〈logic-op〉 ::= || | &&

Fig. 7: BFDL language specification

lifting, disassembly and CFG recovery functionality, and IDA Pro—a state of
the art commercial disassembler. To ascertain if a function is called within the
binary we provide a rule named function ref. It operates first by inspection of
the call graph of the binary, and attempts to verify the existence of an incoming
edge to the node representing the function name being searched for; if such a
relation does not exist, then a search is made for references to the function—
which could indicate the use of the function as a callback, or indirect use such
as via a function pointer. For example, the expression function ref(“listen”) can
be used to check if the binary makes a call to the listen function in order to open
an incoming socket. In a similar fashion, string ref searches for references to a
given string within the binary—this is implemented in the same manner as the
aforementioned method of locating potential indirect uses of functions.

The forall and exists keywords allow us to quantify over the parameters of
a function call made by the binary, and allow us to define constraints on these
arguments. As an example of the use of these rules, we could check that a binary
makes a call to the socket function with the type argument equal to 2 using the
following expression:

exists socket(domain: int, type: int, protocol: int) ⇒ type == 2

We use BAP as a basis for writing binary analysis routines to estimate the
arguments passed as part of function invocations. In the case where a function is
passed constants or static data that is independent of prior branching constructs,

this always succeeds. In order to statically compute the constant arguments we
first determine the function boundaries; that is, the start and end addresses
of the functions deemed to contain calls to the function of interest. For each
of the boundaries found we take the start address and perform disassembly,
deriving a control flow graph to the granularity of basic blocks. In the interest
of maintaining reasonably lightweight analysis we make the assumption that the
basic block containing the call to the function of interest shall contain all of
the argument loading instructions for that given call and any argument loading
instructions related to the call in parent blocks are conditional and hence cannot
be determined without further processing of the disassembled code. Since for
both the ARM and MIPS instruction sets, argument passing is implemented by
passing values in registers, we are able to estimate integer constants and string
references to the data section of the binary by examination of load operations
into registers. Concretely, for integer constants, the implementation is trivial
as both instruction sets have instructions for loading constant integers directly
into registers. For strings, the implementation is more difficult, we first identify
loads into registers from the data section and then verify the data is a string: we
perform this by checking for a consecutive block of ASCII characters followed by
a terminating NULL byte (i.e., a C-style string). From manual analysis, C-style
strings are found to be used in the vast majority of binaries from embedded
device firmware, hence we check for those exclusively for efficiency. Inputs into
the analysis pass are the function name and a list of arguments, which may either
be constants or variable names. The expression specified following the function
name and arguments defines a constraint over such variables used as arguments.
If the arguments of a function are the result of a complex calculation (more
complex than constant propagation and folding) our system will not find them.
To represent such a failure at the language level, we augment each type with
an additional value ⊥ which is represented by the error keyword; a comparison
with error that is not itself an error value will always result in false. In a boolean
context when used as part of a logical expression error is automatically coerced
into the boolean value false.

To compose expressions, BFDL supports all of C’s logical and equality op-
erators. It implements conditionals by way of an if expression, and allows for
binding names to values through the let keyword—the semantics of which follow
that of ML-like languages. The expected behaviour may be encoded in a number
of ways: some rules make it possible to estimate “behaviour” in a manner that
has a bias towards minimising the execution time of the profile evaluator, while
others trade execution time and resources for greater precision. BFDL supports
a number of primitive data types: strings, integers, booleans.

Fig. 8 illustrates an excerpt from our standard prelude included with BFDL.
It shows how both socket and file (stream) behaviour is encoded within the
language. We note that these rules do not provide an absolute check of the
behaviour being tested for example, uses udp() checks if the socket API is used
with an appropriate parameter (2 for MIPS, 1 for other architectures) as a value
our analysis tools can detect. It would be possible for a program to implement

its own version of UDP, which this rule would not detect, or it would be possible
for a program to generate the traffic type parameter as a result of a complex
calculation. So what this rule tests is if UDP is used in the standard way, rather
than if UDP is used at all.

rule uses udp() = exists socket(domain, type, protocol) ⇒
if architecture(“MIPS”) then type == 2 else type == 1

rule may read files() = exists fopen(filename, mode) ⇒
(mode == “r” || mode == “r+” || mode == “w+” || mode == “a+”)

Fig. 8: An excerpt of BFDL rules from our standard prelude.

Fig. 9 shows toy examples of how one might encode the functionality profiles
for a web-server and telnet-daemon. As in this example, we are primarily inter-
ested in detecting unexpected functionality, these rules are focused on checking
that the binaries conform to their expected network and file behaviour. They
emphasise how basic rules may be composed to implement a more complex anal-
ysis.

As evidenced in the examples, the functionality profiles do not specify how
a particular service might work, rather, what given the assumed behaviour in a
given service might be deviation from the norm.

import “prelude.bfdl”

rule web server() = uses tcp() && !uses udp() && may read write files()
&& !outgoing socket()

rule telnet daemon() = uses tcp() && !(read write files() || uses udp())

Fig. 9: Toy example profiles for web servers and Telnet daemons

5 Experimental Results

In this section we evaluate the separate components of our contribution accord-
ing to the points outlined in Section 1.1. First, we examine the performance of
the classifier on a new hold-out set of manually labelled binaries. We then evalu-
ate the entire system using a set of binaries known to have hidden functionality
embedded within them, we then evaluate the tool on a sample of binaries taken

from real-world firmware images. Following this, we examine the run-time per-
formance of our tool and demonstrate its applicability to large-scale analysis.
Finally we look at how one might attempt to evade our techniques within the
limitations outlined in Section 1.1 and possible way to mitigate such attempts.

5.1 Evaluation of Classifier

As outlined in Section 3.5, our classifier was trained on a data set consisting of
binaries from 800 firmware images and subsequently tested against an additional
(separate, manually labelled) data set of binaries from 100 firmware images. It
achieves a correct classification rate of 99.3691% on the training set using 10-fold
cross-validation and a correct classification rate of 96.4523% on the independent
test set which in total consisted of 451 individual binaries that exactly matched
the functionality labels. The overall TP (true positive) rate over all 24 classes
on the test set was 0.965 while the FP (false positive) rate was 0.002. Of those
instances that were incorrectly classified seven labels were involved. Fig. 10 out-
lines the TP/FP rates as well as the precision and recall rates for those labels.

These results show that for the most commonly found services, our classifier
is highly effective in assigning the correct labels to services – irrespective of their
origin (i.e. they are new instances of common services).

Label TP rate FP rate Precision Recall

cron-daemon 0.000 0.002 0.000 0.000
dhcp-daemon 0.636 0.002 0.875 0.636
ftp-daemon 1.000 0.002 0.929 1.000
ntp-client 1.000 0.002 0.933 1.000
nvram-get-set 1.000 0.011 0.750 1.000
ping 0.667 0.002 0.667 0.667
tcp-daemon 0.000 0.000 0.000 0.000
telnet-daemon 0.800 0.000 1.000 0.800
upnp-daemon 0.739 0.005 0.895 0.739
web-server 0.939 0.010 0.886 0.939

Fig. 10: Statistics for labels that were misclassified

In the test set gathered, we found a single instance that corresponded directly
to the label cron-daemon, this can be explained by the existence of busybox on
the majority of those firmware images which includes the functionality for cron;
we found what should have been labelled a web-server was mislabelled in this
case. The mislabelled cron-daemon was labelled as a dhcp-daemon. We similarly
found four instances of dhcp-daemon (of eleven) mislabelled; they received the
labels: ftp-daemon, nvram-get-set, ping and upnp-daemon. A single instance of
the ping utility was mislabelled as nvram-get-set ; the small number of binaries
corresponding to the ping label (three) was again due to its functionality being
implemented within busybox; this was also the case for the tcp-daemon label.

Of the mislabelled telnet-daemon label, one was labelled as nvram-get-set. Of
the two (of thirty-three) mislabelled web-server instances, one was labelled as
upnp-daemon while the other was labelled as cron-daemon; we see similarity in
the API used by these services which led to the mislabelling. The upnp-daemon
label was mislabelled in six instances (of twenty-three) as web-server in four
cases (for the reasons previously described); the remaining two were mislabelled
as nvram-get-set.

We note that the nvram-get-set label represents binaries that include gen-
eral functionality to access and modify the non-volatile storage of the embedded
device. Thus, of all labels we would expect it to induce the highest FP rate.
On many devices there exist binaries specifically for NVRAM interaction (com-
monly called nvram-get and nvram-set), however we have found some instances
whereby NVRAM interaction is implemented directly rather than in a separate
utility, hence the possibility of mislabelling.

While a number of FP results exist, for the most pervasive services found
within firmware, the classifier is highly successful in assigning the correct label
to binaries.

5.2 Performance on New Artificial Instances

In this section we assess the ability of the whole system to recognise hidden func-
tionality in well-known application modified by ourselves to contain additional,
unexpected functionality.

We modified the source code of two services – mini httpd and utelnetd

– two of the most common services found in embedded device firmware from
all device vendors. The hidden functionality takes the form of a remote control
backdoor and is implemented using the same methodology proposed in [16].

Our tests consisted first of running the two services, unmodified through our
system (acting as a base-line); each was classified correctly with a confidence
value of 1.000 and said to not contain additional functionality. Then, each mod-
ified binary was run through our system; in all cases each binary was assigned
the correct classification label with a confidence of 1.000 – the feature vectors
remained unchanged between the base-line and each modified binary indicating
the features chosen to define binary functionality for the classes chosen are dis-
criminating enough to represent the core functionality for those labels. Similarly,
in all cases, the profiling engine correctly identified all modified binaries as con-
taining unexpected functionality.

This evaluation demonstrates both the effectiveness of our system in identify-
ing hidden functionality and the generality of our approach to extend to multiple
device architectures and different compiler optimisations.

5.3 Real-world Performance Using Sampling

In this section we evaluate the performance of our system using real-world data.
The number of binaries within our data set is too large to feasibly evaluate

manually, therefore we use a random sample of 50 firmware images from our
data set. This yields a total of 15,507 binaries to use as input to HumIDIFy. A
confidence value threshold of 0.9 was chosen to determine if a binary is evaluated
by the functionality profiler of HumIDIFy; we selected this value for two reasons:
it maintains consistency with the value chosen to train the classifier, and those
binaries that are classified with confidence above this threshold value are likely
to match the functionality of their assigned label with a (known) high probability
(96.4523%).

For the purposes of our experiment, binaries processed that are assigned a
label with a confidence value below 0.9 are considered to be classified as unknown.

From the 15,507 binaries, 4,012 were classified with a confidence value of 0.9
or greater. After removing duplicates, 425 unique binaries were classified with a
confidence value equal to or above 0.9. From manual analysis, 392 were classified
correctly, and of those classified correctly nine were flagged by HumIDIFy as
potentially containing unexpected functionality.

Of those nine binaries, six of them were found within the web-server class,
one within the ssh-daemon class, one within the telnet-daemon class and one
within the tcp-daemon class.

HumIDIFy identified a web-server binary that contained a previously doc-
umented backdoor; it manifests as an embedded management interface which
provides shell execution upon the device. It is found within the firmware of a
number of devices from Tenda.

Another contained a built-in DNS resolver—which was unexpected. Two in-
stances contained the same unexpected feature: an undocumented internal in-
terface for device configuration listening on a non-default port; this interface
provides privileged access to anyone with shell access on the device in question.

The telnet-daemon identified was implemented in a non-standard manner
and thus, was flagged as containing unexpected functionality.

A binary appearing as an ssh-daemon in the first stage of classification mis-
matched the second stage of processing due to being statically linked. The first
stage of classification was correct as the classifier was able to correctly label the
instance based upon string features alone.

A further web-server was found to interact with the Syslog daemon over UDP
to perform logging, and hence failed to match its expected functionality profile
which assumes only TCP based networking. Another example was a custom ap-
plication implementing HTTP proxy functionality; this was actually middleware
for Trend Micro kernel engine. It was classified as containing unexpected func-
tionality as not only does it implement HTTP request processing using TCP, it
also provides additional functionality via UDP.

Another custom service was detected by HumIDIFy that serves as an Internet
telephony proxy that was classified as a tcp-daemon; the service additionally
supports UDP as a means of data transmission; thus, is classified as containing
unexpected functionality.

We observe that our method not only supports finding instances of services
that are strictly adhereing to the original set of functionality labels, but also

those services that share the same core functionality with additional features;
this is indeed useful for an analyst as it allows them to filter those services that
are known but contain unexpected functionality and those services that may be
of interest that contain functionality unknown to HumIDIFy.

In this evaluation we have demonstrated both the flexibility and effective-
ness of our system: an analyst wanting to evaluate a firmware image in a more
“paranoid” mindset can set the confidence threshold for classifier label assign-
ment to a low value to have the system identify a larger amount of potential
hidden, unexpected functionality, whereas an analyst wishing to analyse a large
amount of firmware quickly can set this confidence threshold to a high value to
limit the amount of manual analysis required. On real-world data our system
with a modest confidence threshold was able to sucessfully identify a number
of binaries containing unexpected functionality, some of which representing a
real-world threat.

Our BFDL language is relatively high-level in terms of the checks that can
be defined and performed on binaries – this allows us to perform lightweight
analysis. This is however at some the cost to the accuracy and ability to check
for precise, lower-level functionality that could eliminate some of the misclassified
results in this section.

5.4 Run-time Performance

In this section we examine the run-time performance of our analysis approach.
For a single binary, the average time taken to perform feature extraction is
1.31s. The average time taken to classify a single binary is 0.291s (not including
the time taken to invoke the Java virtual machine in order to run WEKA).
The time taken to execute a profile is dependent upon the complexity of that
profile. In the worst case (where we reconstruct function CFGs) the average
time taken is 1.53s; this value is proportional to the number of functions present
within the binary under analysis. A single firmware image contains around 310
binaries; thus the average time to process a single firmware image assuming
the worst case scenario—the classifier assumes a confidence threshold of 0.0 in
which every binary passes through each stage of analysis is 970.61s. We note that
this evaluation does not take into account the time taken to perform the final
stage of analysis—that performed by a human to manually analyse the binaries
containing unexpected functionality.

In contrast to other work, such as Firmalice [17] – which has similar goals, but
identifies binaries containing authentication bypass vulnerabilities as opposed to
hidden, unexpected functionality, HumIDIFy performs well. Processing an entire
firmware image on average in roughly the same time taken to process a single
binary with Firmalice. From this analysis, we demonstrate the feasibility for our
techniques to be used on a large-scale.

5.5 Security Analysis of HumIDIFy

HumIDIFy relies on certain meta–data: both strings and imported symbol names.
While strings are present within all binaries, imported symbol names are only
present within dynamically—linked binaries. Thus, when classifiying a binary
that does not contain all of the required meta—data incorrect labelling will oc-
cur and thus lead to false positives (i.e. the binary will be reported as containing
unexpected functionality). Since our technique is intended to reduce the time
taken for manual analysis, as opposed to being completely automated, report-
ing the binary as potentially containing unexpected functionality and therefore
prompting manual analysis is the correct behaviour. From manual analysis of
a large number of firmware images, we have found that an overwhelming ma-
jority use dynamic—linking; we attribute this to the general lack of storage
space available on embedded devices and the space savings afforded by utilising
dynamic–linking.

An attempt to evade the classifier, with for example a binary that is inher-
ently a web-server manifesting as say, a Telnet daemon, HumIDIFy would still
detect the binary as containing unexpected functionality due to the two-stage
classification mechanism: the expected profile of a Telnet daemon would obvi-
ously be quite different from that of a web-server and thus fail to match. Thus,
our overall approach is robust inspite of potential limitations in the individual
components.

6 Conclusion

We have presented a semi-automated framework for detecting hidden and un-
expected functionality in firmware. At the heart of our approach is a hybrid of
machine learning and human knowledge encoding within our domain specific lan-
guage, BFDL. As we have shown, this is a highly effective method for detecting
unexpected functionality and (in some cases) backdoors in firmware.

References

1. D. Bradbury. SCADA: a critical vulnerability. Computer Fraud & Security,
2012(4):11–14, 2012.

2. L. Breiman. Random forests. Machine Learning, 45(1), 2001.

3. D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary analysis
platform. In Computer Aided Verification. Springer, 2011.

4. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI 08.
USENIX Association, 2008.

5. D. D. Chen, M. Egele, M. Woo, and D. Brumley. Towards Automated Dynamic
Analysis for Linux-based Embedded Firmware. In Network and Distributed System
Security (NDSS) Symposium, NDSS 16, 2016.

6. A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A large scale
analysis of the security of embedded firmwares. In USENIX Security’14. USENIX
Association, 2014.

7. A. Costin, A. Zarras, and A. Francillon. Automated Dynamic Firmware Analysis at
Scale: A Case Study on Embedded Web Interfaces. In 11th ACM Asia Conference
on Computer and Communications Security (AsiaCCS), ASIACCS 16, 2016.

8. D. Davidson, B. Moench, T. Ristenpart, and S. Jha. Fie on firmware: Finding
vulnerabilities in embedded systems using symbolic execution. In 22nd USENIX
Security Symposium (USENIX Security 13), 2013.

9. S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla. discovRE: Efficient Cross-
Architecture Identification of Bugs in Binary Code. 2016.

10. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach.
Learn., 29(2-3), Nov. 1997.

11. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1), Nov.
2009.

12. M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

13. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security anal-
ysis of a modern automobile. In 31th IEEE Symposium on Security and Privacy
(S&P 2010), 2010.

14. J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-Architecture
Bug Search in Binary Executables. In 2015 IEEE Symposium on Security and
Privacy, 2015.

15. K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and classifica-
tion of malware behavior. In Proceedings of the 5th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA ’08,
Berlin, Heidelberg, 2008. Springer-Verlag.

16. F. Schuster and T. Holz. Towards reducing the attack surface of software back-
doors. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security. ACM, 2013.

17. Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice -
automatic detection of authentication bypass vulnerabilities in binary firmware.
2015.

18. S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers backdoor
in military chip. Cryptographic Hardware and Embedded Systems–CHES 2012,
pages 23–40, 2012.

19. C. Wysopal, C. Eng, and T. Shields. Static detection of application backdoors.
Datenschutz und Datensicherheit - DuD, 34(3), 2010.

20. J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares. In Proceedings
of the 21st Symposium on Network and Distributed System Security, 2014.

21. X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1), 2009.

