Skip to main content

Small and Adrift with Self-Control: Using the Environment to Improve Autonomy

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

We present information theoretic search strategies for single and multi-robot teams to localize the source of a chemical spill in turbulent flows. In this work, robots rely on sporadic and intermittent sensor readings to synthesize information maximizing exploration strategies. Using the spatial distribution of the sensor readings, robots construct a belief distribution for the source location. Motion strategies are designed to maximize the change in entropy of this belief distribution. In addition, we show how a geophysical description of the environmental dynamics can improve existing motion control strategies. This is especially true when process and vehicle dynamics are intricately coupled with the environmental dynamics. We conclude with a summary of current efforts in robotic tracking of coherent structures in geophysical flows. Since coherent structures enables the prediction and estimation of the environmental dynamics, we discuss how this geophysical perspective can result in improved control strategies for autonomous systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For full animation visit http://earth.nullschool.net/ and http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/.

  2. 2.

    Noise can arise from uncertainty in model parameters and/or measurement noise.

References

  1. Charrow, B., Michael, N., Kumar, V.: Cooperative Multi-robot Estimation and Control for Radio Source Localization. Springer International Publishing, New York (2013)

    Google Scholar 

  2. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  3. Fabregat, A., Dewar, W.K., Ozgokmen, T.M., Poje, A.C., Wienders, N.: Numerical simulations of turbulent thermal, bubble and hybrid plumes. Ocean Model. 90, 16–28 (2015)

    Article  Google Scholar 

  4. Forgoston, E., Billings, L., Yecko, P., Schwartz, I.B.: Set-based corral control in stochastic dynamical systems: making almost invariant sets more invariant. Chaos 21, 013116 (2011)

    Google Scholar 

  5. Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240, 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heckman, C.R., Hsieh, M.A., Schwartz, I.B.: Controlling basin breakout for robots operating in uncertain flow environments. In: International Symposium on Experimental Robotics (ISER 2014), Marrakech/Essaouira, Morocco (2014)

    Google Scholar 

  8. Hoffmann, G., Tomlin, C.: Mobile sensor network control using mutual information methods and particle filters. IEEE Trans. Autom. Control 55(1), 32–47 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hsieh, M.A., Forgoston, E., Mather, T.W., Schwartz, I.: Robotic manifold tracking of coherent structures in flows. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA2012), Minneapolis, MN USA (2012)

    Google Scholar 

  10. Hsieh, M.A., Mallory, K., Schwartz, I.B.: Distributed allocation of mobile sensing agents in geophysical flows. In: Proceedings of the 2014 American Controls Conference, Portland, OR (2014)

    Google Scholar 

  11. Huber, M., Bailey, T., Durrant-Whyte, H., Hanebeck, U.: On entropy approximation for gaussian mixture random vectors. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008, pp. 181–188 (2008). doi:10.1109/MFI.2008.4648062

  12. Inanc, T., Shadden, S., Marsden, J.: Optimal trajectory generation in ocean flows. In: Proceedings of the American Control Conference, pp 674–679 (2005)

    Google Scholar 

  13. Kularatne, D., Hsieh, A.: Tracking attracting lagrangian coherent structures in flows. In: Proceedings of Robotics: Science and Systems, Rome, Italy (2015)

    Google Scholar 

  14. Levy, M., Ferrari, R., Franks, P.J.S., Martin, A.P., Riviere, P.: Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39(14) (2012)

    Google Scholar 

  15. Lolla, T., Ueckermann, M.P., Haley, P., Lermusiaux, P.F.J.: Path planning in time dependent flow fields using level set methods. In: Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA (2012)

    Google Scholar 

  16. Mallory, K., Hsieh, M.A., Forgoston, E., Schwartz, I.B.: Distributed allocation of mobile sensing swarms in gyre flows. Nonlin. Process. Geophys. 20(5), 657–668 (2013)

    Article  Google Scholar 

  17. Michini, M., Hsieh, M.A., Forgoston, E., Schwartz, I.B.: Experimental validation of robotic manifold tracking in gyre-like flows. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2014, Chicago, IL, USA (2014)

    Google Scholar 

  18. Michini, M., Hsieh, M.A., Forgoston, E., Schwartz, I.B.: Robotic tracking of coherent structures in flows. IEEE Trans. Robot. 30(3), 593–603 (2014)

    Article  Google Scholar 

  19. Michini, M., Rastgoftar, H., Hsieh, M.A., Jayasuriya, S.: Distributed formation control for collaborative tracking of manifolds in flows. In: Proceedings of the 2014 American Control Conference (ACC 2014), Portland, OR (2014)

    Google Scholar 

  20. Mier-y Teran-Romero, L., Forgoston, E., Schwartz, I.: Coherent pattern prediction in swarms of delay-coupled agents. IEEE Trans. Robot. 28(5), 1034–1044 (2012)

    Article  Google Scholar 

  21. Russell, R.: Locating underground chemical sources by tracking chemical gradients in 3 dimensions. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 1, pp 325–330 (2004). doi:10.1109/IROS.2004.1389372

  22. SCRIPPS: Naitonal HF RADAR network - surface currents (2014). URL http://cordc.ucsd.edu/projects/mapping/maps/

  23. Senatore, C., Ross, S.: Fuel-efficient navigation in complex flows. Am. Control Conf. 2008, 1244–1248 (2008)

    Google Scholar 

  24. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D Nonlin. Phenom. 212(3–4), 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shchepetkin, A., McWilliams, J.: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126, 1541–1580 (1998)

    Article  Google Scholar 

  26. Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9, 347–404 (2005)

    Article  Google Scholar 

  27. Smith, R.N., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.: Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int. J. Robot. Res. 29(12), 1475–1497 (2010)

    Article  Google Scholar 

  28. Smith, R., Kelly, J., Sukhatme, G.: Towards improving mission execution for autonomous gliders with an ocean model and kalman filter. In: Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN (2012)

    Google Scholar 

  29. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R Soc. Lond. A A219, 186–203 (1953)

    Article  Google Scholar 

  30. Vergassola, M., Villermaux, E., Shraiman, B.I.: Infotaxis as a strategy for searching without gradients. Nature 445, 406–409 (2007)

    Article  Google Scholar 

  31. Veronis, G.: Wind-driven ocean circulation, part I and part II. Deep-Sea Res. 13, 31 (1966)

    Google Scholar 

Download references

Acknowledgements

MAH, HH, and DK are supported by ONR Award Nos. N000141211019 and N000141310731 and National Science Foundation (NSF) grant IIS-1253917. EF and PAY are supported by National Science Foundation (NSF) grant DMS-1418956. IBS is supported by ONR contract No. N0001412WX2003 and NRL 6.1 program contract No. N0001412WX30002. We would like to thank Alex Fabregat Tomas (CUNY) and Andrew Poje (CUNY) in providing the plume data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ani Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ani Hsieh, M. et al. (2018). Small and Adrift with Self-Control: Using the Environment to Improve Autonomy. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics