Skip to main content

Unifying Robot Trajectory Tracking with Control Contraction Metrics

  • Chapter
  • First Online:
Robotics Research

Abstract

In this paper we present new results for nonlinear tracking control design based on the search for a “control contraction metric” (CCM). We show that for fully-actuated robots, CCMs can be found analytically that correspond to classical methods of robot control including sliding and energy-based designs. We also show that, for underactuated robots, the CCM approach extends more recent optimization-based methods such as LQR-Trees to tracking of arbitrary feasible trajectories. Therefore the CCM methodology represents a bridge between these methods. We illustrate our results with calculations and simulations on the single and double inverted pendulums and the underactuated cart-pole system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vukobratović, M., Borovac, B.: Zero-moment point — thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  2. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, USA (1991)

    Google Scholar 

  3. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  4. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  5. Collins, S., Ruina, A., Tedrake, R., Wisse, Martijn: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  6. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Article  MATH  Google Scholar 

  7. Fantoni, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer, Berlin (2001)

    Google Scholar 

  8. Tedrake, R.: Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832) (2014)

    Google Scholar 

  9. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice-Hall, USA (1990)

    Google Scholar 

  10. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology (2000)

    Google Scholar 

  11. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, John W.: LQR-trees: feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Article  Google Scholar 

  12. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control and verification of high-dimensional systems via DSOS and SDSOS optimization. In: 53rd IEEE Conference on Decision and Control, Los Angeles, CA (2014)

    Google Scholar 

  13. Henrion, D., Korda, M.: Convex computation of the region of attraction of polynomial control systems. IEEE Trans. Autom. Control 59(2), 297–312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Majumdar, A., Vasudevan, R., Tobenkin, M.M., Tedrake, R.: Convex optimization of nonlinear feedback controllers via occupation measures. Int. J. Robot. Res. 33(9), 1209–1230 (2014)

    Article  Google Scholar 

  15. Manchester, I.R., Slotine, J.-J.E.: Control contraction metrics and universal stabilizability. In: Proceedings of the IFAC World Congress, Cape Town, South Africa (2014)

    Google Scholar 

  16. Manchester, I.R., Slotine, J.-J.E.: Control contraction metrics: convex and intrinsic criteria for nonlinear feedback design, IEEE Transactions on Automatic Control, in press (2017)

    Google Scholar 

  17. Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spong, M.W.: The swing up control problem for the acrobot. Control Systems, IEEE, 15(1):49–55, (1995)

    Google Scholar 

  19. Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Google Scholar 

  20. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Google Scholar 

  21. Manchester, I.R., Slotine, J.-J.E.: Transverse contraction criteria for existence, stability, and robustness of a limit cycle. Syst. Control Lett. 62, 32–38 (2014)

    Google Scholar 

  22. Do Carmo, M.P.: Riemannian Geometry. Springer, Berlin (1992)

    Google Scholar 

  23. Hespanha, J.P.: Linear Systems Theory. Princeton University Press, USA (2009)

    Google Scholar 

  24. Aylward, E.M., Parrilo, P.A., Slotine, J.-J.E.: Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming. Automatica 44(8), 2163–2170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Slotine, J.-J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92(1), 38–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jouffroy, J., Slotine, J.-J.E.: Methodological remarks on contraction theory. In: 43rd IEEE Conference on Decision and Control, The Bahamas (2004)

    Google Scholar 

  27. Slotine, J.-J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  28. Bullo, F., Murray, R.M.: Tracking for fully actuated mechanical systems: a geometric framework. Automatica 35(1), 17–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leung, K., Manchester, I.R.: Nonlinear stabilization via control contraction metrics: a pseudospectral approach for computing geodesics. In: Proceedings of the 2017 American Control Conference, Seattle, WA (2017)

    Google Scholar 

  30. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. In: Proceedings of the IFAC World Congress, San Francisco, CA (1996)

    Google Scholar 

  31. Löfberg, J.: Yalmip: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Manchester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Manchester, I.R., Tang, J.Z., Slotine, JJ.E. (2018). Unifying Robot Trajectory Tracking with Control Contraction Metrics. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics