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Abstract To improve a robot’s performance at a given task, or to respond to chang-
ing requirements, shape adaptation can be beneficial. To efficiently explore complex
behaviors, diverse morphologies must be generated and implemented. For contin-
uous and autonomous design optimization, the robot has furthermore to be able to
assess its own performance and in turn generate and implement adapted morpho-
logical designs.

Here, we present the morphological adaptation of physical robotic agents to a
locomotion task. The robots are automatically assembled bya robotic manipulator
from elementary modules and the assembly process of each agent is encoded in a
genotype. The genotypes of a robot population are optimizedusing an evolution-
ary algorithm based on real-world performance feedback. Inthe experiments, 500
genotypes were evaluated. To develop rich behavioral diversity, shape variations are
beneficial. Analysis of the results highlights the influenceof the fabrication con-
straints on shape diversity, which impose limitations especially for larger structures.

1 Introduction

The performance of a robot at a certain task depends on the robot’s body structure
and control. It has been shown that an appropriate body structure can greatly sim-
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plify the control problem [10]. However, the initial designof a robot might not be
the most suitable for a task and a more beneficial structures exists.

To repeatedly adapt a robot’s shape to its task and optimize the robot’s perfor-
mance, two main challenges must be addressed. First, to adjust to a preferably large
range of tasks, the robot must be able to assume diverse body shapes, ideally of
different size and resolution. This is demanding, as the real-world fabrication pro-
cesses and constraints must be considered, and not all partsof the design space can
equally well be explored. Second, to continuously optimizeits own shape, the robot
must be able to evaluate its own performance and iterativelygenerate new designs
based on the task and previous performance.

Reconfigurable and self-reconfigurable modular robots address this issue by
possessing the ability to change their own body structure tobetter adapt to the
task requirements [16]. The ability to change their physical shape enables self-
reconfigurable robots to achieve tasks which might not be solvable with a fixed
morphology [13]. The field of modular self-reconfigurable robotics employs mecha-
tronic modules which can adapt the connectivity between themselves to change the
overall structure [4, 6, 12]. Other solutions are provided by configurable systems
which can adjust predefined components of the system, such asthe compound eye
robot by Lichtensteiger et al. [5]. A further approach is thesynthesis of new struc-
tures from a suitable base material as demonstrated by Revzen et al. [11] using a
robot equipped with hardening foam or our previous work using hot melt adhe-
sives [2,7].

It is shown in this paper, that by increasing the diversity ofmechanical design
through improved reconfigurability, robots can generate and implement nontrivial
designs. The ability to explore intricate morphological designs also allows for the
generation of more complex behaviors. This was achieved within a limited number
of trial-and-error iterations, without the use of simulation tools. To implement such
a process, sufficient manipulation dexterity is necessary to physically instantiate the
diverse morphologies and the search method must be able to efficiently handle the
large dimensionality of the design problem.

In our implementation, flexible assembly is employed to generate diverse robot
morphologies, similar to the centralized generation of agents demonstrated by Weel
et al. in simulation [15]. An evolutionary algorithm is applied directly to the encoded
building process [3] of locomotion agents to vary their shapes and subsequently op-
timize the locomotion speed of physical agents in a model-free process. The results
were obtained throughout five experiments with 100 candidate robots each. These
experiments have previously been published in [1].

2 Processes and Outcome of the Experiments

The goal of this experiment is the morphological adaptationof physical robotic
agents to a locomotion task through an evolutionary process. To iteratively adapt
the locomotion agents, a “mother robot” can repeatedly assemble the agents from
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elementary modules. The details of each agent’s building process is encoded in its
genotype. The population of candidate solutions can undergo evolution, which sub-
sequently optimizes the fitness at the locomotion task.

In this section, material and methods are introduced first, before an overview of
the results is given. The experiments have previously been presented in [1], which
also contains a more detailed description of the setup and all parameters.

2.1 Materials and Methods

The robotic arm shown in Fig. 1 is able to rotate and bond the active and passive
elementary modules. These processes are parametrized, andeach set of parameters
results in specific outcome of the building process, i.e. a specific morphology of
the locomotion agent. This morphology, together with its control parameters and
the task environment determine the agent’s performance, and thus its chances to be
selected for further generations.

Active modules

Passive modules

Gripper

Glue supplier

Robot arm

Fig. 1 The experimental setup with robotic arm (“mother robot”) and prepared active and passive
modules.

2.1.1 Hardware and Control

The robotic arm (Universal Robots, UR5) used is equipped with a pneumatic parallel
gripper and a hot glue supplier. The gripper is used for the manipulation of the
available modules, and the hot glue (ALFA Klebstoffe AG, ALFA H 5500/30) is
used to bond the modules together.

The active modules are cubes with a side length of 6cm and the passive mod-
ules are wooden cubes with 3cm side length. The active modules contain a servo
motor (Modelcraft, RS-3 JR) for actuation, a battery (Conrad Electronic AG, Con-
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rad energy LiPo Akku 7.4V, 800mAh) and the electronics for control and wireless
communication (Arduino, Pro Mini; Sparkfun, Bluetooth Mate Silver). One side of
the cube is connected to the motor flange, such that it can be oscillated. Active and
passive modules are supplied at predefined positions for theassembly of each agent.

For the rotation of active modules, a centering frame is mounted in the construc-
tion space to avoid that position errors sum up during repeated manipulations. The
assembly is performed on a slightly adhesive and soft ground(3mm foam rubber,
covered with masking tape sticky side up) to ensure good ground contact and some
error tolerance. In the testbed, three different ground surfaces are tested: plywood
covered with fabric, carpet and polyurethane foam.

The experiment is controlled from the main controller on a desktop PC using
Matlab. A TCP/IP connection is used for communication. The robot controller re-
ceives the command sequence from the main controller and executes it step by step.
For the evaluation, the main controller sends the commands to the active modules
using a Bluetooth connection.

2.1.2 Evolutionary Process

All candidate locomotion agents are physically assembled from the modules and
tested. To achieve a sufficiently large design space, the building process must be
able to handle diverse solutions. To maintain the buildability for many parameter
values, the fabrication process is structured into a fixed operation sequence. The
parameter values are stored in an agent’s genotype, which contains one gene per
module, with each gene holding the parameters for the addition of one module.
In Fig. 2, the encoded building process is illustrated. The three operations are the
preparation of a module, assembly and the rotation of the structure.

Preparation

Assembly

Rotation

Evalu
�
onIni

�
aliza

�
on

Fig. 2 Translation of the encoding into the building process basedon three operations. For the
preparation of a module, it is rotated. During assembly, theprepared module is bonded to the
previously built structure, which in the last operation canundergo rotation as a whole.
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For its preparation, a module is picked from the storage position and rotated
around the globaly andz-axes. Afterwards, the prepared module can be connected
from the top to the previously built structure using the hot glue [14]. The assembled
structure is then rotated again around they andz-axes. After the rotation is termi-
nated, either the next module is prepared and added, or the fabrication is concluded
and the finished agent placed in the testbed for its evaluation. In the case an active
module is added, its gene also defines the motor’s amplitude and phase shift during
the evaluation period.

Each gene contains the following fields defining the parameters of the fabrication
process described above: Type of module, rotations during module preparation, ro-
tations of previously built structure, relative offset at placement aboutx andy-axes,
selection of attachment area in case of multiple options, a final rotation parameter
executed after the building process and in case of active modules the control param-
eters amplitude and phase shift.

For the fitness evaluation of each agent, it is automaticallyplaced in a prepared
testbed by the robotic manipulator once its construction isfinished. There, the mo-
tors are activated with the encoded control parameters for afixed testing time. The
behavior of the agent during the testing phase is recorded byan overhead camera.
From the recorded footage, the position of the agent at the beginning and end of the
test is extracted using computer vision techniques, and thedistance travelled by the
agent, divided by the testing time serves as a fitness measure.

After the fitness is evaluated for all agents of one generation, the genotypes of the
next generation can be generated. An elite (usually the fittest three) advances to the
next generation without any change to their genotype, to preserve this information.
The other slots in the following generation are filled through mutation and recom-
bination of genotypes. It is randomly determined for each new genotype, which
mechanism is applied. For the mutation, one parent is selected, for recombination
two parent genotypes are required. The selection in both cases is stochastic, with the
selection probability for each genotype of the preceding generation proportional to
its fitness.

Mutation can either add a new (randomly initialized gene), delete one gene from
the genome or randomly change a parameter in a gene. It is probabilistically deter-
mined how many and which kind of mutation is performed. For the recombination,
a one-point crossover scheme is applied. This combines the first n genes of the first
parent with the lastm genes of the second parent. Both integersn andm are ran-
domly selected.

The physical implementation of candidate solutions introduces a number of con-
straints, mostly related to the specific implementation of the setup. For example the
parallel gripper has a limited holding force, and the robotic arm’s range is bounded.
To minimize the time spent on candidate solutions which willviolate one of these
constraints, or are otherwise prone to fail (e.g. do not contain a single motor), a
validation step is introduced. It checks each genotype for anumber of elementary
conditions. If the genotype fails at least one condition, itis regenerated. Conditions
leading to the exclusion of a genotype are:

• Lack of stability during construction
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• Servo-shafts colliding with other components
• Less than one or more than five elements
• Less than one or more than three active modules

2.1.3 Experiment Details

Five experiments were performed, resulting in the instantiation and evaluation of
500 candidate solutions. Each experiment consisted of ten generations with ten
agents each. Some parameters were varied between the experiments. The primary
differences and parameters are indicated in this section. The complete specifications
can be found in [1]. Unless specified otherwise, all experiments were randomly ini-
tialized, with genomes of one to three genes length.

Experiment 1a The first experiment was performed on the hard ground (plywood),
with four instead of two rotations in the preparation and rotation operations. The
final rotation of the agent was disabled and in the validationstep, only the size
limits were active.

Experiment 1b The agents were evaluated on the carpet. The motor amplitudes
were restricted to 10◦,20◦ and 40◦.

Experiment 1c To examine pure morphological adaptation, the motor control val-
ues (amplitude and phase shift) were fixed during this experiment. The agents were
also evaluated on the carpet.

Experiment 1d Motor control was reactivated as an evolutionary parameterwith
the restricted parameter set from experiment 1b. Agents were evaluated on the
polyurethane foam.

Experiment 2 To further increase the achievable morphological complexity, mul-
tiple parameters were adapted in this experiment and some manual interventions
accepted. Successful agents from the previous experimentswere selected for the ini-
tial population. In the validation step, the stability condition and collision detection
were disabled. Consequently, a human operator had to assistto guarantee stability,
and colliding motors were manually disabled. Furthermore,the more significant add
and delete mutations were preferred over simple parameter changes.

2.2 Results

Throughout the experiments a large variety of locomotion robots were built and
tested, which developed different successful locomotion strategies. A selection of
successful agents from different experiments is shown in Fig. 3.

The stochastic optimization based on the evolutionary algorithm described in
Sect. 2.1 optimizes the overall locomotion speed of the robotic agents. The increase
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(a) (b) (c) (d)

Fig. 3 Four sample locomotion agents generated by real-world evolution. All shown morphologies
were amongst the most successful robots in their experiment.

of the resulting fitnesses over ten generations is documented in Fig. 4, which shows
for each generation the mean of the best three agents in the population. Because
of the real-world implementation, the evaluation is not deterministic and although
elitism is applied, there is no guarantee that every generation reaches the previous
fitness. However, over generations the fitness increased in all five experiments.

Fig. 4 Mean fitness of best
three agents per generation
of all five experiments. An
improvement of fitness over
ten generations can be found
in all five experiments. Generation
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All agents of experiment 1c are shown in Fig. 5. This experiment is particu-
larly interesting, as the motor control parameters were notsubject to the evolution-
ary optimization. Therefore, the fitness improvement was solely achieved through
adaptations to the morphology of the locomotion agents. It also shows that despite
the validation step, for a few agents the building process failed, with negative er-
ror codes indicating the reason (−13: glue connection failure,−14: collision during
assembly,−16: other). Over all five experiments, the fabrication success rate was
approximately 96%.
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0.07 1.03 0.29 -14 1.70 0.21 0.56 0 0.41 1.93

1.35 1.79 0.80 2.67 0.82 0.88 0.76 1.48 0.95 1.75

0.65 1.57 1.51 0.33 -13 0.68 0 1.38 1.21 0.90

0.58 2.47 1.11 0.65 0.62 0.21 0.88 0.42 0.56 3.64

3.56 1.64 1.11 2.36 2.41 2.52 0.45 0.94 -16 0.62

2.23 2.63 1.80 -14 0.18 2.42 1.50 -14 0.39 0.60

1.95 2.64 3.58 3.48 2.90 0.04 1.08 1.46 1.81 2.69

3.01 3.39 3.73 -14 1.87 0.81 0.01 -14 0 0

4.13 4.24 3.59 -14 3.53 0 3.34 4.02 0.72 0.67

2.84 3.05 2.65 2.54 0.09 2.94 -14 -14 3.28 1.30

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Fig. 5 Generation map of experiment 1c. In this experiment, the motor control parameters were
not subject to the optimization, forcing the evolutionary process to improve the locomotion speed
solely by morphological adaptation. The locomotion agentswere evaluated on the carpet. The
number with each agent indicates its fitness (cm/s) and the colors indicate the generation method
(green: elite, red: mutation, blue: crossover). Negative fitnesses are the error codes for failed agents.
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3 Design Diversity and Evolutionary Dynamics

To adapt the locomotion agents to different environments and explore different be-
haviors, diverse designs have to be generated and implemented. The encoding of
designs and the fabrication process are closely coupled andlargely define the de-
sign space. After addressing the initialization of diversedesigns, the evolutionary
process iterating on the designs must be set up such that it can maintain this diver-
sity over generations to further explore additional solutions in the design space.

3.1 Encoding of Morphological Variations

Although a flexible assembly process is employed for the instantiation of the loco-
motion agents, the generation of morphological variation is not trivial. The fabrica-
tion constraints restrict the admissible ranges for parameter values. Therefore, not
all regions of the design space are equally well reachable, which reduces the diver-
sity. Furthermore, the ranges for parameter values must be set a priori and cannot
depend on other values as this would conflict with mutation and crossover processes.

The modules employed in the experiments are of cubic shape, which simplifies
the attachment process and thus the encoding of the genotypes, especially the def-
inition of parameter ranges. The influence of shape and attachment constraints on
the generation of diverse morphologies is analyzed in the following sections.

3.1.1 The General Attachment Problem

The goal is to attach an objectO with shapeSO on a structureS with shapeSS as
illustrated in Fig. 6. The rotation of the object is given by arotation matrixRO,
and the rotation of the structureS is defined by the rotation matrixRS. For the
attachment, at least one contact point between the shapesSS andSO must be present
without any overlap of the respective shapes. Therefore, there is a limited set of
valid attachment vectorsΓ (α,d), which is defined by the direction angleα and the
distanced between the structure and the object. Given an angleα, the distanced is
determined by the geometry of the problem:

d = f (SS,SO,RS,RO,α) . (1)

For this general attachment problem—assuming a point contact is sufficient to
connect the two bodies—all parameters but the distanced can be freely chosen.
Structure and object can have arbitrary shape and orientation, only the distance de-
pends on the other parameters to fulfill the geometrical constraints for attachment
as illustrated by the functionf in (1).
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Fig. 6 Encoding generalization. Three different scenarios were considered for the attachment of
an objectO to a structureS. In the general case (a), two bodies of arbitrary shape are connected
by at least one contact point. For a physical realization (b), a sufficiently large contact area is
required. Therefore, in this scenario, both bodies are assumed to be polyhedra. Given the assembly
constraints from the real-world experiment (c), both bodies are from elementary cubic shapes. All
illustrations are 2D, but the approach readily applies to the general 3D case.

3.1.2 Attachment of Flat Surfaces

However, for the practical realization of attachment, point contacts are not sufficient.
For the connection with HMA, for example, both bodies must bein contact with a
large enough attachment areaA≥ Amin . To realize this, in the next step it is assumed
that both shapesSS andSO are polyhedra (the set of polyhedra here is denoted as
Π ). For the two-dimensional illustrations in Fig. 6, polygons are used. For attach-
ment, one surface of each polyhedron must be brought into contact, which requires
a parallel orientation of the surfaces. Given the shapes of both bodiesSS,SO ∈ Π
and the orientationRS of the structure, only a limited set of orientationsRO of the
object is admissible. The choice of the object orientation further constrains the set
of valid attachment vectorsΓ , and also the angleα can no longer be freely chosen:

SS,SO ∈ Π (2)

RO ∈ g(SS,SO,RS) (3)

α ∈ h(SS,SO,RS,RO,Amin) (4)

d = f (SS,SO,RS,RO,α) . (5)

The functionsg andh which define the admissible set of rotationsRO and angles
α are not necessarily easy to determine, depending on the geometry of the problem.

3.1.3 Practical Attachment of Cubic Shapes

For the practical attachment based on the presented experiments a set of cubic
shapesΣ with side lengthss and 2s is considered. It is assumed the object is of
such shape (SO ∈ Σ ). The structure’s shape is a combination of elementary cubes,
i.e.SS ∈ Σ̂ ⊃ Σ .
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Based on the body shapes and fabrication processes, additional constraints are
introduced. Both bodies’ rotations are restricted to a multiple of ±90◦ around the
elementary axes. For the attachment, only the topmost surface of the structure is
considered, restricting the admissible values of the direction angleα:

SS ∈ Σ̂ ⊃ Σ (6)

SO ∈ Σ (7)

RS,RO ∈ Rx

(

kx
π
2

)

+ Ry

(

ky
π
2

)

+ Rz

(

kz
π
2

)

, k ∈ Z (8)

α ∈ h′(SS,SO,RS) (9)

d = f ′(SS,SO,RS,α) . (10)

This is simplifies the problem in many ways as compared to the previous problem
discussed in Sect. 3.1.2. The admissible values for the orientations are from a fixed
set (8) as compared to the complex functiong in (3), which depends on the problem
geometry and the structure orientation. Furthermore, given the cubic shape of the
object and the fact that only elementary rotations are considered, its overall shape
is predefined, and thus does not have to be considered in the calculation of the
attachment vectorΓ (α,d) in Eqs. (9–10).

3.1.4 Real-World Fabrication Constraints

Apart from the shape and attachment mechanism, further system constraints have
to be considered for the physical implementation of automated assembly processes.
In the implementation presented in this paper, a validationstep (Sect. 2.1.2) checks
each genotype for a range of conditions to ensure most constraints are met.

To evaluate the effect of four main constraints of the physical assembly system, a
simulation experiment was performed. 1.25 million genotypes were randomly gen-
erated with one to ten components. Their morphologies were built in simulation and
based on the simulation results, they were checked for all ofthe four constraints.
The constraints considered are the maximum agent weight, maximum agent dimen-
sions, stability of agents during fabrication (no toppling) and the connection of new
modules to the agent’s topmost surface only (for details please refer to [1]).

In Fig. 7, the diversity of shape factors for a given number ofcomponents that was
achieved by the simulated population is plotted. For the calculation of the diversity,
the all agents were categorized based on their shape factor (see [1] for definition).
The diversity is calculated as the effective number of typesbased on the population’s
Shannon index, an entropy measure [8]. The diversity measure takes into account the
number of classes present in a population, as well as their relative abundance. The
population was further categorized based on whether all four fabrication constraints
are fulfilled, all but the stability constraint are fulfilledor none are fulfilled. The
stability constraint is of particular interest, as it was relaxed in experiment 2.

The results show, that for small agents, the constraints have only a minor influ-
ence, as they are easily fulfilled. However, the constraintscomplicate the fabrication
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Fig. 7 Shape diversity for
differently sized robots with
different building constraints
active. The diversities were
obtained based on 1.25 mil-
lion randomly generated
genotypes and their cor-
responding morphologies
calculated in simulation. A
diversity value of 3.0 for ex-
ample is equivalent to the
diversity of a population with
three equally abundant shape
classes.

of large agents, and restrict their diversity. Therefore, to scale this approach to more
complex scenarios, fabrication constraints must be carefully addressed.

3.2 Generating New Designs

After the evaluation of one generation in the real world is completed, the fitnesses of
all candidate solutions are known. In a next step, the evolutionary algorithm needs
to map the ten old genotypes of generationn−1 to the ten new genotypes of genera-
tion n. The chosen process is a mixture of elitism, combined with random mutations
and crossover. For the selection of parent genotypes, the selection probabilities are
proportional to parent fitness.

In Fig. 8, the evolution of fitness in experiment 1c is shown, indicating the gener-
ation mechanism of new genotypes with color (green: elite, blue: crossover, red: mu-
tation) and the relationships through lines from one to another generation. Crossover
is based on two parent genotypes, the other mechanisms use a single parent. In the
case of elitism, the child genotype is an exact copy of the parent genotype. How-
ever, because of the stochasticity in the real-world testing, also identical genotypes
exhibit some fitness variation.

Figure 9, which shows the parent versus child fitnesses over all five experiments,
indicates that elitism (green triangles) results in child fitnesses comparable to the
parent fitness as expected. Both, mutation (red boxes) and crossover (blue circles),
produce a larger fitness variation. There is a chance that thechild completely fails,
but on the other hand, 30 offsprings were at least 50% better than their parents.
While we are interested in the fitness optimization, there isno guarantee that the
random changes of the genotypes result in a preferable outcome. However, through
the combination with the selection strategy, the overall fitness increases through the
course of evolution.
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Fig. 8 Fitness evolution in
experiment 1c on carpet. This
figure shows the evolution of
locomotion fitness through the
course of one experiment. The
color indicates the way each
agent was generated (green:
elite, blue: crossover, red:
mutation). The graph shows
the variance of identical
genotypes due to real-world
interactions (elite) as well as
the increased fitness varia-
tion in positive and negative
direction for new genotypes
(mutation and crossover). Generation (-)
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Fig. 9 Parent vs. child fitness
for all offsprings evaluated
in the five experiments. The
offsprings which are part of
the elite mostly have compa-
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while mutated/crossed off-
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4 Analysis of Behavioral Diversity

The behavior of a robot emerges through the interactions of the robot’s body and
control with the task environment [10]. Most of the successful agents exhibit peri-
odic behaviors, but some fit robots also showed more complex behaviors. The com-
plete overview of the experiments shows that not only morphologies and behaviors
are fine-tuned to the task, but also new morphologies (see Fig. 5) and behaviors are
discovered by the evolutionary optimization.

For the fitness evaluation, only the start and end points of the robot trajectories
were considered, but from the movies recorded by the overhead camera, the com-
plete 2D trajectories can be extracted. In Fig. 10, a selection of such trajectories is
plotted. The trajectories were selected from the top 10% of locomotion agents over
all five experiments.

It is much harder to engineer complex, non-periodic behaviors than the steady
solutions. To better understand under which conditions such innovations are more
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(a) (b) (c) (d)

Fig. 10 These trajectories were selected from the 10% of fittest locomotion agents over all five
experiments. The selected trajectories show that althoughmost successful agents exhibit periodic
motion patterns, also less structured behavior can be successfully developed. All scale bars measure
60mm, i.e. one side length of an active module.

likely to develop, the behavioral complexity based on the agent’s trajectories is fur-
ther analyzed. To quantify the complexity of the agents’ behaviors, the “Approxi-
mate Entropy” (ApEn) of their trajectories was calculated as described by Peng et
al. (p. 11 in [9]), with the only difference, that the trajectory segments compared
are normalized by their initial positions to account for thetranslations during the
course of the robot’s motion. The parameters used for the calculation of the ApEn
arem = 2 andr = 5.

Assessing the influence of morphology onto behavior, a measure for morpholog-
ical complexity is required. Here, we approximate an agents’ morphological com-
plexity by its number of constituent modules. Putting the number of modules and
approximate entropy of all built locomotion agents into relation, it can be seen that
larger agents tend to exhibit more complex trajectories as plotted in Fig. 11.

Fig. 11 Correlation between
morphological complexity
(measured by the number
of constituent components)
and behavior complexity
(measured by the approximate
entropy (ApEn)) based on
the real data from all five
experiments. Number of components
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As shown already by the simulation results plotted in Fig. 7,it is a challenging
task to develop diverse structures from many components, which at the same time
fulfill the building constraints. On the other hand, the real-world results show the
benefits of larger structures to achieve complex behaviors.The fabrication process
therefore has to be carefully implemented to take these considerations into account.
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Apart from morphology and control (the parameters under control of the evo-
lutionary algorithm), the testing environment has a large influence on an agent’s
behavior. In Fig. 12, the trajectories of one robotic agent with fixed control parame-
ters in five different environments are shown. From these trajectories it can be seen
that not only the performance varies, but also different behaviors emerge through
the complex system-environment interactions.

(a) (b) (c) (d) (e)

Fig. 12 Trajectories of an agent with fixed morphology and motor control in different environ-
ments. The tested grounds are: (a) plywood, (b) carpet, (c) soft foam, (d) fine sandpaper and (e)
textile. The scale bar in all plots is 60mm, i.e. the side length of an active module.

Since the evaluation of the robotic agents is based on real-world tests, the results
are not deterministic. The stochasticity can be introducedboth in the fabrication and
the evaluation steps. During the genotype-phenotype mapping, i.e. the fabrication
of physical locomotion agents, small differences always occur, which influence the
robot’s morphology. The second source of uncertainty is themorphology-behavior
mapping, i.e. the real-world evaluation of agents. The initial conditions and local
details of the environment or internal parameters of the modules influence an agent’s
behavior in a stochastic way.

5 Conclusion

In this article, the design optimization of physical locomotion agents is presented.
An evolutionary algorithm was applied directly onto the encoded fabrication pro-
cess, which enabled the automatic implementation of candidate solutions in real-
world for their performance evaluation in the task environment. For the successful
optimization, a process is required which can generate diverse mechanical designs
and autonomously generate new design based on the solution performance.

Over five experiments, 500 candidate solutions were built with about 96% suc-
cess rate and subsequently tested. The evolutionary process led to a relevant increase
of locomotion fitness over ten generations in all five experiments. After the fabri-
cation the robot morphologies interact with the task environment. The emerging
behavior determines the performance at the given task. It was shown that although
many successful agents exhibit periodic motions, the automatic design can generate
more complex working behaviors.

Analysis of these experiments emphasized the importance ofthe fabrication con-
straints for the physical implementation of the presented system. The fabrication
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constraints directly influence the diversity of designs which can successfully be
constructed, especially if larger structures are considered. On the other hand, to
achieve more complex and nontrivial behaviors, it is beneficial to fabricate larger
structures—an ability which is directly influenced by the fabrication constraints.
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