Robotic I nvention: Challenges and Per spectives
for Model-Free Design Optimization of Dynamic
L ocomotion Robots

Luzius Brodbeck, Simon Hauser and Fumiya lida

Abstract To improve a robot’s performance at a given task, or to regporchang-
ing requirements, shape adaptation can be beneficial. Toeeftiy explore complex
behaviors, diverse morphologies must be generated anéingpited. For contin-
uous and autonomous design optimization, the robot hasefuriore to be able to
assess its own performance and in turn generate and implexdapted morpho-
logical designs.

Here, we present the morphological adaptation of physwmiabtic agents to a
locomotion task. The robots are automatically assembled tmpotic manipulator
from elementary modules and the assembly process of each iagencoded in a
genotype. The genotypes of a robot population are optimisuy an evolution-
ary algorithm based on real-world performance feedbackhénexperiments, 500
genotypes were evaluated. To develop rich behavioral siiyeshape variations are
beneficial. Analysis of the results highlights the influedéghe fabrication con-
straints on shape diversity, which impose limitations eggly for larger structures.

1 Introduction

The performance of a robot at a certain task depends on tlit'sdiody structure
and control. It has been shown that an appropriate bodytateican greatly sim-
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plify the control problem [10]. However, the initial desigifia robot might not be
the most suitable for a task and a more beneficial structxistse

To repeatedly adapt a robot’s shape to its task and optirhzedbot’s perfor-
mance, two main challenges must be addressed. First, tetadja preferably large
range of tasks, the robot must be able to assume diverse haghes, ideally of
different size and resolution. This is demanding, as theweald fabrication pro-
cesses and constraints must be considered, and not albp#esdesign space can
equally well be explored. Second, to continuously optinitig@wn shape, the robot
must be able to evaluate its own performance and iteratiyeherate new designs
based on the task and previous performance.

Reconfigurable and self-reconfigurable modular robots esddthis issue by
possessing the ability to change their own body structurbetiter adapt to the
task requirements [16]. The ability to change their phyisgtape enables self-
reconfigurable robots to achieve tasks which might not beabkbé with a fixed
morphology [13]. The field of modular self-reconfigurablbaotics employs mecha-
tronic modules which can adapt the connectivity betweem#sdves to change the
overall structure [4, 6, 12]. Other solutions are providgdcbnfigurable systems
which can adjust predefined components of the system, suitle @®mpound eye
robot by Lichtensteiger et al. [5]. A further approach is fiyathesis of new struc-
tures from a suitable base material as demonstrated by Retza. [11] using a
robot equipped with hardening foam or our previous work gidiot melt adhe-
sives [2,7].

It is shown in this paper, that by increasing the diversityrafchanical design
through improved reconfigurability, robots can generai iamplement nontrivial
designs. The ability to explore intricate morphologicasidas also allows for the
generation of more complex behaviors. This was achievdumé limited number
of trial-and-error iterations, without the use of simubatitools. To implement such
a process, sufficient manipulation dexterity is necessaphysically instantiate the
diverse morphologies and the search method must be ablédiertly handle the
large dimensionality of the design problem.

In our implementation, flexible assembly is employed to geteediverse robot
morphologies, similar to the centralized generation ohégjdemonstrated by Weel
etal. in simulation [15]. An evolutionary algorithm is ajmgal directly to the encoded
building process [3] of locomotion agents to vary their sf®and subsequently op-
timize the locomotion speed of physical agents in a mods-firocess. The results
were obtained throughout five experiments with 100 candidaibots each. These
experiments have previously been published in [1].

2 Processes and Outcome of the Experiments

The goal of this experiment is the morphological adaptatibphysical robotic
agents to a locomotion task through an evolutionary processteratively adapt
the locomotion agents, a “mother robot” can repeatedlyrablethe agents from
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elementary modules. The details of each agent’s buildinggss is encoded in its
genotype. The population of candidate solutions can umderglution, which sub-
sequently optimizes the fitness at the locomotion task.

In this section, material and methods are introduced fiefgre an overview of
the results is given. The experiments have previously beesepted in [1], which
also contains a more detailed description of the setup dpdemeters.

2.1 Materialsand Methods

The robotic arm shown in Fig. 1 is able to rotate and bond thigeaand passive
elementary modules. These processes are parametrizegacimdet of parameters
results in specific outcome of the building process, i.e.eciéig morphology of
the locomotion agent. This morphology, together with itetcol parameters and
the task environment determine the agent’s performanckthars its chances to be
selected for further generations.

Robot arm

Glue supplier

Gripper

Passive modules

Fig. 1 The experimental setup with robotic arm (“mother robot"§l gmepared active and passive
modules.

2.1.1 Hardwareand Control

The robotic arm (Universal Robots, UR5) used is equippeld a/ineumatic parallel
gripper and a hot glue supplier. The gripper is used for thaipudation of the
available modules, and the hot glue (ALFA Klebstoffe AG, ALH 5500/30) is
used to bond the modules together.

The active modules are cubes with a side length of 6cm andabksig mod-
ules are wooden cubes with 3cm side length. The active medwletain a servo
motor (Modelcraft, RS-3 JR) for actuation, a battery (CarnEdectronic AG, Con-
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rad energy LiPo Akku A4V, 800mAh) and the electronics for control and wireless
communication (Arduino, Pro Mini; Sparkfun, Bluetooth M&ilver). One side of
the cube is connected to the motor flange, such that it candiated. Active and
passive modules are supplied at predefined positions fassembly of each agent.

For the rotation of active modules, a centering frame is neaiim the construc-
tion space to avoid that position errors sum up during regakatanipulations. The
assembly is performed on a slightly adhesive and soft gr¢g@ntm foam rubber,
covered with masking tape sticky side up) to ensure goodrgtcontact and some
error tolerance. In the testbed, three different grounthses are tested: plywood
covered with fabric, carpet and polyurethane foam.

The experiment is controlled from the main controller on aktep PC using
Matlab. A TCP/IP connection is used for communication. Taieot controller re-
ceives the command sequence from the main controller araliteit step by step.
For the evaluation, the main controller sends the commamtiset active modules
using a Bluetooth connection.

2.1.2 Evolutionary Process

All candidate locomotion agents are physically assembiledhfthe modules and
tested. To achieve a sufficiently large design space, thdibgiprocess must be
able to handle diverse solutions. To maintain the buildtgibr many parameter

values, the fabrication process is structured into a fixegkaon sequence. The
parameter values are stored in an agent’'s genotype, whitiaios one gene per
module, with each gene holding the parameters for the adddf one module.

In Fig. 2, the encoded building process is illustrated. Tree operations are the
preparation of a module, assembly and the rotation of thetsire.

Preparation a Rotation '
Initialization -\ ﬂ Evalution

Assembly

Fig. 2 Translation of the encoding into the building process basedhree operations. For the
preparation of a module, it is rotated. During assembly, gfepared module is bonded to the
previously built structure, which in the last operation ceadlergo rotation as a whole.
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For its preparation, a module is picked from the storagetiposand rotated
around the globay andzaxes. Afterwards, the prepared module can be connected
from the top to the previously built structure using the Hoeg14]. The assembled
structure is then rotated again around yhendz-axes. After the rotation is termi-
nated, either the next module is prepared and added, orlihiedion is concluded
and the finished agent placed in the testbed for its evaluditiothe case an active
module is added, its gene also defines the motor's amplitnmd@hase shift during
the evaluation period.

Each gene contains the following fields defining the pararaetighe fabrication
process described above: Type of module, rotations durimduhe preparation, ro-
tations of previously built structure, relative offset éagement about andy-axes,
selection of attachment area in case of multiple optiong)a fotation parameter
executed after the building process and in case of activaitasdhe control param-
eters amplitude and phase shift.

For the fitness evaluation of each agent, it is automatiqgaiiged in a prepared
testbed by the robotic manipulator once its constructidimished. There, the mo-
tors are activated with the encoded control parameters fized testing time. The
behavior of the agent during the testing phase is recordeahliyverhead camera.
From the recorded footage, the position of the agent at thmbimg and end of the
test is extracted using computer vision techniques, andigtance travelled by the
agent, divided by the testing time serves as a fithess measure

After the fitness is evaluated for all agents of one genanatiee genotypes of the
next generation can be generated. An elite (usually thefitteee) advances to the
next generation without any change to their genotype, tegre this information.
The other slots in the following generation are filled thrbugutation and recom-
bination of genotypes. It is randomly determined for eacl genotype, which
mechanism is applied. For the mutation, one parent is s&lefr recombination
two parent genotypes are required. The selection in bottsdastochastic, with the
selection probability for each genotype of the precedingegation proportional to
its fitness.

Mutation can either add a new (randomly initialized gene)jete one gene from
the genome or randomly change a parameter in a gene. It igipifistically deter-
mined how many and which kind of mutation is performed. Ferrégcombination,
a one-point crossover scheme is applied. This combinesrgte fienes of the first
parent with the lasin genes of the second parent. Both integeendm are ran-
domly selected.

The physical implementation of candidate solutions intices a number of con-
straints, mostly related to the specific implementatiorhefsetup. For example the
parallel gripper has a limited holding force, and the robatim’s range is bounded.
To minimize the time spent on candidate solutions which wdlate one of these
constraints, or are otherwise prone to fail (e.g. do nota@ona single motor), a
validation step is introduced. It checks each genotype fouraber of elementary
conditions. If the genotype fails at least one conditiois itegenerated. Conditions
leading to the exclusion of a genotype are:

e Lack of stability during construction
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Servo-shafts colliding with other components
Less than one or more than five elements
Less than one or more than three active modules

2.1.3 Experiment Details

Five experiments were performed, resulting in the inséioth and evaluation of
500 candidate solutions. Each experiment consisted of égrergtions with ten

agents each. Some parameters were varied between thenegpesi The primary

differences and parameters are indicated in this sectiomcdmplete specifications
can be found in [1]. Unless specified otherwise, all expenitmeere randomly ini-

tialized, with genomes of one to three genes length.

Experiment 1a The first experiment was performed on the hard ground (plgyoo
with four instead of two rotations in the preparation andtioh operations. The
final rotation of the agent was disabled and in the validatitap, only the size
limits were active.

Experiment 1b The agents were evaluated on the carpet. The motor ammitude
were restricted to 1020° and 40.

Experiment 1c To examine pure morphological adaptation, the motor coréie
ues (amplitude and phase shift) were fixed during this erpent. The agents were
also evaluated on the carpet.

Experiment 1d Motor control was reactivated as an evolutionary parameitr
the restricted parameter set from experiment 1b. Agent® wealuated on the
polyurethane foam.

Experiment 2 To further increase the achievable morphological compleriul-
tiple parameters were adapted in this experiment and sonmeah&terventions
accepted. Successful agents from the previous experimentsselected for the ini-
tial population. In the validation step, the stability cdtirah and collision detection
were disabled. Consequently, a human operator had to &sgjgarantee stability,
and colliding motors were manually disabled. Furthermibremore significant add
and delete mutations were preferred over simple paramieteges.

2.2 Results

Throughout the experiments a large variety of locomotidoote were built and
tested, which developed different successful locomottoategies. A selection of
successful agents from different experiments is showngn i

The stochastic optimization based on the evolutionaryréatyo described in
Sect. 2.1 optimizes the overall locomotion speed of thetiolagients. The increase
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(b) (d)

Fig. 3 Four sample locomotion agents generated by real-worlduéeol. All shown morphologies
were amongst the most successful robots in their experiment

of the resulting fithesses over ten generations is docurdémteg. 4, which shows

for each generation the mean of the best three agents in fhdgtion. Because

of the real-world implementation, the evaluation is notedetinistic and although

elitism is applied, there is no guarantee that every geioerataches the previous
fithess. However, over generations the fitness increasdbfivesexperiments.

S (&)
T T

Fitness (cm/s)

w
T

Fig. 4 Mean fitness of best
three agents per generation
of all five experiments. An
improvement of fitness over ) ) ) ) ) ) ) )
ten generations can be found 1 2 3 4 5 6 7 8 9 10
in all five experiments. Generation

N
T

[iN
T

All agents of experiment 1c are shown in Fig. 5. This expeniig particu-
larly interesting, as the motor control parameters weresanbject to the evolution-
ary optimization. Therefore, the fitness improvement waslg@chieved through
adaptations to the morphology of the locomotion agentdstt shows that despite
the validation step, for a few agents the building procedsdawith negative er-
ror codes indicating the reason13: glue connection failure; 14: collision during
assembly—16: other). Over all five experiments, the fabrication sssaate was
approximately 96 %.
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Fig. 5 Generation map of experiment 1c. In this experiment, theomaintrol parameters were
not subject to the optimization, forcing the evolutionarpgess to improve the locomotion speed
solely by morphological adaptation. The locomotion agemse evaluated on the carpet. The
number with each agent indicates its fitness (cm/s) and tloescimdicate the generation method
(green: elite, red: mutation, blue: crossover). Negatine§ises are the error codes for failed agents.
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3 Design Diversity and Evolutionary Dynamics

To adapt the locomotion agents to different environmentsexplore different be-

haviors, diverse designs have to be generated and impletheflhe encoding of
designs and the fabrication process are closely coupledaagely define the de-
sign space. After addressing the initialization of divedssigns, the evolutionary
process iterating on the designs must be set up such that ihaeatain this diver-

sity over generations to further explore additional solusiin the design space.

3.1 Encoding of Morphological Variations

Although a flexible assembly process is employed for theamsition of the loco-
motion agents, the generation of morphological variatsndt trivial. The fabrica-
tion constraints restrict the admissible ranges for patamelues. Therefore, not
all regions of the design space are equally well reachabiieshrreduces the diver-
sity. Furthermore, the ranges for parameter values musgtba griori and cannot
depend on other values as this would conflict with mutati@h@nssover processes.
The modules employed in the experiments are of cubic shapiehvgimplifies

the attachment process and thus the encoding of the gesosgmecially the def-
inition of parameter ranges. The influence of shape andhattant constraints on
the generation of diverse morphologies is analyzed in theviing sections.

3.1.1 The General Attachment Problem

The goal is to attach an obje@twith shapeSy on a structuresS with shapeSs as
illustrated in Fig. 6. The rotation of the object is given byatation matrixRop,
and the rotation of the structui®is defined by the rotation matriks. For the
attachment, at least one contact point between the sl&@eslSo must be present
without any overlap of the respective shapes. Therefoegetls a limited set of
valid attachment vectorS(a,d), which is defined by the direction angleand the
distanced between the structure and the object. Given an angtae distancel is
determined by the geometry of the problem:

d = (Ss,%,Rs,Ro,a) . (1)

For this general attachment problem—assuming a point coigtaufficient to
connect the two bodies—all parameters but the distahcan be freely chosen.
Structure and object can have arbitrary shape and orientatnly the distance de-
pends on the other parameters to fulfill the geometrical tcaimés for attachment
as illustrated by the functiofiin (1).
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L.

a

Fig. 6 Encoding generalization. Three different scenarios weresiclered for the attachment of
an objectO to a structureS. In the general case (a), two bodies of arbitrary shape areemed
by at least one contact point. For a physical realization &3ufficiently large contact area is
required. Therefore, in this scenario, both bodies arenasduo be polyhedra. Given the assembly
constraints from the real-world experiment (c), both bediee from elementary cubic shapes. All
illustrations are 2D, but the approach readily applies ogéneral 3D case.

3.1.2 Attachment of Flat Surfaces

However, for the practical realization of attachment, poontacts are not sufficient.
For the connection with HMA, for example, both bodies musirbeontact with a
large enough attachment ark& Anin . TO realize this, in the next step it is assumed
that both shapeSs and S are polyhedra (the set of polyhedra here is denoted as
IT). For the two-dimensional illustrations in Fig. 6, polygoare used. For attach-
ment, one surface of each polyhedron must be brought int@cnvhich requires

a parallel orientation of the surfaces. Given the shapesttf bodiesSs, Sy € 1

and the orientatiofRs of the structure, only a limited set of orientatioRg of the
object is admissible. The choice of the object orientatimthfer constrains the set

of valid attachment vectorS, and also the angle can no longer be freely chosen:

S,So el (2)
Ro € 9(Ss,So,Rs) 3)

a € h(Ss,S0.Rs,Ro,Amin) (4)

d = f(Ss,%,Rs,Ro, ) . (5)

The functiongg andh which define the admissible set of rotatidRgand angles
o are not necessarily easy to determine, depending on theaggoof the problem.

3.1.3 Practical Attachment of Cubic Shapes

For the practical attachment based on the presented exgrgsm set of cubic
shapes> with side lengthss and % is considered. It is assumed the object is of
such shapeYy € ). The structure’s shape is a combination of elementarysube
ie.S5efos.
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Based on the body shapes and fabrication processes, addlitionstraints are
introduced. Both bodies’ rotations are restricted to a ipleltof +90° around the
elementary axes. For the attachment, only the topmostaidathe structure is
considered, restricting the admissible values of the dor@nglea:

SesSos (6)
ez (1)
Rs,Ro € Ry (kxg) 4R (ky’—;) 4R, (kzg) , kez ®)
a € h(Ss,S,Rs) (9)

d = f'(Ss,S0,Rs,0) . (10)

This is simplifies the problem in many ways as compared totéequs problem
discussed in Sect. 3.1.2. The admissible values for thatatiens are from a fixed
set (8) as compared to the complex functign (3), which depends on the problem
geometry and the structure orientation. Furthermore,ngtie cubic shape of the
object and the fact that only elementary rotations are cemnsd, its overall shape
is predefined, and thus does not have to be considered in thelateon of the
attachment vectdr (a,d) in Egs. (9-10).

3.1.4 Real-World Fabrication Constraints

Apart from the shape and attachment mechanism, furtheersysbnstraints have

to be considered for the physical implementation of auteshassembly processes.
In the implementation presented in this paper, a validattep (Sect. 2.1.2) checks
each genotype for a range of conditions to ensure most eantstiare met.

To evaluate the effect of four main constraints of the pralsassembly system, a
simulation experiment was performed2% million genotypes were randomly gen-
erated with one to ten components. Their morphologies wateib simulation and
based on the simulation results, they were checked for d@hefour constraints.
The constraints considered are the maximum agent weiglinman agent dimen-
sions, stability of agents during fabrication (no topp)iagd the connection of new
modules to the agent’s topmost surface only (for detailaggeefer to [1]).

In Fig. 7, the diversity of shape factors for a given numbexahponents that was
achieved by the simulated population is plotted. For theutation of the diversity,
the all agents were categorized based on their shape faet®{1] for definition).
The diversity is calculated as the effective number of tyysessed on the population’s
Shannon index, an entropy measure [8]. The diversity medakes into account the
number of classes present in a population, as well as tHative abundance. The
population was further categorized based on whether allfédarication constraints
are fulfilled, all but the stability constraint are fulfillemr none are fulfilled. The
stability constraint is of particular interest, as it wakked in experiment 2.

The results show, that for small agents, the constraints baly a minor influ-
ence, as they are easily fulfilled. However, the constraiosplicate the fabrication
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Fig. 7 Shape diversity for ab
differently sized robots with
different building constraints
active. The diversities were
obtained based on 1.25 mil-
lion randomly generated
genotypes and their cor-
responding morphologies
calculated in simulation. A
diversity value of  for ex-
ample is equivalent to the
diversity of a population with

three equally abundant shape 3 4 5 6 7 8 9 10
classes. Number of components

Diversity of shapes

- All constraints
[ stability relaxed || |
|:| No constraints

of large agents, and restrict their diversity. Therefaresdale this approach to more
complex scenarios, fabrication constraints must be chyefddressed.

3.2 Generating New Designs

After the evaluation of one generation in the real world impteted, the fitnesses of
all candidate solutions are known. In a next step, the elaiaty algorithm needs
to map the ten old genotypes of generationl to the ten new genotypes of genera-
tion n. The chosen process is a mixture of elitism, combined witldoan mutations
and crossover. For the selection of parent genotypes, teetiem probabilities are
proportional to parent fitness.

In Fig. 8, the evolution of fithess in experiment 1c is showdjdating the gener-
ation mechanism of new genotypes with color (green: elltesflxrossover, red: mu-
tation) and the relationships through lines from one to la@ogeneration. Crossover
is based on two parent genotypes, the other mechanisms usgemarent. In the
case of elitism, the child genotype is an exact copy of themagenotype. How-
ever, because of the stochasticity in the real-world tgstitso identical genotypes
exhibit some fitness variation.

Figure 9, which shows the parent versus child fithesses dhviereaexperiments,
indicates that elitism (green triangles) results in chitdesses comparable to the
parent fitness as expected. Both, mutation (red boxes) asdaver (blue circles),
produce a larger fitness variation. There is a chance thathifee completely fails,
but on the other hand, 30 offsprings were at least 50% béttar their parents.
While we are interested in the fitness optimization, thenedgguarantee that the
random changes of the genotypes result in a preferablemetddowever, through
the combination with the selection strategy, the overalefs increases through the
course of evolution.
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Fig. 8 Fitness evolution in
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experiment 1c on carpet. This — o
figure shows the evolution of 4r Mutation 1
locomotion fitness through the
course of one experiment. The
color indicates the way each
agent was generated (green:
elite, blue: crossover, red:
mutation). The graph shows
the variance of identical
genotypes due to real-world
interactions (elite) as well as
the increased fitness varia-
tion in positive and negative
direction for new genotypes 1 2 3 4 5 6 7 8 9 10
(mutation and crossover). Generation (-)
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4 Analysisof Behavioral Diversity

The behavior of a robot emerges through the interactionkefdbot’s body and
control with the task environment [10]. Most of the succakafients exhibit peri-
odic behaviors, but some fit robots also showed more com@kawiors. The com-
plete overview of the experiments shows that not only molqies and behaviors
are fine-tuned to the task, but also new morphologies (se&)and behaviors are
discovered by the evolutionary optimization.

For the fithess evaluation, only the start and end pointsefdbot trajectories
were considered, but from the movies recorded by the ovdrbamera, the com-
plete 2D trajectories can be extracted. In Fig. 10, a seledf such trajectories is
plotted. The trajectories were selected from the top 10 %ajinotion agents over
all five experiments.

It is much harder to engineer complex, non-periodic betraviiban the steady
solutions. To better understand under which condition& $micovations are more
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Fig. 10 These trajectories were selected from the 10% of fittestnhmtimn agents over all five
experiments. The selected trajectories show that althauggt successful agents exhibit periodic
motion patterns, also less structured behavior can be ssfodly developed. All scale bars measure
60mm, i.e. one side length of an active module.

p

9

4

NN

L

likely to develop, the behavioral complexity based on therdlg trajectories is fur-
ther analyzed. To quantify the complexity of the agents’dsédrs, the “Approxi-
mate Entropy” (ApEn) of their trajectories was calculatsdiascribed by Peng et
al. (p. 11 in [9]), with the only difference, that the trajest segments compared
are normalized by their initial positions to account for thenslations during the
course of the robot’s motion. The parameters used for thrultzdion of the ApEn
arem=2 andr =5.

Assessing the influence of morphology onto behavior, a medsumorpholog-
ical complexity is required. Here, we approximate an agentsphological com-
plexity by its number of constituent modules. Putting thenber of modules and
approximate entropy of all built locomotion agents intatin, it can be seen that
larger agents tend to exhibit more complex trajectoriedatsagl in Fig. 11.

1.2 T ;
T v 1
L I ! T I
o \ ‘ !
|
go.a H 1
Fig. 11 Correlation between 2 o6l
morphological complexity £ |
(measured by the number 2 0l |
of constituent components) < | \ *
and behavior complexity 02t - 1 [
(measured by the approximate 1 | |
entropy (ApEn)) based on op - + L -+ +
the real data from all five 1 2 3 4 5
experiments. Number of components

As shown already by the simulation results plotted in Figt i a challenging
task to develop diverse structures from many componentgivat the same time
fulfill the building constraints. On the other hand, the reakld results show the
benefits of larger structures to achieve complex behavidrs.fabrication process
therefore has to be carefully implemented to take theseaerations into account.
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Apart from morphology and control (the parameters undetrobof the evo-
lutionary algorithm), the testing environment has a lamfiuence on an agent’s
behavior. In Fig. 12, the trajectories of one robotic ageitt fixed control parame-
ters in five different environments are shown. From thegedtaries it can be seen
that not only the performance varies, but also differentavédrs emerge through
the complex system-environment interactions.

M? |‘W

@ (b) (d) (e)

Fig. 12 Trajectories of an agent with fixed morphology and motor arin different environ-
ments. The tested grounds are: (a) plywood, (b) carpetoftf@am, (d) fine sandpaper and (e)
textile. The scale bar in all plots is 60mm, i.e. the side teraf an active module.

Since the evaluation of the robotic agents is based on redtivests, the results
are not deterministic. The stochasticity can be introduoet in the fabrication and
the evaluation steps. During the genotype-phenotype mgppe. the fabrication
of physical locomotion agents, small differences alwaysuoowvhich influence the
robot’s morphology. The second source of uncertainty istlbephology-behavior
mapping, i.e. the real-world evaluation of agents. Theaahitonditions and local
details of the environment or internal parameters of theutexinfluence an agent’s
behavior in a stochastic way.

5 Conclusion

In this article, the design optimization of physical locdioo agents is presented.
An evolutionary algorithm was applied directly onto the eded fabrication pro-
cess, which enabled the automatic implementation of cauelisiolutions in real-
world for their performance evaluation in the task enviremi For the successful
optimization, a process is required which can generatesivemechanical designs
and autonomously generate new design based on the soletiforpance.

Over five experiments, 500 candidate solutions were buth wbout 96 % suc-
cess rate and subsequently tested. The evolutionary @rieckt® a relevantincrease
of locomotion fithness over ten generations in all five experits. After the fabri-
cation the robot morphologies interact with the task emvinent. The emerging
behavior determines the performance at the given task.dtshawn that although
many successful agents exhibit periodic motions, the aaticrdesign can generate
more complex working behaviors.

Analysis of these experiments emphasized the importanttedébrication con-
straints for the physical implementation of the presentedesn. The fabrication
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constraints directly influence the diversity of designsakhcan successfully be
constructed, especially if larger structures are conseitle®n the other hand, to
achieve more complex and nontrivial behaviors, it is beradfto fabricate larger
structures—an ability which is directly influenced by thbriaation constraints.
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