Skip to main content

Neuromorphic Artificial Sense of Touch: Bridging Robotics and Neuroscience

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

The development of a neuromorphic artificial sense of touch is presented. The system allows to code tactile information by means of a sequence of spikes, mimicking the neural dynamics of SA and FA human mechanoreceptors. The developed neuromorphic fingertip was able to encode naturalistic textures with a very high rate of disambiguation, up to 97% over a 10% chance level, by means of Victor-Purpura spike metrics and kNN decoding. A neurocomputational architecture inspired to the Cuneate Nucleus was also developed in order to achieve categorization of tactile stimuli in real-time while gathering the data stream. The implemented architecture was assessed by experimenting stimuli differing in the orientation of the tactile edges. The presented results are intended to contribute towards the restoration of a quasi-natural sense of touch in limb neuroprostheses, to develop effective and computationally lean artificial touch systems for robotic applications and to contribute to the open neuroscientific debate about the human somatosensory system.

Udaya Bhaskar Rongala and Alberto Mazzoni are equally contributed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Nobel Laureates in Physiology or Medicine (www.nobelprize.org/nobel_prizes/medicine/laureates).

References

  1. Abraira, V.E., Ginty, D.D.: The sensory neurons of touch. Neuron 79(4), 618–639 (2013)

    Article  Google Scholar 

  2. Beccai, L., Roccella, S., Arena, A., Valvo, F., Valdastri, P., Menciassi, A., Carrozza, M.C., Dario, P.: Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens. Actuators A Phys. 120(2), 370–382 (2005)

    Article  Google Scholar 

  3. Beccai, L., Roccella, S., Ascari, L., Valdastri, P., Sieber, A., Carrozza, M.C., Dario, P.: Development and experimental analysis of a soft compliant tactile microsensor for anthropomorphic artificial hand. IEEE/ASME Trans. Mech. 13(2), 158–168 (2008)

    Article  Google Scholar 

  4. Bensmaïa, S.J., Hollins, M.: The vibrations of texture. Somatosens. Mot. Res. 20(1), 33–43 (2003)

    Article  Google Scholar 

  5. Blake, D.T., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17(19), 7480–7489 (1997)

    Google Scholar 

  6. Bologna, L.L., Pinoteau, J., Passot, J.B., Garrido, J.A., Vogel, J., Vidal, E.R., Arleo, A.: A closed-loop neurobotic system for fine touch sensing. J. Neural Eng. 10(4), 046019 (2013)

    Article  Google Scholar 

  7. Bologna, L.L., Pinoteau, J., Brasselet, R., Maggiali, M., Arleo, A.: Encoding/decoding of first and second order tactile afferents in a neurorobotic application. J. Phys. Paris 105(1), 25–35 (2011)

    Google Scholar 

  8. Connor, C.E., Johnson, K.O.: Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci. 12(9), 3414–3426 (1992)

    Google Scholar 

  9. Dario, P.: Tactile sensing: technology and applications. Sens. Actuators A Phys. 26(1), 251–256 (1991)

    Article  Google Scholar 

  10. Dario, P., Hannaford, B., Takanishi, A.: Guest editorial special issue on biorobotics. IEEE Trans. Robot. 24(1), 3–4 (2008)

    Article  Google Scholar 

  11. Hayward, V., Terekhov, A.V., Wong, S.-C., Geborek, P., Bengtsson, F., Jörntell, H.: Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons. J. R. Soc. Interface 11(93), 20131015 (2014)

    Article  Google Scholar 

  12. Hollins, M., Risner, S.R.: Evidence for the duplex theory of tactile texture perception. Percept. Psychophys. 62(4), 695–705 (2000)

    Article  Google Scholar 

  13. Hollins, M., Bensmaïa, S.J., Sean, W.: Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosens. Motor Res. 18(4), 253–262 (2001)

    Article  Google Scholar 

  14. Howe, R.D.: Tactile sensing and control of robotic manipulation. Adv. Robot. 8(3), 245–261 (1993)

    Article  Google Scholar 

  15. Izhikevich, E.M., et al.: Simple model of spiking neurons. IEEE Trans. Neural Net. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  16. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  17. Jones, L.A., Lederman, S.J.: Human Hand Function. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  18. Jörntell, H., Bengtsson, F., Geborek, P., Spanne, A., Terekhov, A.V., Hayward, V.: Segregation of tactile input features in neurons of the cuneate nucleus. Neuron 83(6), 1444–1452 (2014)

    Article  Google Scholar 

  19. Kim, E.K., Sugg, K.B., Langhals, N.B., Lightbody, S.M., Baltrusaitis, M.E., Urbanchek, M.G., Cedema, P.S., Gerling, G.J.: An engineered tactile afferent modulation platform to elicit compound sensory nerve action potentials in response to force magnitude. In: World Haptics Conference (WHC), 2013, pp. 241–246. IEEE (2013)

    Google Scholar 

  20. Kreuz, T.: Measures of spike train synchrony. Scholarpedia 6(10), 11934 (2011)

    Article  Google Scholar 

  21. Lee, M.H., Nicholls, H.R.: Review article tactile sensing for mechatronics–a state of the art survey. Mechatronics 9(1), 1–31 (1999)

    Article  Google Scholar 

  22. Lee, W.W., Cabibihan, J., Thakor, N.V.: Bio-mimetic strategies for tactile sensing. In: IEEE SENSORS, 2013, pp. 1–4. IEEE (2013)

    Google Scholar 

  23. Mazzoni, A., Panzeri, S., Logothetis, N.K., Brunel, N.: Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput. Biol. 4(12), e1000239 (2008)

    Article  MathSciNet  Google Scholar 

  24. Mitchinson, B., Pearson, M., Pipe, T., Prescott, T.J.: Biomimetic robots as scientific models: a view from the whisker tip. Neuromorphic and Brain-Based Robots, pp. 23–57. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  25. Oddo, C.M., Valdastri, P., Beccai, L., Roccella, S., Carrozza, M.C., Dario, P.: Investigation on calibration methods for multi-axis, linear and redundant force sensors. Meas. Sci. Technol. 18(3), 623 (2007)

    Article  Google Scholar 

  26. Oddo, C.M., Controzzi, M., Beccai, L., Cipriani, C., Carrozza, M.C.: Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans. Robot. 27(3), 522–533 (2011)

    Article  Google Scholar 

  27. Oddo, C.M., Beccai, L., Vitiello, N., Wasling, H.B., Wessberg, J., Carrozza, M.C.: A mechatronic platform for human touch studies. Mechatronics 21(3), 604–613 (2011)

    Article  Google Scholar 

  28. Oddo, C.M., Beccai, L., Wessberg, J., Wasling, H.B., Mattioli, F., Carrozza, M.C.: Roughness encoding in human and biomimetic artificial touch: spatiotemporal frequency modulation and structural anisotropy of fingerprints. Sensors 11(6), 5596–5615 (2011)

    Article  Google Scholar 

  29. Pape, L., Oddo, C.M., Controzzi, M., Cipriani, C., Förster, A., Carrozza, M.C., Schmidhuber, J.: Learning tactile skills through curious exploration. Front. Neurorobot. 6, (2012)

    Google Scholar 

  30. Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1581), 3085–3096 (2011)

    Article  Google Scholar 

  31. Rager, D.M., Alvares, D., Birznieks, I., Redmond, S.J., Morley, J.W., Lovell, N.H., Vickery, R.M.: Generating tactile afferent stimulation patterns for slip and touch feedback in neural prosthetics. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 5922–5925. IEEE (2013)

    Google Scholar 

  32. Raspopovic, S., Capogrosso, M., Petrini, F.M., Bonizzato, M., Rigosa, J., Di Pino, G., Carpaneto, J., Controzzi, M., Boretius, T., Fernandez, E., et al.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19–222ra19 (2014)

    Article  Google Scholar 

  33. Rongala, U.B., Mazzoni, A., Oddo, C.M.: Neuromorphic artificial touch for categorization of naturalistic textures. IEEE Trans. Neural Net. Learn. Syst. PP(99), 1 (2015). doi:10.1109/TNNLS.2015.2472477. ISSN 2162-237X

    Google Scholar 

  34. Scheibert, J., Leurent, S., Prevost, A., Debrégeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920), 1503–1506 (2009)

    Article  Google Scholar 

  35. Service, R.F.: Minds of their own. Science 346(6206), 182–183 (2014). doi:10.1126/science.346.6206.182. http://www.sciencemag.org/content/346/6206/182.short

  36. Spigler, G., Oddo, C.M., Carrozza, M.C.: Soft-neuromorphic artificial touch for applications in neuro-robotics. In: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 1913–1918. IEEE (2012)

    Google Scholar 

  37. Tan, D.W., Schiefer, M.A., Keith, M.W., Anderson, J.R., Tyler, J., Tyler, D.J.: A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6(257), 257ra138–257ra138 (2014)

    Article  Google Scholar 

  38. Vallbo, Å.B., Johansson, R.S., et al.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3(1), 3–14 (1984)

    Google Scholar 

  39. Victor, J.D., Purpura, K.P.: Nature and precision of temporal coding in visual cortex: a metric-space analysis. J. Neurophys. 76(2), 1310–1326 (1996)

    Google Scholar 

  40. Yoshioka, T., Bensmaia, S.J., Craig, J.C., Hsiao, S.S.: Texture perception through direct and indirect touch: an analysis of perceptual space for tactile textures in two modes of exploration. Somatosens. Mot. Res. 24(1–2), 53–70 (2007)

    Article  Google Scholar 

  41. Yoshioka, T., Gibb, B., Dorsch, A.K., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J. Neurosci. 21(17), 6905–6916 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NEBIAS European project (NEurocontrolled BIdirectional Artificial upper limb and hand prosthesis; EU-FP7-ICT-611687), by the PRIN/HandBot Italian project (Biomechatronic hand prostheses endowed with bio-inspired tactile perception, bi-directional neural interfaces and distributed sensori-motor control; CUP: B81J12002680008; prot.: 20102YF2RY), by the NanoBioTouch European project (Nano-resolved multi-scale investigations of human tactile sensations and tissue engineered nanobiosensors; EU-FP7-NMP-228844), and by the Italian Ministry of Foreign Affairs and International Cooperation, Directorate General for Country Promotion (Economy, Culture and Science) - Unit for Scientific and Technological Cooperation, via the Italy-Sweden bilateral research project on “Brain network mechanisms for integration of natural tactile input patterns”.

The authors gratefully thank Mr. Giacomo Spigler and Dr. Lucia Beccai for previous collaboration in this project, Dr. Simon Johnson for providing part of the experimented tactile stimuli, and Prof. Silvestro Micera, Prof. Henrik Jörntell, Prof. Johan Wessberg and Prof. Paolo Dario for thoughtful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Chiara Carrozza or Calogero Maria Oddo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rongala, U.B., Mazzoni, A., Camboni, D., Carrozza, M.C., Oddo, C.M. (2018). Neuromorphic Artificial Sense of Touch: Bridging Robotics and Neuroscience. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics