Skip to main content

Transition State Clustering: Unsupervised Surgical Trajectory Segmentation for Robot Learning

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

A large and growing corpus of synchronized kinematic and video recordings of robot-assisted surgery has the potential to facilitate training and subtask automation. One of the challenges in segmenting such multi-modal trajectories is that demonstrations vary spatially, temporally, and contain random noise and loops (repetition until achieving the desired result). Segments of task trajectories are often less complex, less variable, and allow for easier detection of outliers. As manual segmentation can be tedious and error-prone, we propose a new segmentation method that combines hybrid dynamical systems theory and Bayesian non-parametric statistics to automatically segment demonstrations. Transition State Clustering (TSC) models demonstrations as noisy realizations of a switched linear dynamical system, and learns spatially and temporally consistent transition events across demonstrations. TSC uses a hierarchical Dirichlet Process Gaussian Mixture Model to avoid having to select the number of segments a priori. After a series of merging and pruning steps, the algorithm adaptively optimizes the number of segments. In a synthetic case study with two linear dynamical regimes, where demonstrations are corrupted with noise and temporal variations, TSC finds upĀ to a 20% more accurate segmentation than GMM-based alternatives. On 67 recordings of surgical needle passing and suturing tasks from the JIGSAWS surgical training datasetĀ [7], supplemented with manually annotated visual features, TSC finds 83% of needle passing segments and 73% of the suturing segments found by human experts. Qualitatively, TSC also identifies transitions overlooked by human annotators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asfour, T., Gyarfas, F., Azad, P., Dillmann, R.: Imitation learning of dual-arm manipulation tasks in humanoid robots. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 40ā€“47 (2006)

    Google ScholarĀ 

  2. Calinon, S.: Skills learning in robots by interaction with users and environment. In: 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 161ā€“162. IEEE (2014)

    Google ScholarĀ 

  3. Calinon, S., Billard, A.: Stochastic gesture production and recognition model for a humanoid robot. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems 2004, (IROS 2004), vol.Ā 3, pp. 2769ā€“2774 (2004)

    Google ScholarĀ 

  4. Calinon, S., Halluin, F.D., Caldwell, D.G., Billard, A.G.: Handling of multiple constraints and motion alternatives in a robot programming by demonstration framework. In: 9th IEEE-RAS International Conference on Humanoid Robots, 2009, Humanoids 2009, pp. 582ā€“588. IEEE (2009)

    Google ScholarĀ 

  5. Calinon, S., Dā€™halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning and reproduction of gestures by imitation. IEEE Robot. Autom. Mag. 17(2), 44ā€“54 (2010)

    ArticleĀ  Google ScholarĀ 

  6. Calinon, S., Bruno, D., Caldwell, D.G.: A task-parameterized probabilistic model with minimal intervention control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3339ā€“3344 (2014)

    Google ScholarĀ 

  7. Gao, Y., Vedula, S., Reiley, C., Ahmidi, N., Varadarajan, B., Lin, H., Tao, L., Zappella, L., Bejar, B., Yuh, D., Chen, C., Vidal, R., Khudanpur, S., Hager, G.: The jhu-isi gesture and skill assessment dataset (jigsaws): a surgical activity working set for human motion modeling. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2014)

    Google ScholarĀ 

  8. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. 29(2), 28ā€“93 (2009)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. Grollman, D.H., Jenkins, O.C.: Incremental learning of subtasks from unsegmented demonstration. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 261ā€“266. IEEE (2010)

    Google ScholarĀ 

  10. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Neural Information Processing Systems (NIPS), pp. 1523ā€“1530 (2002)

    Google ScholarĀ 

  11. Intuitive Surgical: Annual report (2014). http://investor.intuitivesurgical.com/phoenix.zhtml?c=122359&p=irol-IRHome

  12. Johns Hopkins: Surgical robot precision. http://eng.jhu.edu/wse/magazine-winter-14/print/surgical-precision

  13. Kehoe, B., Kahn, G., Mahler, J., Kim, J., Lee, A., Lee, A., Nakagawa, K., Patil, S., Boyd, W., Abbeel, P., Goldberg, K.: Autonomous multilateral debridement with the raven surgical robot. In: International Conference on Robotics and Automation (ICRA) (2014)

    Google ScholarĀ 

  14. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. SIAM

    Google ScholarĀ 

  15. Kruger, V., Herzog, D., Baby, S., Ude, A., Kragic, D.: Learning actions from observations. IEEE Robot. Autom. Mag. 17(2), 30ā€“43 (2010)

    ArticleĀ  Google ScholarĀ 

  16. KrĆ¼ger, V., Tikhanoff, V., Natale, L., Sandini, G.: Imitation learning of non-linear point-to-point robot motions using dirichlet processes. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2029ā€“2034. IEEE (2012)

    Google ScholarĀ 

  17. Kulić, D., Nakamura, Y.: Scaffolding on-line segmentation of full body human motion patterns. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2860ā€“2866. IEEE (2008)

    Google ScholarĀ 

  18. Kurihara, K., Welling, M., Vlassis, N.A.: Accelerated variational dirichlet process mixtures. In: Advances in Neural Information Processing Systems, pp. 761ā€“768 (2006)

    Google ScholarĀ 

  19. Lea, C., Hager, G.D., Vidal, R.: An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks. In: WACV (2015)

    Google ScholarĀ 

  20. Lee, S.H., Suh, I.H., Calinon, S., Johansson, R.: Autonomous framework for segmenting robot trajectories of manipulation task. Auton. Robots 38(2), 107ā€“141 (2014)

    ArticleĀ  Google ScholarĀ 

  21. Lin, H., Shafran, I., Murphy, T., Okamura, A., Yuh, D., Hager, G.: Automatic detection and segmentation of robot-assisted surgical motions. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 802ā€“810. Springer (2005)

    Google ScholarĀ 

  22. Mahler, J., Krishnan, S., Laskey, M., Sen, S., Murali, A., Kehoe, B., Patil, S., Wang, J., Franklin, M., Abbeel, P.K.G.: Learning accurate kinematic control of cable-driven surgical robots using data cleaning and gaussian process regression. In: International Conference on Automated Sciences and Engineering (CASE), pp. 532ā€“539 (2014)

    Google ScholarĀ 

  23. Manschitz, S., Kober, J., Gienger, M., Peters, J.: Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robot. Auton. Syst. 74(5), 97ā€“107 (2015)

    ArticleĀ  Google ScholarĀ 

  24. Moldovan, T., Levine, S., Jordan, M., Abbeel, P.: Optimism-driven exploration for nonlinear systems. In: International Conference on Robotics and Automation (ICRA) (2015)

    Google ScholarĀ 

  25. Murali, A., Sen, S., Kehoe, B., Garg, A., McFarland, S., Patil, S., Boyd, W., Lim, S., Abbeel, P., Goldberg, K.: Learning by observation for surgical subtasks: multilateral cutting of 3d viscoelastic and 2d orthotropic tissue phantoms. In: International Conference on Robotics and Automation (ICRA) (2015)

    Google ScholarĀ 

  26. Niekum, S., Osentoski, S., Konidaris, G., Barto, A.: Learning and generalization of complex tasks from unstructured demonstrations. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5239ā€“5246. IEEE (2012)

    Google ScholarĀ 

  27. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: International Conference on Robotics and Automation (ICRA), pp. 763ā€“768. IEEE (2009)

    Google ScholarĀ 

  28. Quellec, G., Lamard, M., Cochener, B., Cazuguel, G.: Real-time segmentation and recognition of surgical tasks in cataract surgery videos. IEEE Trans. Med. Imag. 33(12), 2352ā€“2360 (2014)

    ArticleĀ  Google ScholarĀ 

  29. Reiley, C.E., Plaku, E., Hager, G.D.: Motion generation of robotic surgical tasks: learning from expert demonstrations. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 967ā€“970. IEEE (2010)

    Google ScholarĀ 

  30. Rosen, J., Brown, J.D., Chang, L., Sinanan, M.N., Hannaford, B.: Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. IEEE Trans. Biomed. Eng. 53(3), 399ā€“413 (2006)

    ArticleĀ  Google ScholarĀ 

  31. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of non-rigid registration

    Google ScholarĀ 

  32. Tang, H., Hasegawa-Johnson, M., Huang, T.S.: Toward robust learning of the gaussian mixture state emission densities for hidden markov models. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 5242ā€“5245. IEEE (2010)

    Google ScholarĀ 

  33. Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and recognition. In: Medical Image Computing and Computer-Assisted Interventionā€“MICCAI 2013, pp. 339ā€“346. Springer (2013)

    Google ScholarĀ 

  34. Vakanski, A., Mantegh, I., Irish, A., Janabi-Sharifi, F.: Trajectory learning for robot programming by demonstration using hidden markov model and dynamic time warping. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(4), 1039ā€“1052 (2012)

    ArticleĀ  Google ScholarĀ 

  35. Varadarajan, B., Reiley, C., Lin, H., Khudanpur, S., Hager, G.: Data-derived models for segmentation with application to surgical assessment and training. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 426ā€“434. Springer (2009)

    Google ScholarĀ 

  36. Zappella, L., Bejar, B., Hager, G., Vidal, R.: Surgical gesture classification from video and kinematic data. Med. Image Analysis 17(7), 732ā€“745 (2013)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This research was supported in part by a seed grant from the UC Berkeley Center for Information Technology in the Interest of Society (CITRIS), by the U.S. National Science Foundation under Award IIS-1227536: Multilateral Manipulation by Human-Robot Collaborative Systems. This work has been supported in part by funding from Google and Cisco. We also thank Florian Pokorny, Jeff Mahler, and Michael Laskey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Krishnan or Animesh Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Krishnan, S. et al. (2018). Transition State Clustering: Unsupervised Surgical Trajectory Segmentation for Robot Learning. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics