Skip to main content

Superpixel-Based Line Operator for Retinal Blood Vessel Segmentation

  • Conference paper
  • First Online:
Book cover Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

Automated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases. Here, we propose a new framework for precisely segmenting vasculatures. The proposed framework consists of two steps. Inspired by the Retinex theory, a non-local total variation model is introduced to address the challenges posed by intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel based line operator is proposed as to distinguish between lines and the edges, and thus allows more tolerance in the position of the respective contours. The results on three public datasets show superior performance to its competitors, implying its potential for wider applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ces.clemson.edu/~ahoover/stare/.

  2. 2.

    http://www.isi.uu.nl/Research/Databases/DRIVE/.

  3. 3.

    http://www.retinacheck.org.

References

  1. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)

    Article  Google Scholar 

  2. Lesagea, D., Funka-Leaa, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)

    Article  Google Scholar 

  3. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Meth. Prog. Bio. 108, 407–433 (2012)

    Article  Google Scholar 

  4. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  5. Soares, J., Cree, M.: Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006)

    Article  Google Scholar 

  6. Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14, 1267–1274 (2010)

    Article  Google Scholar 

  7. You, X., Peng, Q., Yuan, Y., Cheung, Y., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44, 2314–2324 (2011)

    Article  Google Scholar 

  8. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011)

    Article  Google Scholar 

  9. Wang, Y., Ji, G., Lin, P., Trucco, E.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46, 2117–2133 (2013)

    Article  Google Scholar 

  10. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26, 1357–1365 (2007)

    Article  Google Scholar 

  11. Mendonça, A., Campilho, A.C.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25, 1200–1213 (2007)

    Article  Google Scholar 

  12. Martinez-Perez, M., Hughes, A., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11, 47–61 (2007)

    Article  Google Scholar 

  13. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28, 1488–1497 (2009)

    Article  Google Scholar 

  14. Bankhead, P., McGeown, J., Curtis, T.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7, e32435 (2009)

    Article  Google Scholar 

  15. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015)

    Article  Google Scholar 

  16. Lathen, G., Jonasson, J., Borga, M.: Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recogn. Lett. 31, 762–767 (2010)

    Article  Google Scholar 

  17. Orlandp, J., Prokofyeva, E., Blaschko, M.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64, 16–27 (2017)

    Article  Google Scholar 

  18. Elad, M.: Retinex by two bilateral filters. Scale Space PDE Methods Comput. Vis. 3459, 217–229 (2005)

    Article  MATH  Google Scholar 

  19. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4, 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zwiggelaar, R., Astley, S., Boggis, C., Taylor, C.: Linear structures in mammographic images: detection and classification. IEEE Trans. Med. Imaging 23, 1077–1086 (2004)

    Article  Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  22. Zhao, Y., Zhao, J., Yang, J., Liu, Y., Zhao, Y., Zheng, Y., Xia, L, Wang, Y.: Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing (2017). http://dx.doi.org/10.1016/j.neucom.2016.07.077

  23. Zhao, Y., Rada, L., Chen, K., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34, 1797–1807 (2015)

    Article  Google Scholar 

  24. Palomera-Prez, M., Martinez-Perez, M., Bentez-Prez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14, 500–506 (2010)

    Article  Google Scholar 

  25. Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45, 1235–1244 (2012)

    Article  MATH  Google Scholar 

  26. Roychowdhury, S., Koozekanani, D., Parhi, K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 1738–1749 (2015)

    Article  Google Scholar 

  27. Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, P., Duits, B., Romeny, R.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631–2644 (2016)

    Article  Google Scholar 

  28. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A crossmodality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  29. Zhao, Y., Liu, Y., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10, e0122332 (2015)

    Article  Google Scholar 

  30. Zhao, Y., Zheng, Y., Liu, Y., Yang, J., Zhao, Y., Chen, D., Wang, Y.: Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans. Med. Imaging 36, 51–63 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation Program of China (61601029, 61602322), China Association for Science and Technology (2016QNRC001), and National Key Research and Development Program of China (2016YFB0401202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Na, T., Zhao, Y., Zhao, Y., Liu, Y. (2017). Superpixel-Based Line Operator for Retinal Blood Vessel Segmentation. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics