Skip to main content

Learning Longitudinal MRI Patterns by SICE and Deep Learning: Assessing the Alzheimer’s Disease Progression

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Abstract

Automatic knowledge extraction from medical images constitutes a key point in the construction of computer aided diagnosis tools (CAD). This takes a special relevance in the case of neurodegenerative diseases such as the Alzheimer’s disease (AD), where an early diagnosis makes the treatments easier and more effective. Moreover, the study of the evolution of the illness results crucial to differentiate the neurodegenerative process associated to the disease from the natural degeneration due to the ageing process. In this paper we present a method to construct longitudinal models from subjects using a series of MRI images. Specifically, the method presented here aims to model Gray matter (GM) variation at different brain areas of a subject across subsequent examinations, being possible to relate those regions which degenerate jointly. Hence, it allows determining variation patterns that differentiate controls from AD patients. Additionally, White matter (WM) density is also incorporated to the longitudinal model to complement the information provided by GM. The results obtained demonstrated the effectiveness of the method in the extraction of these patterns, that can be used to classify between Controls (CN) and AD subjects with 94% of accuracy, outperforming other previous methods.

Alzheimer’s Disease Neuroimaging Initiative—Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alvarez, I., Górriz, J., Ramírez, J., Salas-González, D., Lopez, M., Segovia, F., Chaves, R., Gomez-Rio, M., García-Puntonet, C.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 184(4), 903–916 (2011)

    Google Scholar 

  2. Alzheimer’s Disease Neuroimaging Initiative. http://adni.loni.ucla.edu/. Accessed May 2017

  3. Alzheimer’s Disease Society: Factsheet: Drug Treatments for Alzheimer’s Disease, February 2017. https://www.alzheimers.org.uk. Accessed May 2017

  4. Chen, Z.J., He, Y., Rosa-Neto, P., Germann, J., Evans, A.C.: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18(10), 2374–2381 (2008)

    Article  Google Scholar 

  5. Chyzhyk, D., Graña, M., Savio, A., Maiora, J.: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)

    Article  Google Scholar 

  6. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M., Chupin, M., Benali, H., Colliot, O., Alzheimer’s Disease Neuroimaging Initiative: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2010)

    Article  Google Scholar 

  7. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2007)

    Book  Google Scholar 

  8. Górriz, J., Segovia, F., Ramírez, J., Lassl, A., Salas-González, D.: Gmm based spect image classification for the diagnosis of Alzheimer’s disease. Appl. Soft Comput. 11, 2313–2325 (2011)

    Article  Google Scholar 

  9. Hilgetag, C., Kötter, R., Stephan, K., Sporns, O.: Computational methods for the analysis of brain connectivity. In: Ascoli, G.A. (ed.) Computational Neuroanatomy, pp. 295–335. Humana Press, New York (2002)

    Chapter  Google Scholar 

  10. Hinton, G.: Where do features come from? Cogn. Sci. 38(6), 1078–1101 (2014)

    Article  Google Scholar 

  11. Huang, S., Li, J., Sun, L., Jun, L., Wu, T., Chen, K., Fleisher, A., Reiman, E., Jieping, Y.: Learning brain connectivity of Alzheimer’s disease from neuroimaging data. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 808–816. Curran Associates Inc., Red Hook (2009)

    Google Scholar 

  12. Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009). http://www.public.asu.edu/jye02/Software/SLEP

  13. Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2), 1106–1116 (2012)

    Article  Google Scholar 

  14. López, M., Ramírez, J., Górriz, J., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M.: Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer’s disease. Neurocomputing 74(8), 1260–1271 (2011). Selected Papers from the 3rd International Work-Conference on the Interplay between Natural and Artificial Computation (IWINAC 2009)

    Article  Google Scholar 

  15. Mingrui, X., Jinhui, W., Yong, H.: BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7), e68910 (2013)

    Article  Google Scholar 

  16. Ortiz, A., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., Alzheimer’s Disease Neuroimaging Initiative: Automatic roi selection in structural brain MRI using som 3D projection. PLOS ONE 9(4), e93851 (2014)

    Article  Google Scholar 

  17. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: Lvq-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease. Pattern Recogn. Lett. 34(14), 1725–1733 (2013)

    Article  Google Scholar 

  18. Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(07), 1650025 (2016)

    Article  Google Scholar 

  19. Ortiz, A., Munilla, J., Illán, I.Á., Górriz, J.M., Ramírez, J., Alzheimer’s Disease Neuroimaging Initiative: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer’s disease diagnosis. Front. Comput. Neurosci. 9, 132 (2015)

    Article  Google Scholar 

  20. Pourahmadi, M.: High-Dimensional Covariance Estimation, 1st edn. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  21. Raamana, P.R., Weiner, M.W., Wang, L., Beg, M.F.: Thickness network features for prognostic applications in dementia. Neurobiol. Aging 36(1), S91–S102 (2015)

    Article  Google Scholar 

  22. Ramirez, J., Chaves, R., Gorriz, J.M., Lopez, M., Alvarez, I.A., Salas-Gonzalez, D., Segovia, F., Padilla, P.: Computer aided diagnosis of the Alzheimer’s disease combining spect-based feature selection and random forest classifiers. In: Proceedings of IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 2738–2742 (2009)

    Google Scholar 

  23. Segovia, F., Górriz, J.M., Ramírez, J., Álvarez, I., Jiménez-Hoyuela, J.M., Ortega, S.J.: Improved Parkinsonism diagnosis using a partial least squares based approach. Med. Phys. 39(7), 4395–4403 (2012)

    Article  Google Scholar 

  24. Structural Brain Mapping Group: Department of Psychiatry. http://dbm.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf. Accessed Oct 2014

  25. Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., Ye, J.: Mining brain region connectivity for Alzheimer’s disease study via sparse inverse covariance estimation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1335–1344. ACM, New York (2009)

    Google Scholar 

  26. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Zalesky, A., Fornito, A., Bullmore, E.: Network-based statistic: identifying differences in brain networks. NeuroImage 53(4), 1197–1207 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the MINECO/FEDER under TEC2015-64718-R and PSI2015-65848-R projects and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Andrés Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., for the Alzheimer’s Disease Neuroimaging Initiative. (2017). Learning Longitudinal MRI Patterns by SICE and Deep Learning: Assessing the Alzheimer’s Disease Progression. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics