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Abstract. Traditionally, active shape models (ASMs) do not make a distinction between groups 

in the subject population and they rely on methods such as (single-level) principal components 

analysis (PCA). Multilevel principal components analysis (PCA) allows one to model between-

group effects and within-group effects explicitly. Three dimensional (3D) laser scans were taken 

from 240 subjects (38 Croatian female, 35 Croatian male, 40 English female, 40 English male, 

23 Welsh female, 27 Welsh male, 23 Finnish female, and 24 Finnish male) and 21 landmark 

points were created subsequently for each scan. After Procrustes transformation, eigenvalues 

from mPCA and from single-level PCA based on these points were examined. mPCA indicated 

that the first two eigenvalues of largest magnitude related to within-groups components, but that 

the next largest eigenvalue related to between-groups components. Eigenvalues from single-level 

PCA always had a larger magnitude than either within-group or between-group eigenvectors at 

equivalent eigenvalue number. An examination of the first mode of variation indicated possible 

mixing of between-group and within-group effects in single-level PCA. Component scores for 

mPCA indicated clustering with country and gender for the between-groups components (as ex-

pected), but not for the within-group terms (also as expected). Clustering of component scores 

for single-level PCA was harder to resolve. In conclusion, mPCA is viable method of forming 

shape models that offers distinct advantages over single-level PCA when groups occur naturally 

in the subject population. 
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1 Introduction 

Active shape models (ASMs) and active appearance models (AAMs) [1-8] are common 

techniques in image processing that are used to search for specific features or shapes in 

images. However, if clustering or multilevel data structures exist naturally in the data 

set, e.g., as illustrated by the flowchart in Fig. 1, the eigenvectors and eigenvalues from 

principal components analysis (PCA) will only be partially reflective of the true varia-

tion in the set of images / shapes. Multilevel principal components analysis (mPCA) 

provides a convenient method of modelling both the underlying structures within the 

images and also any groupings between images. mPCA carries out PCA at both within-

group and between-group levels independently. Note that the within-group level might 

be thought of as being “nested” within the broader between-group level, e.g., as shown 

in Fig. 1 for human facial expression. This approach also retains the desirable feature 

that any segmentation can still be constrained so that a fit of the model never “strays 

too far” from the training set used in forming the model (described in the methods sec-

tion below).  

 

Fig. 1. Flowchart illustrating the “nested” nature of multilevel data 

A previous application of mPCA to form ASMs related to the segmentation of the hu-

man spine [9]. The results of this study showed that mPCA offers more flexibility and 

allows deformations that classical statistical models cannot generate. Another recent 

application of using mPCA to form ASMs related to the field of dental imaging [10]. 

Proof-of-principle was tested by applying mPCA to model basic peri-oral expressions 

that were approximated to the junction between the mouth/lips. Monte Carlo simulation 

was used to create the data set, where a simple quadratic function 2cxy   was used to 

represent the centreline of the lips and the value of c controlled “expression.” Different 

expressions (i.e., –ve c = sad; c ≈ 0 = neutral; +ve c = happy) were modelled correctly 

at the between-group level of the model and changes in lip width were modelled cor-

rectly at the within-group level. Some evidence was seen that those cases that were 

extreme (yet still possible) in the training set in terms of both the within-group variation 

(width of lips) and also the between-group variation (expression) were modelled ade-

quately by mPCA but not by standard (single-level) PCA. mPCA was also used to an-

alyse a dataset that had landmark points placed on panoramic mandibular radiographs 



by two different clinicians (see also Ref. [8]), thus leading to two sets of such landmark 

points for the set of images.  Variations in the shape of the cortical bone were modelled 

by one level of mPCA (within-group) and variations between the experts at another 

(between-group). Not surprisingly, eigenvalues indicated that variation due to changes 

the shape of the cortical bone were much more important than variation due to any 

disagreements in placement between the clinicians. Indeed, these clinicians had re-

ported anecdotally [8] that placement of the point along the boundaries was difficult 

and it was observed the first mode of variation for the between-group level correctly 

reflected this type of variation. The authors concluded [10] that mPCA was found to 

provide more control and flexibility than standard “single-level” PCA when multiple 

levels occurred naturally in the dataset.  

Here we apply mPCA to study landmark points of three-dimensional (3D) laser scans 

of the heads of English, Croatian, Finnish, and Welsh subjects who were of both gen-

ders. Details of the mathematics that underpins mPCA for ASMs and also of the 3D 

laser scanning procedure are presented in the methods section. Results are then pre-

sented for the eigenvectors and eigenvalues, and component scores are found by fitting 

the mPCA model to each set of points for each subject in the dataset. Results of mPCA 

are compared to those results of standard (single-level) PCA. The major modes of var-

iation are explored. The implications of our research are presented in the discussion. 

2  Methods 

2.1  Mathematical Formalism 

The ASM method has been extensively documented in the literature (see, e.g., Refs. [1-

8]), and therefore this topic is not discussed here. One carries out PCA for the covari-

ance matrix as discussed in Ref. [8], and the eigenvalues and eigenshapes (i.e., eigen-

vectors) are found readily enough for this matrix using standard software. Landmark 

points (i.e., mark-up points) are represented by a vector, iz , and the kth element of this 

vector is given by zik. The total number of such points is n, and the mean shape vector 

(averaged over all N subjects) is given by z . The covariance matrix is found by evalu-

ating  
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where k1 and k2 indicate elements of the covariance matrix. We find the eigenvalues λl 

and eigenvectors ul of this matrix. Note that all of the eigenvalues are non-negative, 

real numbers because covariance matrices are symmetric and (indeed) positive semi-

definite.  We rank all of the eigenvalues λl into descending order and we choose the 

largest m eigenvalues to be retained in the model. Any new shape is given by 
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The eigenvectors ul are orthonormal and so we can determine the coefficients, al, for a 

fit of the model to a new shape vector, z, readily by using 

)( zzua ll           .                                        (3) 

Constraints may be placed on these a-coefficients, such as 
lla 3 , which ensures 

that subsequent model fits to a new shape vector never “strays too far” from the cases 

in the training set.  

The formalism is slightly more complicated for mPCA and details are presented in Ref. 

[10]. However, we remark here that we form two covariance matrices for a two-level 

model, namely: a within-group covariance matrix which is the covariance matrix eval-

uated over all subjects with a group and with respect to their local group means or 

centroids, and this matrix is then averaged all groups; and, a between-group covariance 

matrix that is covariance matrix of the centroids of the groups with respect to an  

“grand” mean shape z  of the average of these centroids. The rank of this matrix is 

limited by the number of groups.  

We carry out PCA for the (positive semi-definite) within-group covariance matrix of 

the above equation and the eigenvalues are non-negative, real numbers. The lth eigen-

value is denoted w

l  and its eigenvector is denoted by w

lu . Independently, we carry out 

PCA also for the (positive semi-definite) between-group covariance matrix given above 

and the eigenvalues are non-negative, real numbers. The lth eigenvalue is denoted b

l  

and its eigenvector is denoted by b

lu . We rank all of the eigenvalues λb and λw into 

descending order for the between- and within-group levels separately, and then we re-

tain the mb and mw largest such eigenvectors, respectively. Any new shape is now given 

by 
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Constraints may again be placed on these a-coefficients, such as b

l

b

la 3  and 

w

l

w

la 3 , which ensures that subsequent model fits to a new shape vector again never 

“stray too far” form the cases in the training set with respect to both within-group var-

iation and between-group variation. 

The covariance matrices are symmetrical and so all “within” eigenvectors 
w

lu  are or-

thogonal to all other “within” eigenvectors (and similarly for the “between” eigenvec-

tors). However, the eigenvectors 
w

lu  and 
b

lu  do not necessarily have to orthogonal with 

respect to each other, and so an equivalent projection to Eq. (3) for mPCA becomes 

problematic. A fit of the model given by Eq. (4) to a set of candidate points is achieved 



by minimising the overall (squared) error with respect to the coefficients 
w

la  and 
b

la . 

A gradient descent method (see Ref. [10] for details) may be implemented straightfor-

wardly to solve this problem iteratively. Importantly, note that the within and between 

components of variation are fitted to the set of candidate points simultaneously. All 

analyses were carried out using MATLAB R2014a.  

2.2 3D Laser Scanning 

 

Fig. 2. Twenty-one anthropometric landmarks which were identified on facial laser scans of par-

ticipants (shown in the coronal plane). (1) Glabella (g); (2) Nasion (n); (3) Endocanthion left 

(enl); (4) Endocanthion right (enr); (5) Exocanthion left (exl); (6) Exocanthion right (exr); (7) 

Palpebrale superius left (psl); (8) Palpebrale superius right ( psr); (9) Palpebrale inferius left ( 

pil); (10) Palpebrale inferius right (pir); (11) Pronasale (prn); (12) Subnasale (sn); (13) Alare left 

(all); (14) Alare right (alr); (15) Labiale superius (ls); (16) Crista philtri left (cphl); (17) Crista 

philtri right (cphr); (18) Labiale inferius (li); (19) Cheilion left (chl); (20) Cheilion right (chr); 

(21) Pogonion (pg). Definitions by Farkas [14] were used. Reprinted from the author’s previous 

publication with permission from ‘John Wiley and Sons’. 

Two Konica Minolta Vivid laser cameras were used to capture the images of the sub-

jects and this has been reported extensively in the literature [11-13]. Twenty-one relia-

ble facial landmarks were manually identified for each subject. Each landmark point 

vector z was of size 63 (= 21 × 3). These facial landmarks are shown in Fig. 2. The 

numbers of subjects in 8 groups were: Croatian female (n = 38), Croatian male (n = 

35), English female (n = 40), English male (n = 40), Welsh female (n = 23), Welsh 

male (n = 27), Finnish female (n = 23), and Finnish male (n = 24). Landmark points 

were scaled by Procrustes transformation so that all sets of points were on broadly the 

same scale. 

  



3 Results 

 

Fig. 3. 3D facial scans averaged over all subjects in each group (country and gender) 

Results for the 3D facial scans averaged over all subjects in each group (country and 

gender) are shown in Fig. 3. As one might expect [15], strong differences in facial 

shapes can be seen qualitatively by both country and gender. Hence, we might reason-

ably expect to see commensurate differences in landmark points between groups.  

Eigenvalues from standard (single-level) PCA and also within-group and between-

group eigenvalues from mPCA are presented in Fig. 4. Results of between-groups 

mPCA demonstrate that between-group eigenvalues are non-zero for the first seven 

eigenvalues with λl ≤ 10-15 for l ≥ 8. Note that within-group eigenvalues are clearly non-

zero to much higher eigenvalue numbers, although we find that λl ≤ 2×10-8 for l ≥ 58. 

The first two largest eigenvalues from mPCA are due to within-groups effects and then 

the first and second between-groups eigenvalues are broadly of the same magnitude is 

the third and fourth within-group eigenvalues. These results indicates that both within-

groups and between-groups effects are important. Eigenvalues from standard (single-

level) PCA lie above those of eigenvalues from both within-group and between-group 

mPCA at equivalent eigenvalue number.  



 
Fig. 4. Eigenvalues from standard (single-level) PCA and also within-group and between-group 

eigenvalues from mPCA. (Inset: the first ten eigenvalues in more detail.) 

The effects of the principal components of within-group and between-groups mPCA 

can be investigated by considering the mean shapes ± 2 × standard deviations (i.e., λ0.5) 

multiplied by its corresponding eigenvector. The first mode for single-level PCA and 

the first mode for the within-group mPCA were found to be similar in the coronal plane, 

e.g., deviations from the mean shape are large at the exocanthion (right and left) posi-

tions, as shown in Fig. 5. Broadly, one might equate this mode to the aspect ratio of the 

face. Variations due to the first mode of variation for the between-group mPCA ap-

peared to vary little from the mean shape in this plane. For the transverse and sagittal 

planes (note shown here), deviations from the mean shape were large at the exocanthion 

(right and left) positions; again, the first mode for single-level PCA and the first mode 

for the within-group mPCA are similar here. By contrast, the first mode for between-

groups mPCA had strong deviations from the mean at many points for the transverse 

and sagittal planes, and again it is quite different to the first mode for within-groups 

mPCA. Particularly, strong deviations from the mean were seen for the first mode for 

between-groups mPCA for the pronasale, and this was also seen at this point for the 

first mode for PCA. This hints that this mode might govern the length and shape of the 

nose and / or face in this plane. In any case, it is clear though that the first modes for 

within-group mPCA and between-group mPCA are quite different. We might also spec-

ulate that the first mode of single-level PCA might mix the effects of modes from 



within-group and between-group mPCA, although this is difficult to judge in 2D. In-

deed, many such subtle effects occur even in the first major modes and visualising such 

subtle changes in 2D plots is difficult. However, the 3D visualisation of these modes, 

and their subsequent interpretation, lies beyond the scope of this initial analysis.  

 

Fig. 5. First modes of variation in the coronal plane. (○ = mean; □ = mode 1 for PCA; ◊  = mode 

1 for between-group mPCA; * = mode 1 for within-group mPCA.) 

Component “scores” (i.e., coefficients a in Eqs. (2) and (4)) may be found by fitting the 

single-level PCA and mPCA models to each set of landmark points for each subject in 

the data set. (Note that no constraints are placed on these coefficients in this case.) 

Results for single-level PCA, shown in Fig. 6, indicate some evidence of clustering for 

the different groups. Centroids for males are on the right-had side of the figure for a1 

versus a2 for PCA and those for females are on the left-hand side. Furthermore, cen-

troids by country tend to be quite close to each other for a1 versus a2 and this is shown 

by the solid lines connecting centroids of the different genders for the same country.  

However, there is considerable overlap between the groups in the scores for individual 

subjects for single-level PCA for these component scores (i.e., a1 versus a2). 

Results for between-groups components of mPCA are shown in Fig. 7 for mb = 7 and 

mw = 40 and distinct indications of clustering for the different groups is seen. (These 

results were typical of mPCA results generally for mb ≥ 3 and mw ≥ 3.) It is remarkable 

that males and females are connected by a vector that is of similar direction and mag-

nitude for all countries. Note that this result is not imposed by assumptions of the model 

(as far as we are aware) and that it seems to emerge naturally from the data. This result 

is shown by the solid lines connecting centroids of the different genders for the same 



country. Furthermore, we see that centroids are being separated quite strongly by coun-

try more clearly for the between-group mPCA. The centroids of each group are cer-

tainly much easier to resolve for single-level PCA. Although there is overlap in the 

individual scores between the groups, this overlap appears to be less than for single-

level PCA.  

 

Fig. 6. Component scores from standard (single-level) PCA. Large circles indicate the centroids 

and results for females and males from the same country are linked by a line. 

Results for within-groups mPCA (not shown here) indicate no evidence of clustering 

for the different groups and all of the centroids were found to lie very close to each 

other (i.e., at the origin); this is exactly what one would expect as differences between 

groups ought to be accounted for by between-group components alone. The scatter of 

points for individual scores about their centroids was found be broadly uniform and of 

similar magnitude for all of the groups. Indeed, one would also expect the centroids to 

lie near to the origins because subjective variations ought to be equally spaced both 

“above” and “below” the group averages.  



Results for component scores for the first versus the third components or the second 

versus third components also showed strong clustering for the between mPCA scores. 

The centroids for the within mPCA component scores for the first versus the third com-

ponents or the second versus third components were near to the origin. Some evidence 

of clustering was seen for the first versus the third components and the second versus 

third components for single-level PCA. 

         

Fig. 7. Component scores from between-group mPCA. Large circles indicate the centroids and 

results for females and males from the same country are linked by a line. 

Results for the point-to-point errors are shown in Table 1. Note that this was not an 

image search as such, rather a model fit using Eq. (3) for PCA and the iterative proce-

dure for mPCA. Indeed, “test” cases were taken to be the same as those used the training 

set. As expected, point-to-point errors are found (trivially) to reduce for both PCA and 

mPCA as we increase the number of eigenvectors retained. However, this is still a rea-

sonable check of mPCA because it demonstrates that the correct iterative solution is 

probably being identified. Point-to-point errors for mPCA are of the same magnitude 



(or slightly lower) than single-level PCA at broadly “equivalent” numbers of eigenvec-

tors retained, which is also reasonable. If we include all possible eigenvectors then 

point-to-point errors appear to go to zero for both PCA and mPCA. 

Table 1. Point-to-point errors with respect to all 21 points and all subjects 

 Mean 
Standard 

Deviation 
Maximum 

PCA 

m = 3 1.851 0.333 2.993 

m = 5 1.617 0.271 2.452 

m = 7 1.421 0.242 2.299 

m = 20 0.781 0.127 1.199 

m = 40 0.262 0.059 0.446 

mPCA 

mb = 3 and mw = 3 1.580 0.290 2.637 

mb = 5 and mw = 5 1.289 0.227 2.084 

mb = 7 and mw = 7 1.106 0.189 1.876 

mb = 7 and mw = 20 0.636 0.121 1.049 

mb = 7 and mw = 40 0.167 0.048 0.340 

 

4 Conclusions 

The effect of naturally occurring groups in the subject population for facial shape data 

has been explored in this article. The formalism for mPCA has been described briefly 

and we have shown that mPCA allows us to model variations at different levels of 

structure in the data (i.e., between-group and within-group levels). Examination of ei-

genvalues showed that both between and within-group sources of variation were im-

portant. Modes of variation appeared to make sense: the first mode of the within-group 

mPCA seemed to govern width of the face in the coronal plane and the first mode of 

the between-group mPCA seemed to govern length and shape of the nose and / or face 

in the transverse and sagittal planes. We have also demonstrated that initial results of 

mPCA for facial shape data appear to show evidence clustering in the between-group 

component scores. Indeed, a consistent relationship between genders was observed for 

each country. Evidence of clustering was also observed for single-level PCA, although 

the nature of this clustering was less clear. Point-to-point errors of model fits for both 

mPCA and PCA reduced with the number of eigenvectors retained, as expected. This 

research is an excellent first step in evaluating the usefulness and feasibility of mPCA 

in analysing facial shape.  
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