Skip to main content

MIMONet: Gland Segmentation Using Multi-Input-Multi-Output Convolutional Neural Network

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

Morphological assessment of glands in histopathology images is very important in cancer grading. However, this is labour intensive, requires highly trained pathologists and has limited reproducibility. Digitisation of tissue slides provides us with the opportunity to employ computers, which are very efficient in repetitive tasks, allowing us to automate the morphological assessment with input from the pathologist. The first step in automated morphological assessment is the segmentation of these glandular regions. In this paper, we present a multi-input multi-output convolutional neural network for segmentation of glands in histopathology images. We test our algorithm on the publicly available GLaS data set and show that our algorithm produces competitive results compared to the state-of-the-art algorithms in terms of various quantitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www2.warwick.ac.uk/fac/sci/dcs/research/tia/software/sntoolbox.

References

  1. Fleming, M., Ravula, S., Tatishchev, S.F., et al.: Colorectal carcinoma: pathologic aspects. J. Gastrointest. oncol. 3(3), 153–173 (2012)

    Google Scholar 

  2. Gurcan, M.N., Boucheron, L.E., Can, A., et al.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  3. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2016)

    Article  Google Scholar 

  4. Wu, H.S., Xu, R., Harpaz, N., et al.: Segmentation of intestinal gland images with iterative region growing. J. Microsc. 220(3), 190–204 (2005)

    Article  MathSciNet  Google Scholar 

  5. Farjam, R., Soltanian-Zadeh, H., et al.: An image analysis approach for automatic malignancy determination of prostate pathological images. Cytom. Part B: Clin. Cytom. 72B(4), 227–240 (2007)

    Article  Google Scholar 

  6. Naik, S., Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: ISBI 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 284–287. IEEE (2008)

    Google Scholar 

  7. Nguyen, K., Sarkar, A., Jain, A.K.: Structure and context in prostatic gland segmentation and classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_15

    Chapter  Google Scholar 

  8. Gunduz-Demir, C., Kandemir, M., Tosun, A.B., Sokmensuer, C.: Automatic segmentation of colon glands using object-graphs. Med. Image Anal. 14(1), 1–12 (2010)

    Article  Google Scholar 

  9. Nosrati, M.S., Hamarneh, G.: Local optimization based segmentation of spatially-recurring, multi-region objects with part configuration constraints. IEEE Trans. Med. Imaging 33(9), 1845–1859 (2014)

    Article  Google Scholar 

  10. Cohen, A., Rivlin, E., Shimshoni, I., Sabo, E.: Memory based active contour algorithm using pixel-level classified images for colon crypt segmentation. Comput. Med. Imaging Graph. 43, 150–164 (2015)

    Article  Google Scholar 

  11. Sirinukunwattana, K., Snead, D., Rajpoot, N.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34, 2366–2378 (2015)

    Article  Google Scholar 

  12. Li, G., Raza, S.E.A., Rajpoot, N.M.: Multi-resolution cell orientation congruence descriptors for epithelium segmentation in endometrial histology images. Med. Image Anal. 37, 91–100 (2017)

    Article  Google Scholar 

  13. Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–1 (2016)

    Google Scholar 

  14. Ronneberger, O., et al.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, pp. 234–241. Springer, Cham (2015)

    Chapter  Google Scholar 

  15. Chen, H., Qi, X., Yu, L., et al.: Dcan: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)

    Article  Google Scholar 

  16. Song, Y., et al.: Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans. Med. Imaging 99, 1 (2016)

    Google Scholar 

  17. Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Eric, I., Chang, C.: Gland instance segmentation by deep multichannel side supervision. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, vol. 9901, pp. 496–504. Springer, Cham (2016)

    Chapter  Google Scholar 

  18. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  19. Abadi, M., Agarwal, A., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). tensorflow.org

Download references

Acknowledgements

We are grateful to the BBSRC UK for supporting this study through project grant BB/K018868/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir M. Rajpoot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Raza, S.E.A., Cheung, L., Epstein, D., Pelengaris, S., Khan, M., Rajpoot, N.M. (2017). MIMONet: Gland Segmentation Using Multi-Input-Multi-Output Convolutional Neural Network. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics