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Abstract. Evaluation of medical image segmentation is increasingly important.
While set-based agreement metrics are widespread, they assedssdhee
overlap, but fail to account for any spatial information relatethécdifferences

or to the shapes being analyzed. In this paper, we propose a famigwmet-

rics that can be tailored to deal with a broad class of assessmesit need
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1 I ntroduction

As computer-supported segmentation of medical images becomes incgeasingl
commonplace, evaluating the outcomes plays an even more important foslén-
stance, for validation purposes (especially on large datasets) or fompuente co-
parison. The typical goal of these evaluations is the assessment of theadrew
disagreement, expressed as a measure of their spatial overlap. The most common
approaches, across several applicative domaing, [Ard based on the quantification
of the spatial agreement by means of set operations (Dice similarity, d&udax,
etc.). However, these approaches assume that the assessed elements are independent
among themselves (as entailed by the definition of these similarggsaments itself,
being based on set operations), while, in the imaging domain,ghestation-region
elements (pixels, voxels, etc.) are characterized by their spatial locatiorisalotah
tion introduces a correlation among the set elements. In this paper, famayvof
metrics that quantify various aspects of the spatial differences betweeediwnsis
presented. We demonstrate the use of the proposed metrics amongst sétchased
niques in the analysis of lung MRI.

2 Set-Based M easur ements

Following [5] and [6], let a scalar (medical) image be representedunction de-
fined on a regular griét G — V. Typically the elements af are indexed by a subset
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© Springer-Verlag Berlin Heidelberg 2011


mailto:a.biancardi+miua@sheffield.ac.uk

of Z™, wheren is the image dimensionality, and V is a subséZ of Q. Additionally
we assume that consistent spatial locations are assigned to all of the elergeans of
that, therefore, a metric is defined between grid element pairs.

We define a binary imagasan image with two possible values:

b:G - [0,1] (1)

As we are going to analyze only single-label segmentations, a segmentatjpn is re
resented by a binary image and the subs§gtladving a value of 1:

S={x:b(x) =1,x€ G} (2)

The functionb, by definition, induces a partition gfby means of its two inverse
images; therefore, the segmentation backgroundsi’0), will be simply denoted
by S’, being the complement 6t

Given two segmentatioriandR, typical set-based assessments of spatial overlap
are defined by computing the cardinality of selected subsgjsIbfl is a test sg
mentation and is a reference segmentation, for which its values have beerdconsi
ered to be in accordance with the expected outcome (or ground treth)hth cs-
tomary confusion matrix can be expressed as:

R R’
T TP=T NR FP=T nR
T' FN=T'nR TN=T'nR

The performance parameters can then be expressed either in term of setmgperatio
where there is no assumption of truth (see also section 4), or bases conthsion
matrix cardinalities:

Measure Set-based Truth-based
_ 2|T nR| 2TP
Dice
IT|+ |R| 2TP + FN + FP
IT NR] TP
Jaccard —_— —_—
[T UR| TP+ FN + FP
Sensitivity IT NR| TP
or —_— S
Recall [R| TP+ FN
Specificit IT" N R'| TN
pecjictty IR'| FP+ TN

3 Spatial Impact of the Image Domain

Even if the set-based measurements are sometimes referred to as assesgng th
tial overlap, the extent to which the actual spatial characteristics of the two sagment



tions under evaluation are assessed is limited: only the exact overlapafixtls is
tested, while any level of proximity is lost. Additionally every elemsngiven the
same weight, regardless of possible constrains brought forth Ispéuific applie-
tion where the evaluation takes place.

Figure 1 shows the impact that the spatial location of the segmented ley®l p
when assessing the dissimilarity between two segmentationsmiagsthat no
a-priori knowledge is available as regards the region to be segmé&htedeference
regionR, shown in (a), is assumed to be the ground truth while regionsnshoflv)
and (c) have 7 additional elements with respeat (false positives highlighted in
red). It is easy to see, that, no matter what cardinality-based meastiisrchosen,
the four regions will have the same outcome measure of agreesgartless of the
position of the red pixels:

(b) | ()
D0 2 R ~ 2[Rl _ 280 _ 97 56
ree RI+7+ |R| _2|R|+7 _ 287 _ ' >°%
R 140
Jaccard R+ 7 =127 = 95.24%
R

Sensitivity % = 100%

o [R'| -7
Specificity 7 =97.30%

Analogously, regions (d) and (e) have 7 pixels missing fronrdfexence region
(a), false negatives highlighted in orange. The lack of any spatial tinisigthe
evaluation produces 4 values, for these image examples, that are thlgvagse:

(d) | ©
2(R[—-7) 2(RI—-7) 266
Di = = = = 97.449
ree RI—7+ IRl 2IRl=7 _ 273 °2744%
d RI=7 _ 133 _ g 00%
Jaccar R 140 0> b
Sensitivit IRI=7 _ 133 _ o 00%
ensit lvly |R| = 140— . 0
e [R'|
Specificity 7 =100%

It is worth mentioning that, when dealing with medical images, the @ditéés of
all the subsets that include segmentation compleméht®’') are somewhat aib
trary, being easily affected by crop operations that leave the segmegieds un-
touched.
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Fig. 1. Two groups of hypothetical segmentations having the same set-agssement
with the reference region (a). Regions (b) and (c) have additmrels (i.e., false pos

tives), marked in red/dark gray; regions (d) and (e) are missing fibee|false negatives),
marked in orange/light gray

4 Roles

Before proceeding, it is important to highlight a key difference betweetwo ps-
sible scenarios where an agreement assessment takes place: (i) comparisen with
spect to a reference region (typically called ground truth), and (ii) adsom ke-
tween two regions with equal standing. Sub-figurasind 1e demonstrate this diffe
ence. If 1a is the reference region and we want to assess the agreeheewitbfla,

then clearly le is in error and, possilby, an important one as the region has a hole
in the middle of a supposedly filled regio®n the other hand, ffaand 1e are eql:a

ly reliable (we call it the symmetric case), then the hole in the middle migtarbefp

the correct result, but we cannot infer it from the data that we have available. In th
following sections, the discussion will assume the existence of a refergioe; a
preliminary analysis of the symmetric scenario is presented in degtion 8.

1 Notice that a specular reasoning still holds if the rolekacind 1e are swapped - with 1le

being the reference ardd being the assessed region.



5 Initial Considerationsfor New Metrics

Based on the previous considerations, the key aspect we would like to intirnduce
our metrics is the acknowledgment of and a grading of the diffspaiial positions
where the disagreements occur. For instance, we would likeitthfvom a cardink
ity-based disagreement as in Equation 3 (or, re-written to loep al the image-
domain elements, Equation 4) to a disagreement metric where the disagreement
weighted by a spatially dependent functieras in Equation 5 (and the normalization
is scaled by function n)

|ITAR|

dis(T,R) = o= 3)

2ISij— Ryjl

dis(T,R) = =5
ij

(4)

new_dis(T,R) = Y n(ij.R)

)
As the new disagreement measures in (5) are still based on the cardinglgyoe
sets, they will clearly satisfy the conditions of a metric as long as the wejdtticr
tions are strictly positive.

6 A Family of Disagreement Metrics

A convenient family of metric-defining weighting functions can gabi built by
using the signed Euclidian distance transform (SEDT) [6,7] of theereferregion,
where the internal elements are given a positive value, while those outsidyitn

are given a negative value, as shown in Figure 2. It is worth gigiig how this
approach, thanks to its use of the SEDT, provides several potential advantages (e.
with respect to the perceptual-based approach of [8,9])

¢ it maps the n-dimensional image domain to a single dimension;

¢ it overcomes the need to account for the pixel/voxel size;

e it makes it possible to structure the weighting function according to preblem
specific (anatomical) sizes, expressed in real word lengths.

Therefore, the weighting function can be writtenve,j,R) = a(dg(i,j,R))
where the metric-proxy: R — R} defines the amount of disagreement according to
the signed distance from the reference region border(s) and prowigés faeedom

in expressing the wanted grading of the disagreement. The followiragi@es exm-

plify this relationship between disagreement location and its measuremenhéeFhe
ric-proxy a, (Equation ¢ provides an example of a grading that is proportional to the
distance from the region borders; the metric-praxyEquation 7) is designed to
tolerate errors up t&0 mm from the border and then flag anything further up; the
metric-proxya; (Equation 8) highlights errors near the border and discountsttibe
discrepancies:



a(x) = x| (6)
ay(x) = (x/10)* (7)
as(x) = e~ /10" (8)

Figure 2 shows the signed distance transform computed on the sarepbmcefe-
gion in Figure 1la, and the resulting disagreement values for all therethiens in
Table 1, according to different choices of funotio(Equations 6,7,8) and having the
corresponding normalization functiendefined so that a complete disagreement with
the reference region is graded 80%. All the results are computed assuming a pixel
size of 3 mm by 3 mm. The set-based disagreement is always 5% $ab-figures
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Fig. 2. The signed distance transform of the reference regjiggihown in Figure 1a).

2 The upper level of disagreement is arbitrary. The amount 861@8s chosen to be comp

rable with the set-based formulation.



Fig.1 Metric Proxies
Region a a, s
b 1% 0.01% 7%
C 7% 24% 3%
d 1% 0.01% 7%
e 7% 9% 3%

Table 1. Disagreement performance of the 4 hypothetical segmentatioiguoé B with e-
spect to the example metrics

7  Application to Lung Imaging

In order to demonstrate the effectiveness of the new metrics ifyggpmeaningful
summaries oflisagreements’ spatial distributions, they were applied in the evaluation
of different thresholding levels of a chest anatomical scan, acquired on a GE HDx
1.5T MR scannér(3D spoiled gradient echo sequence, 1.5625 x 1.5625 x 5 mm
voxel size). Three threshold levelss(tkhs, th;) were computed as the lowest values

of a multi-threshold Otsu algorithm [10,11] with 3, 5, and 7telss respectively. The
image had previously been segmented manually to produce the cefeegmersi-

tion. Representative coronal slices of the reference segmentation and the three
thresholded regions are shown in Figure 3. As the number of clilsteesises, the
threshold values decrease, causing the resulting regions to excludevitinedenser
tissue such as vessels and airway walls.

Table 2 reports the values for the set-based disagreement and foetthepmoxies

a, anda; . While the threshold this too low accordindgo any metric, the sdiased
disagreement is unable to summarize the slight differences betweandthh. By
considering all the values fromy andas, it is straightforward to acknowledge that, if
one is limited to simple thresholding, a tradeoff must be chesenth has a better
performance in the inner parts of the lungs, whereass ttonsiderably better atga
turing the lung borders.

Table 2. Disagreement values for the shapes in Figure 2a and 2b.

Threshold Set-based Metric Proxies
o a3
ths 4.99% 0.05% 3.40%
thg 5.11% 0.64% 3.29%
th, 14.8% 2.49% 9.32%

3 GE Healthcare, Milwaukee, IL, USA
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Fig. 3. Assessment of multiple thresholding levels in an MRI chest image. Refatse slices
of (a) the ground truth segmentation, (b,c,d) thresholded imagatias\h, ths, th;.

8 Region Assessment Without Reference

Let us now consider two regiorsandT, neither of which is the reference region
(ground-truth). In these cases, the set-based overlap metrics of r&gind¥ can be
interpreted as measuring the size of the region where there is agreement, the inters
tion, against an estimation of the reference region-sithe size average for Dice, the
union for Jaccard. Similar normalization approaches can be used as estimétes for
sd-based disagreement metric (3):

. 2 |S AT|
diSpjce = —— 9
Dice S|+ IT] ( )



ISAT|
|SuT|

disjaccard = (10)

If we are to take into account the spatial component, then a different estinete is r
quired and the natural solution for the ground truth estimation appebesashape
that is the average &fandT [12]. In our example, a shape interpolation [13] was
performed using the itksnap tod415]. With a proper estimatR of the reference
region, a spatially aware disagreement can be expressed both as individuakdisagr
ments for each region (i.€5.,with R andT with R) and as combined disagreement as
the sum of the respective individual disagreements:

diss = new_dis(S,R) 11
disy = new_dis(T,R) 12
diSpew = disg + newy 13

Clearly, there will be no disagreements deep inside there reference regaursdr

is an average of the two regions. Nonetheless, the use of metric-progies d&n
prove useful in summarizing the disagreement behavior around the lewiders.
This is well demonstrated by a simple example, where the disagreemeeé¢héivo
shapes- a disk and a star, are investigated. Their set-based disagreement$%re 36.
and 30.8% fotisy;., anddis;q..qrq respectively. Figure 4 shows the two shapes, the
interpolated shape and the SEDT of the interpolated shape. Table 3 reportadke val
of the metric proxies. In the case when the reference ground truth isgnissitric
proxies that limit the effect of large positive values, such,as Equation 14, can be
used to assess the individual disagreements and, together withehenethics, gain

an additional understanding of the way spatial disagreement is distributed:

1
1+e7X

a,(x) =1

14

Table 3. Disagreement values for the shapes in Figures 2a and 2b.

Metric Proxies

Shape
A A ag
Disc 3.5% 9.4% 141.8%
Star 3.5% 9.4% 181.6%
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Fig. 4. Example of disagreement assessment without ground truth: (a) and ¢bpihes to be
evaluated, (c) the interpolated shape as ground truth estimation, (d) theoSEDT

In our example, the, disagreement for the star is 234.6% and for the disc is 490.8%.
The higher number for the disk, in combination with a smaljeralue, tells us that

the disk has much more disagreement on the outside of the referenceargjithat

this disagreement is rarely far from the reference border.

9 Conclusions

Assessment of image regions plays an important role in computerrsegppoalysis
because of the various outcomes relying on those regions forctmaputationsA

new family of image disagreement metrics was introduced; these negtridse eas

ly adapted to the specific anatomical sizes under analysis and give a iocherh r
summary of where the disagreement occurs when compared to set-szapd-d
ment metrics. Preliminary applications show the potential usefulness of theése add
tional spatial insights; however, further aspect can be investigated. Fuitkemil



study the relationship between these metrics and boundary/surface-bases sneh
as the Hausdorff distance [16] and evaluate the extension to multi-objeci@senar
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