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Abstract. In recent years, life-cell imaging techniques and their software appli-

cations have become powerful tools to investigate complex biological mecha-

nisms such as calcium signalling. In this paper, we propose an automated frame-

work to detect areas inside cells that show changes in their calcium concentration 

i.e. the regions of interests or hotspots, based on videos taken after loading living 

mouse cardiomyocytes with fluorescent calcium reporter dyes. The proposed sys-

tem allows an objective and efficient analysis through the following four key 

stages: 1) Pre-processing to enhance video quality, 2) First level segmentation to 

detect candidate hotspots based on adaptive thresholding on the frame level, 3) 

Second-level segmentation to fuse and identify the best hotspots from the entire 

video by proposing the concept of calcium fluorescence hit-ratio, and 4) Extrac-

tion of the changes of calcium fluorescence over time per hotspot. From the ex-

tracted signals, different measurements are calculated such as maximum peak 

amplitude, area under the curve, peak frequency, and inter-spike interval of cal-

cium changes. The system was tested using calcium imaging data collected from 

Heart muscle cells. The paper argues that the automated proposal offers biolo-

gists a tool to speed up the processing time and mitigate the consequences of 

inter-intra observer variability.  

Keywords: intracellular calcium signalling, hotspots segmentation, calcium 

change quantification, cell parameters, fluorescence microscopy. 

1 Introduction 

     Changes in the intracellular calcium concentration are a very critical and universal 

signalling mechanism used by cells [1] [2]. It is important for a myriad of processes.  

In the case of humans, life starts with an increase in the calcium concentration upon 

fertilisation of the egg [3]. Cell death [1] [4] is frequently caused by a prolonged in-

crease in the intracellular calcium concentration. But between fertilization and death, 

changes in the calcium concentration regulate a plethora of processes in an organism, 

like memory formation, heartbeat, blood pressure regulation, bones and teeth develop-

ment, blood clotting, hormone functions, cell division, muscle contractions, and antigen 

recognition in the immune system [1] [2]. Because a prolonged calcium increase is a 

death signal, it is very important to keep the intracellular calcium concentration tightly 

controlled in a narrow range, typically around 100 nM [1].  
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Further, a dysregulation of the normal calcium signalling processes may lead to several 

diseases like cardiac arrhythmias [5], neuronal disorders like Alzheimer's and Parkin-

son's diseases [5] [6], or immune dysfunctions [7].  

Fluorescence imaging is a powerful and commonly used technique to study calcium 

signalling in living cells. Cells or tissues are loaded with a calcium sensitive indicator 

and changes in the intracellular calcium concentration can be recorded in real time by 

capturing a video of the fluorescence images on a microscope [8]. One downside of the 

technique is a labour-intensive and often subjective image analysis process. The pro-

posal described in this paper aims to automatically detect and quantify intracellular 

calcium changes in these videos. In addition to automating the analysis by biologists, 

our data analysis framework also provides a fast and reliable tool for fluorescent video 

data analysis in cell phenotyping. The cells being monitored are assumed static. Issues 

addressed here are processing time, replicability of the data analysis, photobleaching 

artefacts, and human-biased variations that are observed during the manual analysis of 

intracellular calcium imaging experiments.  

All in all, this paper presents a fully automatic system to objectively detect active 

regions of interest (ROIs), which we refer to as hotspots, and to quantify their change 

in calcium concentration over the time period when they are imaged and saved in a 

series of fluorescent frames. The automated framework defines as hotspots any areas 

in cells whose the calcium concentration fluctuates and goes through the four key 

stages: i) A pre-processing stage to enhance the contrast and increase the signal to noise 

ratio of the input video frames using median filtering and adaptive histogram equaliza-

tion ; ii) A first level segmentation stage to detect candidate hotspots in cells based on 

changes in the fluorescence intensity using adaptive thresholding and morphological 

operations; iii) A second level segmentation stage to fuse and identify the best hotspots 

from the entire videos by introducing the concept of hit-ratio of calcium fluorescence; 

iv) An extraction and quantification stage of the calcium concentration over time for 

individual hotspots to calculate maximum peak amplitude, area under the curve, peak 

frequency, and inter-spike interval of calcium changes.  

The rest of our paper is organized as follows: background and previous work are 

presented in section 2. Section 3 gives an overview of the proposed system, focusing 

on key points. Section 4, presents and discusses the results of our approach. Finally, in 

section 5 possible future work are highlighted followed by concluding remarks.  

2 Background and Relevant Existing Work 

Fluorescent calcium indicators were first developed in 1982 by Roger Tsien and col-

leagues [9]. Since then, indicators with different characteristics have been developed: 

colours, calcium binding affinities, or targeted to different intracellular organelles to 

name a few [8] [10] . Our framework was developed using calcium imaging data from 

a cardiomyocyte-like cell type, called pulmonary vein sleeve cells (PVCs), loaded with 

the calcium indicator Oregon Green BAPTA-AM [11]. Aberrant signalling processes 

in PVCs are important for the development of atrial fibrillation, the most common car-

diac arrhythmia (heart rhythm disorder). In contrast to other cardiomyocytes, PVCs 



show a high level of localized spontaneous increases in their intracellular calcium con-

centration. The high level of this spontaneous activity in PVCs is one important factor 

in the development of atrial fibrillation. A better understanding of the processes under-

lying the calcium signalling in PVCs might provide new mechanisms to treat or prevent 

atrial fibrillation [11] [12] [13] [14]. However, the spontaneous activity makes calcium 

imaging data from these cells very time-consuming to analyse, which prompted the 

development of the automated image analysis software presented here. 

In a typical manual analysis of fluorescent video frames of a calcium imaging ex-

periment, the readout is a file / spreadsheet giving the change in fluorescence for each 

hotspot over the length of the experiment. In order to compare the results from different 

experiments, these values are normalized [8]. First, the background fluorescence is sub-

tracted from the initial readout. This is commonly done by setting one small background 

region in video frames through an interactive toolbox in Image J. Then, the background 

subtracted data need to be normalized to allow a comparison of the magnitude of the 

changes between different experiments. For that, the minimum fluorescence (𝐹𝑚𝑖𝑛) 

for each hotspot needs to be measured, and the fluorescence at any given time (𝐹) will 

be normalized to (𝐹𝑚𝑖𝑛). The normalized (𝐹/𝐹𝑚𝑖𝑛) is then used to quantitate param-

eters like the maximum amplitude of the change in fluorescence, the frequency of (cal-

cium) increases or the area under the curve for the (calcium) transients, depending on 

which characteristic of the calcium changes is most informative for the experiment. 

This manual procedure raises concerns about the optimal estimation of the frame back-

ground value, because it does not use all of the cell-free area of a frame as a background, 

which should be the more accurate value. There are also concerns about the minimum 

fluorescence because in cells with spontaneous activity, it is very hard to estimate the 

minimum fluorescence by avoiding outliners giving too low an absolute minimum, or 

photobleaching artefacts that may suggest fluorescence values lower than they should 

be. For all those reasons, an automated solution was needed to provide better estima-

tions of background values and minimum fluorescence, and to shorten the analysis time.  

Existing work on automatic cellular phenotyping in fluorescence microscopy is ra-

ther limited [15]. This is mainly due to the complexity of quantification and character-

ization of calcium signals through sequences of 2D grayscale images that tend to be of 

a low quality where cells boundaries are not clearly recognizable, and true signals are 

highly corrupted by noise. Recent publications investigated various image processing 

techniques to eliminate the noise effect in fluorescence microscopy images [16] [17] 

[18]. Some publications presented different techniques for fluorescence image segmen-

tation [19] [20], while others conducted several cellular parameters analysis in fluores-

cence microscopy [21] [22] .  

One of the first automatic method to analyse calcium signalling through fluorescent 

images was described in 1999 to detect and measure calcium sparks inside skeletal 

muscle cells and cardiac myocytes through confocal line scan images based on double 

thresholding [22]. Later on, the limitations of the pioneering method to deal with highly 

noisy images led to the development of the two-phase greedy pursuit algorithm (TPGP) 

for the detection of calcium sparks through confocal single images based on wavelet 

transforms for noise removal and background subtraction [21]. Thus, various versions 

of ‘home-built’ analysis software of calcium signalling were available, but none come 
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with a comprehensive manual, allowing them to be used by the wider calcium signalling 

community. Further, knowing that fluorescence microscopic images are generally af-

fected by noise of type Gaussian, Poisson, or a mixture of both [15], state-of-art de-

noising techniques were proposed based on two main principles: variance stabilization 

[16] [23] and patch-based techniques [18] [24]. In the former category, the general ap-

proach consisted of converting Poisson noise into Gaussian noise, while in patch-based 

techniques, researchers relied on the measurement of the similarity between small sub-

divisions of the images i.e. image patches to detect their random degradations prior to 

any segmentation procedure.  

Alongside those techniques, interesting segmentation methods were also made avail-

able for vesicle segmentation in fluorescent stack images [19], tubule boundary seg-

mentation in rat kidneys videos [20], and mid-point based nuclei segmentation in fluo-

rescent images [25]. It is also the case for object-independent segmentation techniques 

such as Fuzzy set logics [26] and hierarchical merge tree [27], presented as alternative 

solutions to process fluorescence microscopy images. The Jayaprakas's ImageJ plugin 

[28], a less recent semi-automated method, allows both the manual setting of ROIs and 

the automatic measurement of their changes of fluorescence through an entire image 

stack. Data are output in graphics or exported into text or csv files for further analysis. 

But the plugin does not allow automated ROI segmentation. 

To sum up, the literature in the area of intracellular calcium analysis based on fluo-

rescence microscopic videos seems to be rich. However, this paper argues that the ex-

isting work on fully automated frameworks that take input videos and produce final 

measurements such as maximum peak amplitude, area under the curve, etc. of calcium 

changes over time, is very limited, and not available for use by the wider community.   

3 The proposed solution for calcium signalling analysis 

     As stated earlier, the proposed framework is based on four main tasks: pre-process 

individual video slides to increase their quality, identify regions with intracellular cal-

cium changes (hotspots) by first-level segmentation of the input video frames, and de-

tect calcium hotspots or best active ROIs by second-level segmentation. The final task 

of the proposed routine is the extraction and measurement of calcium signals in the 

detected hotspots. Figure 1 below highlights those stages.  

Figure. 1. Flowchart diagram of the proposed framework 

 



3.1 Pre-processing by median filtering and adaptive histogram equalization 

Fluorescent video frames tend to be low-contrasted and corrupted by Gaussian noise. 

Therefore, we chose to perform median filtering over individual images to increase 

their signal to noise ratio. Then, we performed adaptive histogram equalization to en-

hance their contrast in such a way that changes of intracellular calcium concentration 

become different from the background pixels. Figures 2a, 2b, and 2c below demonstrate 

the effectiveness of the pre-processing in enhancing the quality of the fluorescent video 

frames. 

Figure. 2. Image quality increased by pre-processing  

 

3.2 First level segmentation for candidate hotspots detection 

At this stage, we first aim to detect any changes in the intracellular calcium concen-

tration expressed in the pre-processed video frames as transiently bright areas due to an 

increase in the fluorescence of the calcium indicator. By default any calcium change 

area is hotspot. Inside each frame, hotspots are detected based on a certain threshold 

pixel value T. To set the best T value, analysis of pixel intensity histograms of input 

frames suggested us that the fluorescence intensities of the hotspots correspond to the 

bright pixels that fall away from the mean of the frames. The ideal threshold T turned 

out to be equalling to 𝑚𝑒𝑎𝑛 + 2  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑠𝑡𝑑) of the pixel intensities of 

individual frames. As a result, from a sequence of grayscale images input, the system 

generates a list of binary frames, where white pixels belong to objects changing their 

fluorescence, and dark pixels refer to background elements, that can be either inside or 

outside the cell. After that, morphological filters were applied on the binary output to 

transform the obtained connected components into closed-boundary objects in the fol-

lowing order: closing, holes filling, erosion, small objects removal, and image dilation 

with small structuring element of disk-square shapes. Figure 3 below demonstrates the 

thresholding approach adopted to detect intracellular calcium changes in individual flu-

orescent images. 
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The first-level segmentation ends with  assigning a set of geometrical properties such 

as centroid coordinates, area or object size, bonding box parameters, pixel element lo-

cations, and default hit-ratio value, etc. to each default hotspots representing intracel-

lular calcium changes. From the average size of all detected objects, the system esti-

mates a small significant interval where to look for potential active regions or hotspots. 

The best interval of size was found out to be between [
1

4
,

3

4
]  of the all objects average 

size, where to look for candidate calcium hotspots. 

Figure. 3. Segmentation of calcium changes from fluorescent video frames  

 

3.3 Second level segmentation for frames fusion based on hotspots’ hit-ratio 

The second level segmentation stage of our proposal for calcium signal analysis aims 

to identify the intracellular regions that show the most frequent calcium changes. They 

correspond to the candidate hotspots with highest hit-ratio parameters. The hit-ratio in 

this context represents the number of times a given cellular region appears or fluoresces 

in the entire video. For example, a hit-ratio of 50% means that a change in fluorescence 

appears in the same place in 50% of the frames. To calculate the hit-ratio of a candidate 

hotspot localised in a frame, the system counts the number of overlaps of this hotspot 

with others identified in the remaining frames. Overlapping of two objects is first as-

sumed as an overlap of their bounding boxes (rectangle fitting), then confirmed by the 

comparison of their pixel elements location, elements whose union make the objects.  

Once the hit-ratio computation is done, the system merges potential active regions 

into a single frame in which hotspots do not overlap. The fusion of candidate hotspots 

from individual frames is achieved based on two thresholds specified by the end user: 

the minimum hit-ratio, and the minimum distance between hotspots (we chose >15% 

and 10 pixels, respectively in this paper). At the end of the second level segmentation, 

the list of all hotspots is finalised and the system is ready to move on to the final stage 

of the framework which is to extract the measurements representing calcium changes 

over time from each hotspot. Figure 4 below presents a screenshot of 41 hotspots de-

tected by the system through the fusion of 7352 default hotspots from 300 frames.  

For visual purpose, hotspots are coloured according to their hit-ratio, the hottest ones 

corresponding to the most active regions, like highlighted in the figure.   



Figure. 4. Best active regions labelled with hit-ratio after video fusion  

 

3.4 Extraction and measurement of calcium signal inside hotspots.  

    This final procedure stands for the retrieval of meaningful information from original 

input video frames. It is the most essential part of the automatic analysis of cellular 

calcium signalling as it provides biologists with traces illustrating the intracellular cal-

cium changes and numbers to quantitate various parameters to perform statistical anal-

ysis for the understanding of the physiological implications of the experiments.  

Our proposed software automatically detects active regions inside cells and sets 

hotspots by direct quantification of the fluorescence within a given area at a given time. 

These direct fluorescence readouts of a given hotspot correspond to the average inten-

sity of the pixel points whose union makes the hotspot region in every original grayscale 

frame (𝑚𝑖). From the initial readout of the fluorescence inside hotspots another meas-

urement called the corrected fluorescence (𝐹) is computed.𝐹 = 𝑚𝑖 − 𝑏𝑔, where 𝑏𝑔 is 

the background fluorescence in all areas of the frame that do not contain any cells such 

that 𝑏𝑔 = 𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑚𝑎𝑔𝑒𝐶𝑒𝑙𝑙𝑠.  The background value represents the average value 

of anything pixel that is neither part of a calcium-change event, nor a cell tissue com-

ponent. The optimum parameter to represent an image containing all cells was found 

out to be 𝑖𝑚𝑎𝑔𝑒𝐶𝑒𝑙𝑙𝑠 > 𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑/2 of a frame's pixel intensities. In the same way, 

the system computes another calcium signal that is called normalized change of fluo-

rescence (𝐹/𝐹𝑚𝑖𝑛), where 𝐹𝑚𝑖𝑛 corresponds to the minimum fluorescence value in-

side a hotspot after the background subtraction. 𝐹𝑚𝑖𝑛 = 𝑖𝑚𝑎𝑔𝑒𝐶𝑒𝑙𝑙𝑠 + 1. The ratio 

(𝐹/𝐹𝑚𝑖𝑛)  is the ultimate normalized version of the initial fluorescence readout of 

hotspots, as it allows effective comparison between different experiments. From the 

ratio (𝐹/𝐹𝑚𝑖𝑛) signal, the system retrieves meaningful parameters about the intracel-

lular calcium changes. For the experiments performed, these are the maximum ampli-

tudes of peak in intracellular calcium changes of active regions, the area under the 

curve, the frequency of calcium transients, the inter-spike interval between two consec-

utive peaks of calcium concentration change, and the time of slope from peak to a base-

line that is customizable, as illustrated in figure 5.  
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Figure. 5.  Some parameters extracted from calcium change of fluorescence 

 

4 Results and discussions 

     Our proposal to automate the analysis of calcium imaging experiments based on 

fluorescence video imaging enables the automatic segmentation and measurement of 

intracellular calcium transients over time. Active hotspots can be filtered and monitored 

from portions or from entire input video files.  The processes are fully automatic and 

rely on the video frames contents rather than users' biological knowledge or experience. 

In details, for example, Table 1 below shows that the overall processing time of our 

proposal is proportional to the size of the input video file. Big files tend to take more 

time but compare to the manual procedure, the system processing time is impressive. 

Indeed, it takes approximately 1 day for biologists to complete the manual analysis of 

1000 video frames, whereas our proposed pipeline does the job in less than 5 minutes.  

Table 1. Results from a PC running Matlab 2014 on windows 7 OS with 4GB of RAM  

Video  

Extension 

Number 

of frames 

Number of 

𝐶𝑎2+waves 

Number of hotspots 

over potential ones 

Processing time 

(in seconds) 

.TIF 900 18,290 25 / 3,230 251 

.MPG 1,194 17,195 20 / 2,355 303 

.MOV 1,200 24,319 42 / 5,583 355 

.MPG 1,499 19,158 15 / 4,381 390 

    

Although, further testing of our proposed system for hotspots detection in fluores-

cence microscopy videos is still required, we proved that the automatic segmentation 

of intracellular calcium concentration in individual frames is about 80% accurate.  



Here, the percentage of accuracy refers to the ratio between the sum of True Positive 

and True Negative (TP + TN) pixels over the sum of all Positives and Negatives pixels 

[29]. Indeed, when using hand-outlined images of intracellular calcium changes as gold 

standard to isolate calcium changes, like shown in figure 6, we were able to compare 

the automated segmented frames against the visual detection. Table 2 below illustrates 

the pixel classification we implemented initially over a random sample of 20 frames 

per fluorescent video files of calcium signalling experiments. Category Positive corre-

sponds to the successful identification of calcium changes by our system, while True 

illustrates the reference from the ground truth.  

Table 2. automated segmentation performance through pixel classification   

 TP FP TN FN Accuracy 

Frame 1 7386 892 388186 25906 0.94 

Frame 2 33423 3693 327406 57848 0.85 

… … … … … … 

Frame 20 12649 1580 392998 15143 0.96 

 

Fig. 6. Manual segmentation versus automated  

 

All in one, the comparison between biologist empirical methodology and our auto-

matic approach establishes that our software can provide reliable results in shorter pe-

riods of time. The detection of intracellular calcium through individual frames is fast 

and accurate. The quantification of calcium concentration is easier and straightforward 

after ROIS detection.  

5 Conclusion and Future Work  

In this paper, we describe an automatic solution providing multi-level segmentation 

for the detection of changes in fluorescence in videos taken when using ion-sensitive 

fluorescent indicator dyes such as calcium indicators. Our proposal allows a fast and 

reliable detection of the hotspots to analyse and extract the changes of fluorescence 

over time. After the extraction of candidate hotspots from individual frames, we pro-

pose a new method based on the hit-ratio of fluorescence to identify the best active 

regions showing changes in the intracellular calcium concentration.  
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We also propose a normalized quantification of those changes over time for each 

hotspot. Further, the system enables the extraction of all major parameters researchers 

are typically interested in when analysing calcium imaging experiments, including 

some which are very time-consuming to perform manually. We have included the op-

tions of manual deleting hotspots which might not fit the criteria that researchers have 

identified. It is also possible to refine the hotspot detection by setting parameters such 

as minimum size and hit-ratio of hotspots as well as a minimum distance between them. 

The paper argues that obtaining the automatic measurements achieves a higher pro-

cessing time compared with experts’ manual ones. Higher accuracy of our proposed 

method still needs to be proven by further testing. However the automation of the entire 

procedure makes data analysis reproducible and easy comparable.  

Despite those advantages, we acknowledge that our proposed system has got some 

limitations. Using videos of tissues, we currently cannot identity individual cells. Fur-

ther, we currently cannot follow hotspots in case their position shift during experiment 

course, which might happen. It is the case for cardiomyocytes calcium signalling ex-

periments where high contractions may lead cells to move slightly. In addition to those 

drawbacks, the system is currently designed to analyse data only from single-wave-

length fluorescent indicators. Ideally the system should be extended for the use of multi-

wave length fluorescent dyes such as the ratio metric indicators like fura-2. We also 

think the future system should also enable advanced comparison of cells' calcium ac-

tivity by providing more useful parameters output. Finally, the handling of huge amount 

of data, and noisier raw images will have to be addressed.  
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