Skip to main content

Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases

  • Conference paper
  • First Online:
  • 997 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10081))

Abstract

Current statistical methods in neuroimaging identify effects of neurodegenerative diseases on the brain structure by detecting group differences. Results are detailed maps showing population-wide effects. Although useful for better understanding the disease, these maps provide little subject-specific information. Furthermore, since group assignments have to be known prior to analysis, resulting maps have limited diagnostic value for new subjects. This article proposes a method to construct subject- and disease-specific effect maps prior to diagnosis. The method combines techniques from binary classification and image restoration to identify the effects of a disease of interest on the measurements. Experimental evaluation is carried out with synthetically generated data and real data selected from the ADNI cohort. Results demonstrate the capability of the proposed method in generating subject-specific effect maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    see http://www.fil.ion.ucl.ac.uk/spm/ or https://freesurfer.net to this end.

References

  1. Ashburner, J., Friston, K.J.: Why voxel-based morphometry should be used. Neuroimage 14(6), 1238–1243 (2001)

    Article  Google Scholar 

  2. Greve, D.N.: An absolute beginner’s guide to surface-and voxel-based morphometric analysis. Proc. Intl. Soc. Mag. Reson. Med. 19, 33 (2011)

    Google Scholar 

  3. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  4. Thompson, P.M., et al.: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11(1), 1–16 (2001)

    Article  MathSciNet  Google Scholar 

  5. Rosas, H., et al.: Regional and progressive thinning of the cortical ribbon in huntington’s disease. Neurology 58(5), 695–701 (2002)

    Article  Google Scholar 

  6. Burton, E.J., et al.: Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with lewy bodies and controls. Brain 127(4), 791–800 (2004)

    Article  Google Scholar 

  7. Krishnan, A., et al.: Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56(2), 455–475 (2011)

    Article  Google Scholar 

  8. Worsley, K.J., et al.: Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage 6(4), 305–319 (1997)

    Article  Google Scholar 

  9. Gaonkar, B., Davatzikos, C.: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. Neuroimage 78, 270–283 (2013)

    Article  Google Scholar 

  10. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2014)

    Article  Google Scholar 

  11. Rahim, M., Thirion, B., Abraham, A., Eickenberg, M., Dohmatob, E., Comtat, C., Varoquaux, G.: Integrating multimodal priors in predictive models for the functional characterization of Alzheimer’s disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 207–214. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_26

    Chapter  Google Scholar 

  12. Ganz, M., et al.: Relevant feature set estimation with a knock-out strategy and random forests. Neuroimage 122, 131–148 (2015)

    Article  Google Scholar 

  13. Maumet, C., Maurel, P., Ferré, J.C., Barillot, C.: An a contrario approach for the detection of patient-specific brain perfusion abnormalities with arterial spin labelling. Neuroimage 134, 424–433 (2016)

    Article  Google Scholar 

  14. Tomas-Fernandez, X., Warfield, S.K.: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 34(6), 1349–1361 (2015)

    Article  Google Scholar 

  15. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging 20(8), 677–688 (2001)

    Article  Google Scholar 

  16. Prastawa, M.: A brain tumor segmentation framework based on outlier detection*1. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  17. Zeng, K., Erus, G., Sotiras, A., Shinohara, R.T., Davatzikos, C.: Abnormality detection via iterative deformable registration and basis-pursuit decomposition. IEEE Trans. Med. Imaging PP(99), 1 (2016)

    Google Scholar 

  18. Iqbal, K.: Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann. Neurol. 58(5), 748–757 (2005)

    Article  Google Scholar 

  19. Kiebel, S., Holmes, P.: The General Linear Model. Academic Press, London (2003)

    Google Scholar 

  20. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  21. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Good, P.I.: Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  24. Sabuncu, M.R., Konukoglu, E.: Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics 13(1), 31–46 (2015)

    Article  Google Scholar 

  25. Dickerson, B.C., et al.: The cortical signature of alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild ad dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19(3), 497–510 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Konukoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Konukoglu, E., Glocker, B. (2017). Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics