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Abstract

Accurate segmentation of isointense infant (~6 months of age) brain MRIs is of great importance, 

however, a very challenging task, due to extremely low tissue contrast caused by ongoing 

myelination processes. In this work, we propose a novel learning method based on Local 

AdapTivE and Sequential Training (LATEST) for segmentation. Specifically, random forest 

technique is employed to train a local classifier (a single decision tree) for each voxel in the 

common space based on the neighboring training samples from atlases. Then, for each given 

voxel, all trained nearby individual classifiers (decision trees) are grouped together to form a 

forest. Moreover, the estimated probabilities are further used as additional source images to train 

the next set of local classifiers for refining tissue classification. By iteratively training the 

subsequent classifiers based on the updated tissue probability maps, a sequence of local classifiers 
can be built for accurate tissue segmentation.

1 Introduction

The first year of life is the most dynamic phase of the postnatal human brain development, 

with rapid tissue growth and development of a wide range of cognitive and motor functions. 

Accurate tissue segmentation of infant brain MR images into white matter (WM), gray 

matter (GM), and cerebrospinal fluid (CSF) in this phase is of great importance for studying 

both normal and abnormal early brain development [1]. However, the segmentation of infant 

brain MRI is very challenging, due to reduced tissue contrast [2], increased noise [3], severe 

partial volume effect [4], and the ongoing white matter myelination [2, 5]. Especially, due to 

the ongoing myelination, at around 6 months of age, which is often referred to as isointense 

phase [6], the infant brain image appears isointense and exhibits the extremely low tissue 

contrast in both T1- and T2-weighted MR images, thus posing significant challenges for 

automatic tissue segmentation.

Although many methods have been proposed for infant brain MR image segmentation, most 

of them focused on segmentation of neonatal brain images in the infantile phase (≤ 5 

months) [2, 4, 5, 7, 8], where images have the relatively distinguishable contrast between 

WM and GM in T2-weighted MR images. In contrast, there are only few works [9–11] 
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focusing on segmentation of isointense (at ~6 months of age) infant brain images. In recent 

work [9], the convolutional neural networks (CNN) method [9] was proposed to segment the 

isointense infant brain images; however, it can only be applied to 2D image slices, instead of 

3D data. In the work of [10], a learning-based method was proposed to integrate information 

from both multimodality images and the tentatively-estimated tissue probability maps for 

infant brain image segmentation. Specifically, random forest [12] was first used to train a 

multi-class tissue classifier based on the training subjects with multiple imaging modalities. 

This trained classifier provided initial tissue probability maps for each training subject. 

Inspired by the auto-context model [13, 14], the estimated tissue probability maps were 

further used as additional input images to train the next classifier, by combining the high-

level multi-class context features (calculated from the estimated tissue probability maps) 

with the appearance features (calculated from multi-modality images) for refining tissue 

classification. By iteratively training the subsequent classifiers based on the updated tissue 

probability maps, a sequence of classifiers were obtained for tissue segmentation. However, 

the classifiers were trained globally, i.e., the training samples extracted from the entire 

atlases were mixed for training, and the same classifiers were applied for every voxel. As 

demonstrated in [15, 16], local spatially-adaptive classifiers can significantly improve the 

performance of global classifiers. However, only one-layer classifiers were trained in [16, 

17]. Inspired by both of these works [10, 16, 17], we propose to train spatially-adaptive 

sequential classifiers for segmentation of isointense infant brain MR images, by taking 

advantage of both sequential [10] and spatially-adaptive [16, 17] training. Specifically, all 

the atlases are first registered into a common template space. Then, for each voxel in the 

common space, an individual tree is trained via random forest based on the spatially-

neighboring training samples from the aligned atlases. Then, for each given voxel, all the 

nearby trained individual trees are grouped together to form a forest for estimating its tissue 

probabilities. The estimated probabilities are further used as additional source images to 

train the next-layer local classifiers, by combining the high-level multi-class context features 

(calculated from the previously estimated tissue probability maps) with the appearance 

features (calculated from multi-modality MR images) for refining tissue classification. 

Finally, these sequential and spatially-adaptive classifiers can be built for accurate tissue 

segmentation.

2 Method

2.1 Dataset and Image Preprocessing

T1- and T2-weighted MR images of 20 infants were acquired on a Siemens head-only 3T 

scanners with a circular polarised head coil. During the scan, infants were asleep, unsedated, 

and fitted with ear protection, with their heads secured in a vacuum-fixation device. T1-

weighted MR images were acquired with 160 sagittal slices using parameters: TR/

TE=2000/3ms and resolution=1×1×1 mm3. T2-weighted MR images were obtained with 

160 sagittal slices using parameters: TR/TE=4000/299ms and resolution=1×1×1 mm3. For 

image preprocessing, T2 images were linearly aligned onto their corresponding T1 images. 

Afterwards, standard image preprocessing steps were performed before tissue segmentation, 

including intensity inhomogeneity correction [18] and histogram matching.
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Accurate manual segmentation is of great importance for training classifiers in the learning-

based segmentation methods. Due to low contrast and huge number of voxels in brain 

images, manual segmentation is very difficult and time-consuming. Hence, to generate 

reliable manual segmentations for isointense infant subjects, we first obtained automatic 

segmentation results using a publicly available software iBEAT (http://www.nitrc.org/

projects/ibeat/). Then, based on these obtained automatic segmentation results, manual 

editing was carefully performed by an experienced neuroradiologist to correct errors by 

using ITK-SNAP [19]. Manual editing of each subject took approximately 3 hours. The 

intra-rater reliability (3 repeats) for WM, GM and CSF is 0.932, 0.931, and 0.960, 

respectively, in terms of Dice ratio. These 20 images with their edited tissue segmentation 

maps were used as multiple infant brain atlases.

2.2 Local AdapTivE and Sequential Training (LATEST)

In this paper, random forest [12] is adopted as a multiclass classifier to produce a tissue 

probability map for each tissue type (i.e., WM, GM, and CSF) by voxel-wise classification. 

As a supervised learning method, our method consists of training and testing stages. In the 

training stage, all the atlases are first linearly registered to a common template space. Then, 

an individual tree is independently trained at each voxel in the common space. Specifically, 

for a given voxel (i.e., a red point in Fig. 1(a)), all its nearby samples in a specified 

neighborhood (i.e., blue square) are used together as training samples. In the testing stage, to 

estimate tissue probability at a given voxel (i.e., a red point in Fig. 1(b)), all the neighboring 

trained individual trees (i.e., within red square) are grouped together to form a forest for 

classification. To deal with the challenges of low tissue contrast, inspired by [10], an auto-

context model [13, 14] is further adopted to iteratively refine the tissue probability maps, by 

including context information calculated from the previously-estimated tissue probability 

maps. By iteratively training local trees with random forest and auto-context model on both 

the multi-modalities (T1 and T2) and the updated tissue probability maps, we can train a 

sequence of local classifiers for infant brain segmentation. All these training steps are 

detailed below.

• Step 1: Registration to a common template space. In the training stage, all the 

atlases are linearly registered to a common template space. Their corresponding 

tissue labels are also warped into the common space. In the testing stage, the 

target image is similarly registered to the same common space. Therefore, the 

rough correspondences between atlases and target image are established, based 

on which the trained sequential and spatially-adaptive classifiers can be mapped 

into the target image for testing.

• Step 2: Extraction of appearance and context features. For each voxel in the 

common space, all its nearby samples from each aligned atlas are randomly 

selected as training samples. Then, we extract various features from each 

selected training sample for training the classifiers. Specifically, we extract 

appearance features from multi-modality MR images. Based on these extracted 

appearance features, we train the first-layer local classifier (with a single 

decision tree) for each voxel. Then, all the neighboring trained individual local 
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classifiers are grouped together to form a forest for classification of each training 

sample, thus providing the initial tissue probability maps for each training atlas. 

Inspired by the auto-context model [14], we further extract context features from 

these initial tissue probability maps. Note that these context features are used to 

coordinate segmentations across different parts of multi-modality images, which 

have been shown effective in both computer vision and medical image analysis 

fields [20–23].

• Step 3: Training of random-forest based local classifiers. We train a local 

classifier to learn the complex relationship between local appearance/context 

features and the corresponding (manual ground-truth) tissue label on each 

selected training sample. Although many advanced classifiers have been 

developed, herein we adopt random forest [12] because of 1) its effectiveness in 

handling a large number of training data with high dimensionality and also 2) its 

fast speed in testing. Besides, random forest also allows us to explore a large 

number of image features to select the most suitable ones for accurate 

classification [24].

• Step 4: Repeating Steps 2 and 3 until convergence. Note that we train our 

local classifiers in a serial manner. Specifically, based on the local classifier 

trained in Step 3, all the neighboring individual trees are grouped together to 

form a forest for classification of each training voxel. By visiting each training 

voxel, we can update the tissue probability maps for each training atlas. Then, 

according to Step 2, we extract context features from the updated tissue 

probability maps, and further employ them along with the appearance features to 

train the next-layer local classifier for each voxel in the common space. 

Eventually, we will train and obtain sequential and spatially-adaptive classifiers 

for infant brain segmentation.

Given a new target image, the testing stage is similar to the training stage. Specifically, the 

target image is first registered to the same common space. Then, for each voxel in the target 

image, the corresponding trained sequential and spatially-adaptive classifiers will be 

identified and used for classification. In the first iteration, three tissue probability maps (for 

WM, GM and CSF) are estimated by the first-layer spatially-adaptive local forest, using only 

the image appearance features calculated from target multi-modality images. In the later 

iterations, the tissue probability maps estimated from the previous iteration are also fed into 

the next-layer classifier for refinement. An example is shown in Fig. 3, in which the input 

images are T1 and T2 images. In a local region indicated by a red square, its tissue 

probability maps estimated by sequentially local forests are gradually improved with 

iterations and become more and more accurate. It is worth noting that the result of first 

iteration can be regarded as the result obtained using only local classifiers in [17].

3 Experimental Results

We have evaluated the proposed method on 20 isointense infant subjects using leave-one-out 

cross-validation. The manual segmentation for each subject is considered as the “ground 
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truth” for quantitative comparison. In our implementation, we use 3D random Haar-like 

features to compute both image appearance features and multi-class context features. Also, 

for each voxel, its neighborhood is defined as a 3D cube with size of 15×15×15 for training, 

and 5×5×5 for testing. For each tissue type, we select 2,000 training samples from the 

neighborhood for each training atlas. Then, for each training sample with the patch size of 

7×7×7, 10,000 random Haar-like features are extracted from all source images, i.e., T1- and 

T2-weighted MR images and also three probability maps of WM, GM, and CSF. As 

mentioned, for each voxel in the common space, we train one individual decision tree with 

conservative parameters setting, such as we stop the tree growth with maximal depth 50, or 

with a minimum of 8 sample numbers in each leaf node. We set the maximal iteration as 3 

since we find the performance typically increases dramatically in the first 3 iterations, and 

then gradually after 3 iterations. In the following, we compare mainly with [10], since it 

achieves the state-of-the-art segmentation results on the 6-month infant brain MRIs.

Fig. 3 shows the estimated probability maps by the proposed sequentially local classifiers in 

3 iterations (#1-#3). As mentioned before, the classifiers in the first iteration of the proposed 

method can be considered as the local (one-step) classifiers (namely random forest based 

label fusion, RFLF) proposed in [17], and the corresponding results are shown in the third 

column (#1). Due to the absence of sequential training based on the intermediate tissue 

probabilities, the results by local (one-step) classifiers are noisy. The last column shows the 

result by sequential (global) classifiers (namely LINKS) proposed in [10]. Although the 

result by LINKS is free of noise, it is not accurate due to missing of local details. By 

contrast, the result by our proposed sequentially local classifiers is more accurate via visual 

observation, compared with the results by both local (one-step) classifiers [17] and 

sequential (global) classifiers [10].

Fig. 2 shows the Dice ratios of WM, GM and CSF by sequentially applying the learned 

classifiers. It can be seen that the Dice ratios are improved with the iterations and become 

stable after a few iterations (i.e., 5 iterations), as reflected by the reduced standard deviation. 

These results demonstrate the importance of using iterative training.

In the following, we will make comparisons with (a) local (one-step) classifiers [17], (b) 

sequential (global) classifiers [10], and (c) manual segmentations. Fig. 4 shows the 

segmentation results for a typical isointense infant subject by different methods. The first 

row shows the original T1 and T2 MRIs with manual segmentation. The second, third and 

fourth rows show the segmentation results by local (one-step) classifiers [17], sequential 

(global) classifiers [10], and our proposed sequentially local classifiers, respectively. For a 

fair comparison, we have trained sequential (global) classifiers [10] with optimised 

parameters on the warped atlases. As we can see, the result by the proposed method is more 

accurate than all other methods, particularly for the places indicated by dashed circles. Last 

two columns of Fig. 4 also show the segmented WM/GM rendering results (along with 

zoomed views) by different methods. As we can see, our result is more consistent with 

manual segmentations. Then, we further employ Dice ratios to evaluate the performances of 

different methods on 20 subjects, as given in Table 1. Besides Dice ratio, we also measured 
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the modified Hausdorff distance (MHD), which is defined as the 95th percentile Hausdorff 

distance. It can be clearly seen that our proposed method outperforms all other methods.

4 Discussion and Conclusion

We have presented a novel learning method based on local adaptive and sequential training 

(LATEST) for tissue segmentation of isointense infant brain MR images. The key idea is to 

train spatially-adaptive and sequential classifiers. Specifically, a first-layer local classifier 

was first trained for each voxel in the common space. The classification results from 

neighboring classifiers are average to generate intermediate tissue probability maps, which 

were further used as additional source images to train the next-layer classifier. By iteratively 

training the subsequent classifiers based on the updated tissue probability maps, a sequence 

of local classifiers were built for accurate tissue segmentation. Experimental results on 20 

isointense infant subjects show that the proposed method achieves better performance than 

the state-of-the-art methods.

It is worth noting that the neighborhood size is important for training. In our experiments, 

we found the performance dropped when using larger size of neighborhood. This is mainly 

because the use of larger neighborhood complicates the classification problem by including 

more irrelevant samples into training set. This observation also shows the importance of 

training local classifiers for accurate segmentation.

There are still some limitations for the proposed work. First, the proposed work cannot 

guarantee a correct topology result. Thus the post processing such as topology correction 

may be needed. Second, during the training, more samples should be selected from these 

incorrectly labeled voxels. Third, the Haar-like features are selected from one scale (patch 

size), which is not optimal since different structures have different scales.
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Fig. 1. 
Illustration of training stage (a) and testing stage (b). In (a), the blue region denotes a 

neighborhood, within which all the voxels are used as training samples for the center red 

point. In (b), the red region denotes a neighborhood, where all trained individual trees are 

grouped together to form a forest in the testing stage. Note that the blue and red regions in 

(a) and (b) can have different sizes.
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Fig. 2. 
Changes of Dice ratios of WM, GM and CSF with respect to the iteration number.
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Fig. 3. 
The estimated probability maps by the proposed sequentially local forests along the 

iterations (#1-#3). #1 can also be considered as the result by using only local classifiers [17]. 

The last column shows the result by LINKS which uses sequentially global classifiers [10].
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Fig. 4. 
Comparison of segmentation results on (a) a typical subject by (b) local (one-step) classifiers 

(RFLF [17]), (c) sequential (global) classifiers (LINKS [10]), and (d) our sequential & local 

classifiers (Proposed). The first row shows the T1 and T2 MR images and also manual 

segmentation. From left to right, the figure shows estimated the probabilities of WM, GM, 

and CSF, entire brain segmentation, 3D rendering, and zoomed 3D rendering, by three 

methods.
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Table 1

Average Dice ratios (in percentage) and MHD by 3 different methods on 20 isointense infant images. The bold 

indicates that the results by the proposed method are significantly better than others (p-value < 0.001).

Method RFLF [17]:
local (one-step)

LINKS [10]:
sequential (global)

Proposed:
sequential & local

Dice ratio

WM 84.6±0.76 88.7±0.43 91.4±0.33

GM 85.9±0.88 87.1±0.66 90.5±0.45

CSF 88.2±0.41 89.3±0.34 93.4±0.36

MHD
WM/GM 2.57±0.69 1.59±0.25 1.24±0.28

GM/CSF 3.81±0.78 1.89±0.33 1.50±0.21
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