
Landmark-Based Alzheimer’s Disease Diagnosis Using 
Longitudinal Structural MR Images

Jun Zhang1, Mingxia Liu1, Le An1, Yaozong Gao1,2, and Dinggang Shen1,3

1Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA

2Department of Computer Science, UNC at Chapel Hill, Chapel Hill, NC, USA

3Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea

Abstract

In this paper, we propose a landmark-based feature extraction method for AD diagnosis using 

longitudinal structural MR images, which requires no nonlinear registration or tissue segmentation 

in the application stage and is robust to the inconsistency among longitudinal scans. Specifically, 

(1) the discriminative landmarks are first automatically discovered from the whole brain, which 

can be efficiently localized using a fast landmark detection method for the testing images; (2) 

High-level statistical spatial features and contextual longitudinal features are then extracted based 

on those detected landmarks. Using the spatial and longitudinal features, a linear support vector 

machine (SVM) is adopted for distinguishing AD subjects from healthy controls (HCs) and also 

mild cognitive impairment (MCI) subjects from HCs, respectively. Experimental results 

demonstrate the competitive classification accuracies, as well as a promising computational 

efficiency.

1 Introduction

Structural MRI has been proven to be an effective tool for Alzheimer’s disease (AD) 

diagnosis [1]. Compared with cross-sectional study at a single time point, longitudinal study 

is more sensitive to early pathological changes by focusing on both the spatial structural 

abnormalities and the longitudinal variations of tissues.

So far, researches that focus on cross-sectional study have obtained several achievements on 

AD or mild cognitive impairment (MCI) diagnosis [2,3]. For example, Liu et al. investigated 

the AD diagnosis using multi-template representation [4–6]. Hinrichs et al. proposed to use 

spatially augmented LPboosting for AD classification [7]. Zhu et al. focused on selecting 

informative features from redundant region-based features [8–10]. Gerardin et al. extracted 

features based on hippocampal shape for the purpose of classifying AD and MCI [11]. Gao 

et al. proposed to use hypergraph learning for MCI classification and indexing [12,13]. 

Kloppe et al. proposed to use voxel-based gray matter features for AD classification [14].
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On the other hand, existing longitudinal studies largely focus on the degeneration of well-

known representative biomarkers including hippocampal volume, ventricular volume, whole 

brain volume and cortical thickness. For example, Chincarini et al. proposed four image 

analysis strategies based on hippocam-pal volume by integrating longitudinal atrophy rate as 

a measurement for AD diagnosis [15]. Jack et al. investigated the changing rates of four 

structures (i.e., hippocampus, entorhinal cortex, whole brain and ventricle), and supported 

the idea of using changing rates as biomarkers for AD diagnosis [16]. Aguilar et al. analyzed 

the longitudinal atrophy changes in cortical thickness measures and subcortical volumes, and 

pointed out that the use of two time points data yielded better index result compared with 

using the cross-sectional data only [17]. Kim et al. adopted 93 ROI features for longitudinal 

analysis [18]. However, there are still several challenges in existing longitudinal analysis: (1) 

Limited measurements may be incapable of capturing the full pattern of morphological 

abnormalities from the whole brain; (2) Time-consuming nonlinear registration or tissue 

segmentation step is required, and the longitudinal study exacerbates the computational time 

since more scans are involved; (3) Longitudinal scans across subjects are usually 

inconsistent, since some time points might be missing during the data collection.

In this study, a landmark-based feature extraction framework is proposed for AD diagnosis 

using longitudinal structural MR images. Different from traditional longitudinal studies, our 

method (1) does not require the time-consuming nonlinear registration or tissue 

segmentation, (2) can cover the representative morphological abnormalities from the whole 

brain, and (3) is able to handle the inconsistency among longitudinal scans. Specifically, the 

discriminative landmarks which have significant morphological group differences are 

automatically discovered from the whole brain. By using a regression forest-based landmark 

detection method, these landmarks can be efficiently detected in the application stage. Based 

on these detected landmarks, high-level spatial features and contextual longitudinal features 

are further extracted respectively, as below. (a) A bag-of-words strategy is used to extract 

high-level spatial features, by calculating the frequency of low-level landmark-based 

morphological features from different scanning time points. In this way, the significant 

spatial abnormalities from all scanning time points are aggregated together, which are also 

invariant to the number of longitudinal scans. (b) To extract contextual longitudinal features, 

an interpolation step is used to generate a Jacobian map from longitudinal landmark 

displacements. Then, contextual features can be extracted around the landmarks from the 

Jacobian map. Finally, a linear support vector machine (SVM) is adopted to perform 

AD/MCI classification using these spatial and longitudinal features.

2 Materials and Image Processing

2.1 Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 is a 5-year public-private 

partnership to test whether serial MRI, positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

1www.adni-info.org.
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measure the progression of mild cognitive impairment and early Alzheimer’s disease. One 

goal of ADNI is to develop improved methods that will lead to uniform standards for 

acquiring longitudinal, multi-site MRI and PET data on subjects with AD, MCI, and elderly 

healthy controls (HCs).

Subjects used in this study are from the ADNI-1 database. In this paper, we selected the 

subjects with at least three scanning time points of structural MRI, thus resulting in 207 age-

matched HCs, 154 AD, and 346 MCI subjects. The demographic information (i.e., gender, 

age, and education) of the studied subjects used in this study are summarized in Table 1. The 

statistics of scans for the studied subjects is summarized in Table 2.

2.2 Image Processing

The image processing includes two major steps: linear alignment and landmark discovery.

Linear Alignment—All images are linearly aligned to a common template, namely 

Colin27, which was created by averaging 27 registered scans of a single subject [19]. In 

order to achieve high efficiency, we adopt a landmark-based affine registration method. 

Specifically, five pre-defined landmarks (i.e., anterior commissure (AC) and posterior 

commissure (PC) landmarks, and the other three representative landmarks in mid-sagittal 

plane) are automatically detected by a pre-trained regression forest-based landmark 

detection model. A global similarity transformation matrix, which encodes 7 degree of 

freedom (DOF), can be estimated between the landmarks from the moving image to the 

template. Since each landmark has 3 coordinate values, 5 landmarks are enough to estimate 

the transformation matrix.

Landmark Discovery—Our target is to identify the regions with group differences in 

local structures between patients and HCs. To this end, we intend to perform a voxel-wise 

group comparison between those two groups. However, the linearly aligned images are not 

voxel-wisely comparable. In order to build the correspondence among voxels from different 

images, all images are nonlinearly aligned to the Colin27 template after linear alignment. In 

general, the warped images are very similar to each other so that the subject-specific 

structural information in different images may not be significant. Therefore, we extract 

patch-based morphological features (i.e., 3D histogram of orientation (HOG) features [20]) 

from the linearly aligned images to describe the local structures. By using the deformation 

field from nonlinear registration, we can build the correspondence between voxels in the 

template and all linearly aligned images. Therefore, for each voxel in the template, we can 

extract two groups of HOG features from its corresponding voxels in all training patients 

and HCs, respectively. We then perform the multivariate test, namely Hotelling’s T2 statistic 

[21], on the two groups, through which a p-value can be calculated for each voxel in the 

template. Accordingly, a p-value map can be obtained according to the template. Finally, the 

local minima from the p-value map are identified as locations of discriminative landmarks in 

the template space. More details on landmark discovery can be found in our previous work 

[22].

Zhang et al. Page 3

Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then, these landmarks, which are located in the template space, can be directly projected to 

all training images using their deformation fields. For testing images, in order to avoid the 

time-consuming nonlinear registration, we train a regression forest-based landmark detector 

[23,24] to detect these landmarks. In this way, both training images and testing images 

would have same landmarks, and particularly, the landmarks for the testing images can be 

obtained efficiently, thanks to the fast landmark detector.

3 Feature Extraction

Based on the identified landmarks, we propose a landmark-based framework for extracting 

features from longitudinal MR images. Specifically, two types of landmark-based features, 

i.e., spatial features and longitudinal features, are extracted to describe the spatial structural 

abnormalities and longitudinal landmark variations, respectively. In the following, we 

explain the details about the extraction process for each feature type.

3.1 Landmark-Based Spatial Feature Extraction

Intuitively, in cross-sectional study, the morphological features (e.g., 3D HOG) for all 

landmarks can be extracted and concatenated as strong features for classification. However, 

there are two challenges in longitudinal study: (1) The numbers of scanning time points 

across subjects are inconsistent due to missing time points, and thus, it is difficult to extract 

a unified feature representation from different number of scans. (2) It is difficult to identify 

the corresponding baseline images across subjects, which means a baseline scanning time 

point of one subject may not correspond to that of another subject. How to extract a unified 

spatial feature representation from those inconsistent longitudinal scans is a very challenging 

task.

To address these two problems, we propose to use a bag-of-words strategy to extract 

statistical high-level spatial features. The bag-of-words strategy has demonstrated impressive 

performance on text, language, and image classification [25–28]. Specifically, Fig. 1(a) 

shows the procedure of our spatial feature extraction method, where each landmark is treated 

independently. As shown in Fig. 1(a) I, we first extract the 3D HOG feature vector for each 

landmark, as well as 3D HOG feature vectors for the supplementary voxels (i.e., the 

neighboring voxels within a small spherical patch of the landmark). After extracting features 

from all training images and aggregating them together, we have a set of 3D HOG feature 

vectors. Then, we perform K-means clustering [29] on this set of feature vectors, and build a 

dictionary (i.e., ) with its words (i.e., w1, w2, …, wM) being the clustering centers. Then, 

for each individual subject, we can first extract the 3D HOG feature vectors (denoted by a 

feature set ℱ) for each landmark and its supplementary voxels in all longitudinal scans. The 

statistical histogram representation is then calculated by counting the occurrence frequencies 

of the clustering centers in these HOG features (i.e., ℱ), as shown in Fig. 1(a) II. 

Mathematically, the histogram representation (i.e., R) for one landmark can be defined as
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R( j) = ∑
f ∈ ℱ

δ(( argmin
i ∈ {1, …, M}

‖f − wi‖2
2) = j), j = 1, …, M, (1)

where δ(·) is the Kronecker delta function defined as

δ(A) = 1 i f A is true;
0 otherwise . (2)

In order to achieve the invariance to the number of longitudinal scans, the histogram 

representation is ℓ1 normalized. Finally, we extract the statistical features for all landmarks, 

regardless of differences in the number of scanning time points, as shown in Fig. 1(a) III. 

Here, the reasons for using supplementary voxels in neighborhood of landmarks are two-

fold: (1) The HOG feature set can be expanded to get statistical features by using the bag-of-

word strategy; (2) It is also helpful to relieve potential errors in localizing landmark 

positions.

3.2 Landmark-Based Longitudinal Feature Extraction

In order to solve the problem of inconsistent longitudinal scans, we generate the normalized 

3D longitudinal displacement at the beginning of feature extraction. Specifically, we first 

define the longitudinal displacement between two scans for one specific landmark as 

follows:

di, j = Lti
− Lt j

, (3)

where Lti is the landmark location of the i-th scan from all longitudinal scans and ti is the 

corresponding relative scanning time point with respect to the first scan. Then, the 

normalized 3D displacement d̄ (mean displacement per year) is calculated from all possible 

combinations between two scans in different scanning time points, as shown in Fig. 1(b) I. 

Mathematically, d̄ is defined as follows:

d = 1
∑1 ≤ j < i ≤ n1 ∑

1 ≤ j < i ≤ n

di, j
ti − t j

, (4)

where n is the number of existing scans. As shown in Fig. 1(b) II, a normalized deformation 

field can be built by applying thin plate splines (TPS) interpolation to the normalized 3D 

longitudinal displacement d̄ of all landmarks. Based on this normalized deformation field, a 

Jacobian map is further calculated to describe the longitudinal volume variations. Finally, as 

shown in Fig. 1(b) III, we can extract morphological features (i.e., 3D HOG) for the 

landmarks in the Jacobian map. Therefore, longitudinal volume variations on these 
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discriminative landmarks can be captured by these morphological features. It is worth noting 

that, instead of treating each landmark individually, the neighboring landmarks are jointed 

together with interpolation during the generation of the normalized deformation field. In this 

way, although the morphological features from Jacobian map are extracted for each 

landmark individually, the contextual information about the neighboring landmarks is 

automatically embedded into the calculated features.

4 Experiments

4.1 Parameter Setup

Using a 10-fold cross validation strategy, we conducted experiments for two classification 

tasks, i.e., AD vs. HC and MCI vs. HC. The parameters in our approach were defined as 

follows: For 3D HOG feature extraction, we used 9 orientations, 2 × 2 × 2 cells, and a size 

of 8 × 8 × 8 for each cell. Therefore, the dimensionality of 3D HOG features was 72. In the 

bag-of-words strategy, the number of clustering centers was set to 50, and thus, the 

dimensionality of spatial features for each landmark was 50. The radius of spherical patch 

for sampling supplementary voxels was 5. For SVM classification, we fixed the margin 

parameter C = 1. Due to the data-driven property of our method, the number of landmarks 

was determined by the training images. In our method, we searched the local minima within 

a 7 × 7 × 7 cubic patch, and obtained roughly 1500 identified landmarks for each fold in the 

cross validation.

4.2 Experimental Results

Five classification performance measures were used, namely (1) accuracy (ACC): the 

number of correctly classified samples divided by the total number of samples; (2) 

sensitivity (SEN): the number of correctly classified positive samples (patients) divided by 

the total number of positive samples; (3) specificity (SPE): the number of correctly classified 

negative samples (controls) divided by the total number of negative samples; and (4) 

balanced accuracy (BAC): the mean value of sensitivity and specificity; (5) area under 

receiver operating characteristic (ROC) curve (AUC).

For comparison, we also report the classification results of two baseline strategies based on 

our landmarks. The baseline spatial features are the HOG features that are directly extracted 

according to the landmarks only from the baseline MR image (first scan). The baseline 

longitudinal features refer to the features obtained by directly using normalized 

displacements (i.e., d̄) of the landmarks.

Table 3 reports the classification results, and Fig. 2 shows their corresponding ROC curves. 

These results demonstrate that, in both classification tasks, the proposed spatial features 

consistently outperform the baseline spatial features, and our longitudinal features generally 

achieve better performance than the baseline longitudinal features. Moreover, the 

combination of the proposed spatial and longitudinal features can further improve the 

classification performance.
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In a related work, Chincarini et al. [15] used hippocampal volume and hippocampal volume 

atrophy rate as measurements for longitudinal AD classification. The reported AUC for AD 

vs. HC on ADNI-1 is 93.00%, which is slightly lower than ours (94.01%). Moreover, they 

used multi-atlas based method to obtain the hippocampal segmentations which is time-

consuming. As we know, it usually takes hours to get accurate hippocampal segmentation. 

For our landmark-based method (e.g., using four longitudinal scans), it takes less than 3 min 

to complete all feature extraction steps, including linear registration, landmark detection, and 

spatial and longitudinal feature extraction.

5 Discussions and Conclusions

Landmark-based Framework—The major advantages of using landmark-based 

framework are two folds: (1) The identified discriminative landmarks can cover all possible 

abnormalities from the whole brain without using several pre-defined biomarkers; (2) The 

use of landmarks makes it possible to integrate a fast landmark detection model to the 

diagnosis framework such that both time-consuming nonlinear registration and tissue 

segmentation are avoided. It is worth noting that, although each landmark is a weak 

descriptor that only covers the information from a small local patch, thousands of landmarks 

can well describe the brain structure and thus leading to a stable classification performance.

Spatial Features—In the bag-of-words representation, words in the dictionary can be 

regarded as representative local spatial structures. Thus, the calculation of their occurrence 

frequency can be regarded as labeling the spatial structure of each landmark with its 

similarities to all words. This high-level statistic ignores both the numbers and the orders of 

scanning time points and only focuses on the spatial abnormalities, which is suitable for 

extracting unified spatial features from inconsistent longitudinal scans. As can be seen in 

Table 3 and Fig. 2, the method of using bag-of-words based spatial features achieves better 

classification performance, compared with that using baseline spatial features.

Longitudinal Features—Intuitively, one type of longitudinal information is the trajectory 

of landmarks along time. However, the coherence among neighboring landmarks is ignored 

if we just simply use the mean longitudinal displacements (d̄) as features. In our method, we 

generate a normalized deformation field by interpolation, through which the contextual 

information can be employed by jointly using the neighboring landmarks. Moreover, it is 

also well known that the Jacobian determinant can indicate the volume variation. Therefore, 

the morphological features from the Jacobian map comprehensively capture the longitudinal 

volume variation around landmarks. The experimental results show that using the 

longitudinal features from Jacobian map achieves 2% to 4% improvement in terms of 

accuracy as compared with the baseline longitudinal features.

Limitations and Future Work—Since each landmark has 72 spatial features and 50 

longitudinal features, the concatenation of the features from all landmarks would be high 

dimensional, with respect to the number of training subjects. Also, there may be some 

redundant or noisy features that can adversely affect the classification model learning. 

Therefore, selecting most discriminative landmarks and features is important and will 
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provide a reasonable solution for further performance improvement, which is our future 

work.
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Fig. 1. 
Landmark-based feature extraction steps. (a) Spatial features. (b) Longitudinal features.
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Fig. 2. 
ROC curves for classification. (a) AD vs. HC. (b) MCI vs. HC.
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Table 1

Demographic information of selected subjects in the ADNI database

Male/Female Age (years) (Mean ± SD) Edu. (years) (Mean ± SD)

AD 81/73 75.10 ± 7.50 14.82 ± 3.08

MCI 219/127 74.33 ± 9.91 15.53 ± 3.29

HC 111/96 75.83 ± 4.98 16.10 ± 2.86
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Table 2

Number of scans for the selected subjects in the ADNI database

3 scans 4 scans 5 scans 6 scans

AD 63 91 - -

MCI 57 97 170 22

HC 46 145 16 -
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