
HAL Id: lirmm-01520172
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01520172

Submitted on 9 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Chase for All Provenance Paths With Existential
Rules

Abdelraouf Hecham, Pierre Bisquert, Madalina Croitoru

To cite this version:
Abdelraouf Hecham, Pierre Bisquert, Madalina Croitoru. On the Chase for All Provenance Paths
With Existential Rules. RuleML+RR, Jul 2017, London, United Kingdom. pp.135-150, �10.1007/978-
3-319-61252-2_10�. �lirmm-01520172�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01520172
https://hal.archives-ouvertes.fr

On the Chase for All Provenance Paths With
Existential Rules

Abdelraouf Hecham1, Pierre Bisquert2, Madalina Croitoru1

1GraphIK INRIA, University of Montpellier
2 GraphIK INRIA, French Institute of Research in Agronomy (INRA)

Abstract. In this paper we focus on the problem of how lineage for
existential rules knowledge bases. Given a knowledge base and an atomic
ground query, we want to output all minimal provenance paths of the
query (i.e. the sequence of rule applications that generates an atom from
a given set of facts). Obtaining all minimal provenance paths of a query
using forward chaining can be challenging due to the simplifications done
during the rule applications of different chase mechanisms. We build upon
the notion of Graph of Atoms Dependency (GAD) and use it to solve the
problem of provenance path loss in the context of forward chaining with
existential rules. We study the properties of this structure and investigate
how different chase mechanisms impact its construction.

1 Introduction

Provenance is used in many information management systems [3, 16, 17] and de-
scribes where data came from, how it was derived and how it was updated over
time [12]. In this paper we focus on the problem of how lineage [12] that, given a
knowledge base and a ground query, outputs the provenance paths of the query
(i.e. the sequences of rule applications that generate a query from a given set
of facts). Given that in a provenance path certain rule applications are unnec-
essary for provenance justification, it is usually assumed that one is interested
in minimal provenance paths. Unlike existing work that focuses on obtaining
only one provenance path, the novelty of this work consists in obtaining all
provenance paths to a ground query. This problem is relevant in many practical
applications such as explanation [9], abduction [13], debugging [4] and notably,
defeasible reasoning. In [11], the authors have stumbled upon this problem as
query answering in defeasible reasoning with existential rules became unsound
due to provenance path loss (not all provenance paths could be extracted). This
unexpected behavior as we will show in this paper is due to the order in which
rules are applied and to the type of forward chaining mechanism used.

Forward chaining (a.k.a. chase) is the exhaustive application of a set of rules
on a set of facts. In this paper we focus on classes of existential rules where
forward chaining is finite while backward chaining might be infinite. Different
types of chases have been defined in the literature (Oblivious[5], Skolem [14],
Restricted [8], etc.), each chase provides a more powerful restriction test for

detecting when to stop. While these tests are crucial for the chase to stop, they
might induce a loss of rule applications depending on the order in which the
rules are applied. This loss is not picked up by existing work on provenance path
extraction which only addressed the problem of obtaining one path, as it was
implicitly assumed that obtaining all provenance paths is not a difficult task but
a mere enumeration of the first. Unfortunately this is not the case as shown in
the following example:

Example 1 Consider a knowledge base KB = (F ,R) and a query q = t(b) where
the set of facts F = {p(a), q(b), s(b)}, and the set of rules R = {R1 : p(X)→
r(X,Y), R2 : {p(X)∧ s(Y)→p(Y), R3 : q(X)→r(X,Y), R4 : r(X,Y)→ t(X)}.

Extracting the provenance paths for the query q using backward chaining
[4] is not possible as it is infinite. To extract provenance paths using forward
chaining the state of the art uses a chase graph [6] (also called derivation tree
[1]). A chase graph is a directed graph consisting of a set of nodes representing
the facts of the chase and having an arrow from a fact u to v iff v is obtained
from u (possibly with other atoms) by the application of a rule in R.

The saturated set of facts F∗ = F ∪ {r(a, Y1), p(b), r(b, Y2), r(b, Y3), t(a),
t(b)} is obtained using an Oblivious chase. This is represented by the chase graph
in Figure 1. From the chase graph we can find that there is only one provenance
path for t(b) which is applying R3 on q(b) then R4 on the resulting r(b, Y2).
However, we can see that by applying R4 on the atom r(b, Y3) we get t(b), which
gives us another provenance path that does not show in the chase graph. This
loss of provenance path is due to the order in which rules are applied. When the
chase applies the rule R4 on r(b, Y3) it generates the atom t(b) but this atom
is considered redundant as t(b) already exists. This rule application is hence
considered not useful and the resulting atoms are not added to the chase graph.

p(a)q(b) s(b)

r(a, Y1)r(b, Y2) p(b)

r(b, Y3) t(a)t(b)

Fig. 1. Chase graph for F w.r.t. R of Example 1

In [11], a solution to the provenance path loss problem limited to the re-
stricted chase has been proposed by defining a combinatorial structure called
Graph of Atom Dependency (GAD). In this paper we build upon that work and
extend the GAD for other types of chase, define its construction algorithms in
Section 3, define the provenance path extraction algorithm, study its properties
and prove its soundness and completeness in Section 4.

2 Preliminaries

Existential rules extend the Datalog language [7] with existential variables in the
conclusion of the rules (also called tuple generating dependencies – TGDs) and
generalise certain fragments of Description Logics by allowing n-ary predicates
as well as cyclic structures [6]. We consider a first-order logical (FOL) language
with constants but no other function symbol based on a vocabulary V composed
of an infinite set of predicates, an infinite set of constants, an infinite set of vari-
ables and an infinite set of existential ‘fresh’ variables (called ‘nulls’, which act
as placeholders for unknown constants). Different constants represent different
values (unique name assumption) while different fresh variables may represent
the same value. An atomic formula (or atom) is of the form p(t1 . . . tk), where
p is a predicate and ti are variables or constants in V . > and ⊥ are also al-
lowed and considered themselves atoms. For a formula Φ, we note terms(Φ) and
vars(Φ) respectively the terms and variables occurring in Φ. We denote variables
by uppercase letters X,Y, Z, . . ., constants by lowercase letters a, b, c, . . ., nulls
with numbered uppercase letter Y1, Y2, . . . , and predicate symbols by lowercase
letters p, q, r, s, etc. We use FOL classical entailment and equivalence, noted �
and ≡ respectively.

A fact F is a ground atom (an atom with only constants and nulls). An
existential rule (or a tuple generating dependency) R is a closed formula of the
form ∀X,Y

(
H(X,Y) → ∃Z C(X,Z)

)
where X,Y are tuples of variables, Z

is a tuple of existential variables, and H, C are finite non empty conjunctions
of atoms respectively called premise and conclusion of R. We omit quantifiers
when there is no ambiguity, and we use the form R = (H, C) to represent a
rule. The frontier of R = (H, C) noted fr(R) is the set of variables occurring
in both H and C: fr(R) = vars(H) ∩ vars(C). Given a set of variables X and
a set of terms T , a substitution of X by T is a mapping from X to T . Let
π : X → T be a substitution, and Φ be a formula, π(Φ) denotes the set of atoms
obtained from Φ by replacing each occurrence of X ∈ X ∩ terms(Φ) by π(X).
A homomorphism from a set of atoms S to a set of atoms S′ is a substitution
of vars(S) by terms(S′) such that π(S) ⊆ S′ (S maps to S′ by π).

A rule R = (H, C) is said to be applicable to a set of facts F if there
is a homomorphism π from H to F . In that case, the application of R to F
according to π adds to the set F the conclusion C with constants and possibly
new fresh existential variables. More precisely, the application produces a set
of facts α(F , R, π) = F ∪ πsafe(C), where πsafe(X) = π(X) if X belongs to
the frontier, and is a fresh variable otherwise. This rule application is said to
be redundant if α(F , R, π) ≡ F . The application of R to F , α(F , R, π) w.r.t
to π, is also denoted by Rπ(F). Given a set of facts F and a set of rules R
the application of all rules R on the facts F is denoted R(F). Please note that
we denote by Π the set of homomorphisms. A knowledge base KB = (F ,R) is
composed of a set of facts F and a set of rules R. A query q is an atom without
fresh or free variables. We consider the boolean query answering problem for
atomic ground queries that checks whether KB |= q (i.e. if R(F) |= q).

The approach in this paper relies on the notion of hypergraphs and hyper-
paths. We use the classical definitions of hyperedges and hypergraphs [10, 15]: a
directed hyperedge e ∈ E is an ordered pair e = (U,W) of non empty disjoint sub-
sets of vertices U,W ∈ 2V ; U is the tail of e while W is its head noted tail(e) and
head(e) respectively. A directed edge-labeled hypergraph is a tuple H = (V, E ,L)
where V is a set of vertices (or nodes), E ⊆ 2V×2V is a set of directed hyperedges
(or edges) and L : E → L is a labeling function that maps each edge e ∈ E with
an element of the labeling set L.

We define a path Ps/t of length k in a hypergraph H = (V, E) from a node
s ∈ V to a node t ∈ V as a sequence of hyperedges 〈e1, . . . , ek〉 such that:
s ∈ tail(e1), t ∈ head(ek), and ∀1 < i ≤ k, head(ei−1) ∩ tail(ei) 6= ∅. We say
that two nodes vi, vj ∈ V are connected if there is a path Pvi/vj from vi to
vj . In a hypergraph H = (V, E), a hyperpath ΘS/t from S ⊆ V to t ∈ V is a
hypergraph Hp = (Vp, Ep) satisfying the following conditions: (1) Ep ⊆ E , (2)
S ∪{t} ⊆ Vp =

⋃
e∈Ep(tail(e)∪head(e)), and (3) ∀v ∈ Vp, v is connected to t. A

hyperpath ΘS/t = (Vp, Ep) from S ⊆ V to t ∈ V is said to be minimal w.r.t. to
Vp and Ep if no other hyperpath Θ′S/t = (V ′p, E ′p) from S to t exits s.t.: V ′p ⊂ Vp
and E ′p ⊂ Ep. We denote by BS(v) = {e ∈ E|v ∈ head(e)} the backward star
(incoming edges) of a node v ∈ V.

In order to clearly define hypergraphs and how we draw them in this paper,
let us consider the following Example 2 that illustrates the notion of hypergraph
and hyperedge. In Figure 3 we give the equivalent bipartite depiction of the
hypergraph in Figure 2. For clarity reasons we will use the bipartite depiction
throughout the paper.

Example 2 Consider a hypergraph H = (V, E ,L) with V = {v1, v2, v3, v4, v5},
E = {ε1, ε2} such that ε1 = ({v1}, {v3, v4, v5}) and ε2 = ({v1, v2}, {v3}),
and L = { (ε1, labelε1), (ε2, labelε2) }. In this hypergraph we have tail(ε2) =
{v1, v2} (please note that tail(ε2) is depicted in the upper half of the hyperedge
ε2 in Figure 3). A path from v1 to v4 is a sequence of hyperedges Pv1/v4 =
〈ε2〉. A hyperpath from {v1} to v4 is the hypergraph Θ{v1}/v4 = (VΘ, EΘ) s.t.
VΘ = {v1, v3, v4, v5} and EΘ = {ε1}.

v1	

v4	
 v3	

v2	

v5	

ε2	

ε1	

Tail	
 of	
 ε1	

Tail	
 of	
 ε2	

Head	
 of	
 ε2	

Head	
 of	
 ε1	

Fig. 2. Hypergraph in Example 2

v1 v2

v3v4v5

Labelε2Labelε1

Fig. 3. Bipartite depiction of the hyper-
graph in Example 2

3 Constructing the Graph Of Atom Dependency

In this section we present the notion of Graph of Atom Dependency (GAD), then
we define the algorithms that can be used to construct it, and finally we explain
how chase variants can impact its construction. This hypergraph structure will
be used in order to construct all provenance paths as detailed in Section 4.

3.1 Provenance Paths

In order to define the notion of provenance path we first need to define the notion
of derivation of a set of facts with respect to a set of rules.

Definition 1 (Derivation of F with respect to R) Given a set of facts F ,
and a set of rules R, a derivation of F with respect to R is a (potentially
infinite) sequence D of Di s.t. Di is a tuple (Fi, Ri, πi) composed of a set of
facts Fi, a rule Ri = (Hi, Ci) and a homomorphism πi from Hi to Fi where:
D0 = (F , ∅, ∅), and Fi = α(Fi−1, Ri, πi).

In a tuple Di = (Fi, Ri, πi) we denote by fact(Di) = Fi, rule(Di) = Ri and
homorph(Di) = πi the facts, rule and homomorphism of Di respectively.

In this paper we are interested in the notion of provenance path of a query.
Given a query q and a set of facts F , the provenance of the query q from the
facts F with respect to a set of rules R is a finite derivation of F with respect
to R that ends with a set of atoms containing q.

Definition 2 (Provenance path from F to an atom F w.r.t. R) A prove-
nance path PP from the set of facts F to the atom F with respect to a set of
rules R is a finite derivation of F with respect to R s.t.: PP = 〈D0, . . . , Dn〉
and F ∈ fact(Dn).

Example 3 Let us consider a simple knowledge base KB = (F ,R) where F =
{p(a), r(a)}, R = {R1 : p(X) ∧ r(X) → s(X) ∧ t(X), R2 : t(X) → q(X),
R3 : p(X)→ u(X)}. A possible derivation of F w.r.t. R is:
〈(F , ∅, ∅) , (F1 = F ∪ {s(a), t(a)}, R1, π1 = {X → a}),
(F2 = F1 ∪ {u(a)}, R3, π2 = {X → a}),
(F3 = F2 ∪ {q(a)}, R2, π3 = {X → a})〉.

The provenance path from F to q(a) is the sequence
PPKB = 〈(F , ∅, ∅) , (F1 = F ∪ {s(a), t(a)}, R1, π1), (F1 ∪ {q(a)}, R2, π3)〉.

3.2 Graph of Atom Dependency (GAD)

A Graph of Atom Dependency (GAD) [11] is a hypergraph where the set of
nodes corresponds to the set of atoms and the set of labeled edges corresponds
to rule applications labeled by the rule and the corresponding homomorphisms.

Definition 3 (Graph of Atom Dependency) Given a knowledge base KB =
(F ,R), a Graph of Atom Dependency of KB is a directed edge-labeled hypergraph
that allows repeated edges HKB = (VKB, EKB,LKB) where:

– VKB is a set of ground atoms s.t. F ⊆ VKB (VKB contains F and all
generated atoms from F using R).

– EKB ⊆ 2VKB × 2VKB is a set of hyperedges.
– L : EKB → R×Π is a labeling function that maps each edge e ∈ EKB to a

tuple (R, π) where R ∈ R and π ∈ Π, s.t. head(e) = α(tail(e), R, π).

Example 4 Let us consider the knowledge base in Example 3, KB = (F ,R)
where F = {p(a), r(a)}, R = {R1 : p(X) ∧ r(X) → s(X) ∧ t(X), R2 : t(X) →
q(X), R3 : p(X) → u(X)}. Figure 4 describes the Graph of Atom Dependency
of the derivation in Example 3, that is GADKB(F ,R) = (VKB, EKB,LKB):

– VKB = {p(a), r(a), s(a), t(a), u(a), q(a)}
– EKB = {e1 = ({p(a), r(a)}, {s(a), t(a)}) , e2 = ({p(a)}, {u(a)}),
e3 = ({t(a)}, {q(a)}) }

– LKB = {(e1, (R1, π1)) , (e2, (R3, π2)) , (e3, (R2, π3))}

p(a) r(a)

s(a) t(a)u(a)

q(a)

(R1, π1)(R3, π2)

(R2, π3)

Fig. 4. Graph of Atom Dependency GADKB (Example 3)

3.3 Chase Variants for GAD

In this section we will describe how to build the Graph of Atom Dependency
using a breadth-first forward chaining algorithm (chase) [5]. We describe the
effects of different variants of the chase on the resulting GAD.

Different kinds of chase can be defined by using different derivation reducers.
A derivation reducer σ is a function that, given a derivation D of F w.r.t. R
returns a sequence of sets of facts such that ∀Di ∈ D, σ(Di) ⊆ fact(Di). We call
σ−chase a chase relying on some derivation reducer σ. It generates a possibly
infinite derivation σ−chase(F ,R) of D′i = (σ(Di), Ri, π). We say that a (possibly
infinite) derivation obtained by a σ−chase is complete when any further rule
application on that derivation would produce the same set of facts. Since we
place ourselves in a context where the chase is finite (for example, concrete
Finite Expansion Set classes for Skolem and Restricted chases [2]), then we can
extract all provenance paths without loss. This will be detailed below.

The algorithm to construct the GAD = (V, E) using a chase σ−chase(F ,R)
is straightforward (as described by Algorithm 1): for each rule application, if it

generates new facts (according to the chase derivation reducer), then a hyper-
edge between the involved atoms and the generated ones is added. If, on the
other hand, the generated facts are not considered new according to the chase
derivation reducer (these atoms already exists) then a procedure that handles
atoms that are considered the same is called. This procedure is specific to the
type of chase as each chase defines same atoms differently. The algorithm is poly-
nomial in the size of the saturated knowledge base. The call to the procedure
HandleSameAtoms is what differentiates a Graph of Atom Dependency from a
chase graph.

Algorithm 1 GAD construction with chase

Function ChaseGAD (σ−chase(F ,R))
input : σ−chase(F ,R) : the chase
output: GAD = (V, E) : Graph of Atom dependency w.r.t. F and R
V ← F ; E ← ∅; GAD ← (V, E);
foreach Di = (Fi, Ri = (Hi, Ci), πi) ∈ σ−chase(F ,R) do

if σ(Di) 6= (Fi−1) then
foreach v ∈ πi(Ci) and v /∈ (Fi−1) do

Add v to V;
end

end
HandleSameAtoms(Fi−1, Di, GAD);

end
return GAD;

In a chase graph, if the atom v has been generated before the atom w and w
is considered the same as v then w is removed along with the subtree rooted in w.
This is problematic as it removes some provenance paths as detailed in Example
5. In what follows we define the HandleSameAtoms algorithm for each different
kind of chase: oblivious, skolem and restricted.

Oblivious Chase The oblivious chase σobl− chase (also called naive chase)
[5] relies on the oblivious derivation reducer denoted by σobl and is defined as
follows: for any derivation D, σobl(D1) = F1 and ∀Di = (Fi, Ri, πi) ∈ D:

σobl(Di) =

{
Fi−1 ∪ πsafei (Ci) if ∀j < i, πj 6= πj or Rj 6= Ri

Fi−1 otherwise

Essentially, the oblivious chase ensures that a rule R is applied according to a
homomorphism π only if it has not already been applied according to the same
homomorphism. For this chase, two atoms are considered the same if they are
exactly the same (i.e. redundant). Due to the simplicity of the test performed by
the oblivious chase, the HandleSameAtoms procedure (defined in Algorithm 2)
for this chase simply ensures that for any rule application, if an edge representing
it has not already been created, then it creates it. This algorithm is polynomial
in the size of Fi−1.

Algorithm 2 Handle same atoms for Oblivious chase

Procedure HandleSameAtoms (Fi−1, Di, GAD)
input : Fi−1 : set of facts, Di(Fi,Ri = (Hi, Ci), πi) : element of the chase, GAD =

(V, E) : graph of atom dependency
if e = (πi(Hi), πi(Ci)) /∈ E then

if e does not create a cycle then
Add e to E ;

end

end

Example 5 Let us consider KB = (F ,R) from Example 1. A possible derivation
for the oblivious chase of F w.r.t. R is:
σobl−chase(F ,R) =< (F , ∅, ∅) ,
(F1 = F ∪ {r(a, Y1)}, R1, π1 = {X → a}),
(F2 = F1 ∪ {p(b)}, R2, π2 = {X → a,X → b}),
(F3 = F2 ∪ {r(b, Y2)}, R3, π3 = {X → b}),
(F4 = F3 ∪ {t(a)}, R4, π4 = {X → a, Y → Y1}),
(F5 = F4 ∪ {t(b)}, R4, π5 = {X → b, Y → Y2}),
(F6 = F5 ∪ {r(b, Y3)}, R1, π6{X → b}),
(F7 = F6, R4, π7 = {X → b, Y → Y3}) >

The chase graph and GAD resulting from the oblivious chase σobl−chase(F ,R)
are shown in Figure 1 and Figure 5 respectively. As described before, the chase
graph can only find one minimal provenance path PP1 for t(b) whereas the GAD
can find another minimal provenance path PP2 that the chase graph lost due to
the fact that the application of R4 on r(b, Y3) generates what the oblivious chase
considers a redundant atom:

– PP1 =< (F , ∅, ∅) , (F1 = F∪{r(b, Y2)}, R3, π3), (F2 = F1∪{t(b)}, R4, π5) >
– PP2 =< (F , ∅, ∅) , (F1 = F ∪{p(b)}, R2, π2), (F2 = F1∪{r(b, Y3)}, R3, π6),

(F3 = F2 ∪ {t(b)}, R4, π7) >.

p(a)q(b) s(b)

r(a, Y1)r(b, Y2) p(b)

r(b, Y3) t(a)t(b)

(R1, π1)(R3, π3) (R2, π2)

(R4, π5) (R4, π4)(R1, π6)

(R4, π7)

Fig. 5. Graph of atom dependency generated for Example 1

The following proposition states that for any rule application generated by
an oblivious chase, there exists an edge representing it in the generated GAD
using Algorithm 2, meaning that no rule application is lost.

Proposition 1 (GAD σobl−chase(F ,R) Completeness) Given a knowledge
base KB = (F ,R) and GAD = (V, E) generated by an oblivious chase, ∀Di =
(Fi, Ri = (Hi, Ci), πi) ∈ σobl−chase(F ,R),∃e ∈ E such that e = (πi(Hi), πi(Ci)).
Proof (Sketch). We prove this by construction, since for any Di = (Fi, Ri =
(Hi, Ci), πi) ∈ σobl−chase(F ,R),HandleSameAtoms is called (as per Algorithm
1), if e = (πi(Hi), πi(Ci)) /∈ E then it is added, otherwise, it already exists.

Skolem/Frontier Chase In the frontier chase σfr− chase two applications
α(F , R, π) and α(F , R, π′) of the same rule add the same atoms if they map fron-
tier variables identically (∀X ∈ fr(R), π(X) = π′(X)). The frontier derivation
reducer denoted by σfr is defined as follows: for any derivation D, σfr(D1) = F1

and ∀Di = (Fi, Ri, πi) ∈ D:

σfr(Di) =


Fi−1 ∪ πsafei (Ci) if ∀j < i, πj |fr(Rj)(Cj) 6= πi|fr(Ri)(Ci)

and Rj 6= Ri

Fi−1 otherwise

The frontier chase is equivalent to the skolem chase [14] that relies on a skolemi-
sation of the rules by replacing each occurrence of an existential variable Y with
a functional term fRY (X), where X = fr(R) are the frontier variables of R; the
oblivious chase is then run on skolemized rules. Frontier chase and skolem chase
yield isomorphic results [2], in the sense that they generate exactly the same
atoms, up to a bijective renaming of variables by skolem terms.

The oblivious chase is strictly ‘weaker’ than the frontier chase [2] meaning
that if σobl−chase(F ,R) is finite then σfr−chase(F ,R) is also finite. In the
frontier chase, two atoms are considered the same if they have the same constants
(and possibly different freshly generated constants). The HandleSameAtoms
procedure (defined in Algorithm 3) for the frontier chase is more general than the
one for the oblivious chase and might result in different GADs. This algorithm
is polynomial in the size of the Fi−1.

Algorithm 3 Handle same atoms for Frontier chase

Procedure HandleSameAtoms (Fi−1, Di, GAD)
input : Fi−1 : set of facts, Di(Fi,Ri = (Hi, Ci), πi) : element of the chase, GAD =

(V, E) : graph of atom dependency
if ∃j, πj , Rj s.t. j < i and πj |fr(Rj)(Cj) = πi|fr(Ri)(Ci) then

if e = (πi(Hi), πj(Ci)) /∈ E and does not create a cycle then
Add e to E ;

end

else
if e = (πi(Hi), πi(Ci)) /∈ E and does not create a cycle then

Add e to E ;
end

end

Similarly to Prop. 1, Proposition 2 states that no rule application is lost,
even if it does not generate new atoms, it is still added to the edges of the GAD.

Proposition 2 (GAD σfr−chase(F ,R) Completeness) Given a knowledge
base KB = (F ,R) and GAD = (V, E) generated by a frontier chase, ∀Di =
(Fi, Ri = (Hi, Ci), πi) ∈ σfr−chase(F ,R),∃e ∈ E such that e = (πi(Hi), πi(Ci))
or e = (πi(Hi), πj(Ci)) where πj and πi map frontier variables of R identically.

Proposition 3 expresses the structural link between GADs obtained thanks
to oblivious and frontier chases.

Proposition 3 Let GADσobl
= (Vσobl

, Eσobl
) and GADσfr

= (Vσfr
, Eσfr

) be
two Graphs of Atom Dependency for (F ,R) generated by a complete oblivious
chase and a complete frontier chase. If GADσobl

and GADσfr
are finite, then

|Vσfr
| ≤ |Vσobl

| and |Eσobl
| = |Eσfr

|.

Proof (Sketch). Given that frontier is stronger than the oblivious chase [2], some
generated atoms are judged redundant by the frontier chase while considered new
by the oblivious one, thus |Vσfr

| ≤ |Vσobl
|. Furthermore, since rule applications

are not lost given Propositions 1 and 2, then |Eσobl
| = |Eσfr

|.

Restricted chase The restricted chase σres−chase (also called standard chase)
[8] uses the restricted derivation reducer denoted by σres and defined as follows:
for any derivation D, σres(D1) = F1 and ∀Di = (Fi, Ri, πi) ∈ D:

σres(Di) =

{
Fi−1 ∪ πsafei (Ci) if Fi−1 2 πsafei (Ci)

Fi−1 otherwise

The restricted chase relies on the notion of useful homomorphism. For a rule
R = (H, C) and a set of facts F , a homomorphism π from H to F is said to be
useful if it cannot be extended to a homomorphism from H ∪ C to F , meaning
that πsafe(H ∪C) does not exist in F . The frontier chase is strictly weaker than
the restricted chase, thus, the HandleSameAtoms procedure (defined in Algo-
rithm 4) for the restricted chase is more general than the one for the frontier
chase and might result in different GADs (as described in Example 6). Further-
more, the restricted chase checks only for local redundancy, meaning that the
order in which rules are applied affects the resulting set of atoms as described
in Example 6. This algorithm is polynomial in the size of the Fi−1.

Similarly to Prop. 1 and 2, no rule application is lost for the restricted chase.

Proposition 4 (GAD σres−chase(F ,R) Completeness) Given a knowledge
base KB = (F ,R) and GAD = (V, E) generated by a restricted chase, ∀Di =
(Fi, Ri = (Hi, Ci), πi) ∈ σres−chase(F ,R),∃e ∈ E such that e = (πi(Hi), πi(Ci))
or e = (π′(Hi), π′(Ci)) where π′ is a homomorphism such that π′(Hi ∪ Ci) ⊆
Fi−1.

Algorithm 4 Handle same atoms for Restricted chase

Procedure HandleSameAtoms (Fi−1, Di, GAD)
input : Fi−1 : set of facts, Di(Fi,Ri = (Hi, Ci), πi) : element of the chase, GAD =

(V, E) : graph of atom dependency
if ∃π′ s.t. π′(Hi ∪ Ci) ⊆ Fi−1 then

if e = (π′(Hi), π′(Ci)) /∈ E and does not create a cycle then
Add e to E ;

end

else
if e = (πi(Hi), πi(Ci)) does not create a cycle then

Add e to E ;
end

end

Example 6 We will consider the knowledge base KB = (F ,R) such that F =
{p(a)} and the set of rules R = {R1 : p(X) → r(X,Y) ∧ q(Y), R2 : p(X) →
r(X,Y), R3 : r(X,Y) → q(Y)}. The GAD generated by the frontier chase for
this example is exactly the same as the one generated by the oblivious chase
regardless of the order in which the rules are applied at each breadth-first deriva-
tion. On the other hand, the order of rule applications affects the GAD generated
by a restricted chase as shown in Figures 6 and 7.

Let GADσres
be the Graph of Atom Dependency generated by first applying

the rule R1: α(F , R1, π1) gives {r(a, Y1), q(Y1)}, which are considered new as
these atoms are not contained in F (F 2 {r(a, Y1), q(Y1)}). Hence F2 = F ∪
{r(a, Y1), q(Y1)}.

Then R2 is applied: α(F2, R2, π2) generates {r(a, Y2)}, which is considered
redundant as the chase maps it to {r(a, Y1)} (the fresh variable Y2 is mapped to
the fresh variable Y1). We have F � {r(a, Y2)}, so it is not added and the chase
continues.

However, in GAD′σres
, the rule R1 is applied after R2. First applying R2

(α(F , R2, π1)) gives r(a, Y1) which is new as F 2 {r(a, Y1)}. So F2 = F ∪
{r(a, Y1)}.

Then R1 is applied (α(F2, R1, π2)), generating {r(a, Y2), q(Y2)} which are
considered new as this set of atoms cannot be mapped to any existing atoms (Y2
cannot be mapped to Y1 as there is no q(Y1)). We have F2 2 {r(a, Y2), q(Y2)},
so F3 = F2 ∪ {r(a, Y2), q(Y2)}.

4 Obtaining Provenance Paths

The intuition behind the use of the GAD is that, for a given GAD and a given
query, there is a one-to-one mapping, up to provenance path equivalence, between
the set of hyperpaths to q and the set of provenance paths to q. Therefore,
once the GAD constructed (by considering the different chase mechanisms) the
problem of obtaining all provenance paths can be transformed into the problem
of generating all hyperpaths of q in the GAD.

p(a)

r(a, Y1)

q(Y1)

(R1, π1)(R2, π2)

(R3, π3)

Fig. 6. GADσres (Example 6) where R1

is applied before R2

p(a)

r(a, Y1) r(a, Y2)

q(Y2)

(R2, π1) (R1, π2)

(R3, π3) (R3, π4)

Fig. 7. GAD′σres (Example 6) where R2

is applied before R1

Let us first define the notion of provenance path minimality and equiva-
lence. We recall that a provenance path is a sequence PP of Di such that
Di is a tuple (Fi, Ri, πi). We say that two provenance paths PP and PP ′
from a set of facts F to q are equivalent iff they have the same set of atoms
and the same set of applied rules (along with their respective homomorphisms)
i.e.
⋃
D∈PP fact(D) =

⋃
D′∈PP′ fact(D′) and

⋃
D∈PP(rule(D), homorph(D)) =⋃

D′∈PP′(rule(D′), homorph(D′)). We denote that PP and PP ′ are equivalent
by PP ' PP ′. Please note that ' is an equivalence relation (as it is obviously
reflexive, symmetric and transitive). Therefore it induces a partition of the set
of all provenance paths. A provenance path PP from a set of facts F to q is said
to be minimal w.r.t. a set of rules R and homomorphisms Π if no other prove-
nance path PP ′ from F to q exits s.t.

⋃
D′∈PP′ fact(D′) ⊂

⋃
D∈PP fact(D)

and
⋃
D′∈PP′(rule(D′), homorph(D′)) ⊂

⋃
D∈PP(rule(D), homorph(D)). The

following property trivially holds.

Proposition 5 If a provenance path PP is equivalent to another minimal prove-
nance path PP ′ then PP is minimal.

Provenance paths are constructed from the hyperpaths of the GAD. The fol-
lowing proposition shows that for every hyperpath of the GAD we can construct
an equivalent provenance path. This will ensure the soundness of the hyperpath
generation with respect to the problem of generating all provenance paths.

Proposition 6 (Hyperpath Soundness w.r.t. a Provenance Path) Let
GAD be a Graph of Atom Dependency generated by applying a σ−chase(F ,R)
on a set of facts F w.r.t. a set of rules R. If there exists a hyperpath ΘF/t in
GAD from F to a fact t ∈ fact(D) s.t. D ∈ σ−chase(F ,R), then there exist a
provenance path PP from F to t.

Proof (Sketch). Since GAD is acyclic by definition, then ΘF/t is acyclic. If ΘF/t
is acyclic then a valid ordering of its hyperedges is possible [10]. Based on this
valid ordering we can then generate the sequence in the provenance path.

Please note that for a given GAD and for a given hyperpath the provenance
paths that can be constructed from ΘF/t are equivalent (i.e. they belong to the
same class of ').

Proposition 7 (Hyperpath Soundness) Given the GAD for the knowledge
base KB = (F ,R) and a hyperpath ΘF/t in GAD from F to a fact t ∈ fact(D)
s.t. D ∈ σ−chase(F ,R), if two provenance paths PP1 and PP2 are generated
from ΘF/t then PP1 ' PP2.

Proof (Sketch). Since GAD is acyclic by definition, then ΘF/t is acyclic. If ΘF/t
is acyclic then a valid ordering of its hyperedges is possible. In fact, ΘF/t can
have different valid orderings of its hyperedges. Provenance paths generated
from these valid orderings contain the same facts and rule applications since all
ordering are for the same hyperedges. Thus, the generated provenance paths are
equivalent.

Let us now show that the completeness holds. More precisely we can show
that for a given knowledge base and a minimal provenance path there exists an
equivalent hyperpath in the GAD associated to the knowledge base.

Proposition 8 (Hyperpath Completeness) Given a knowledge base KB =
(F ,R), a query q and PP a minimal provenance path for q in KB, there exists
a hyperpath ΘF/q in the GAD of KB.

Proof (Sketch). We prove this by contradiction. Let us suppose that there exists
a minimal provenance path PP for q in KB such that no hyperpath ΘF/q can
be constructed in the associated GAD. This means that a rule application in
the provenance path is not present in the hyperpath. This means that in the
construction of the GAD this rule application has not been considered. This
is impossible given the results of the completeness of GAD construction using
different chase variants (Propositions 1, 2 and 4).

Similar to above, for a given knowledge base and a class of ' minimal prove-
nance paths there exists a hyperpath in the associated GAD. The above propo-
sitions show the soundness and completeness of minimal provenance path gen-
eration with respect to hyperpath finding in a GAD.

Please note that the GAD construction is chase sensitive. For each chase
(oblivious, frontier and restricted) a different GAD can be constructed, as shown
in the previous section. For a given knowledge base the oblivious-generated GAD
can be infinite, and for the same knowledge base the frontier -generated GAD is
finite. The same result shows for frontier chase and restricted chase. Therefore if
the GAD is finite then, for any of the above chase methods, for a given query we
can generate all minimal provenance paths supporting this query. To construct
all non-equivalent minimal provenance paths from a set of facts S to a fact t
we only need to find all minimal hyperpaths from S to t. For this we need to
compute all paths (sequence of hyperedges) from S to t. The recursive function
FP defined in Algorithm 5 computes all paths that connect a subset of F to

an atom t using backward branching; we then use these paths in the procedure
FindAllHyperpaths in order to construct the hyperpaths. Please note that Al-
gorithm 5 is based on a modification of [15] to take into account hyperedges
rather than hyperarcs. The modification does not affect its complexity which is
polynomial in the size of the nodes of the hypergraph.

Algorithm 5 Find Paths & Hyperpaths

Function FP (S, t)
input : S : source nodes, t: target node
output: paths: set of all paths between S and t
paths ← {};
if t ∈ S then

return paths;
end
if BS(t) is equal to ∅ then

return null;
end
foreach e ∈ BS(t) do

path ← {e};
tmp ← {};
foreach v ∈ tail(e) do

tmp ← FP (S, v) × tmp;
end
paths ← paths ∪ (path × tmp);

end
return paths;

Procedure FindAllHyperpaths (S, t)
input : S : source nodes, t: target node
output: hyperpaths: set of all hyperpaths between S and t
hyperpaths ← {}; paths ← FP (S, t);
foreach path ∈paths do
V ← S;
E ← path;
foreach e ∈ E do

Add head(e) and tail(e) to V;
end
Add H = (V, E) to hyperpaths;

end

5 Discussion

In this paper we studied the problem of generating all minimal provenance paths
for an atomic ground query in the context of a knowledge base expressed using
existential rules. As we have shown, this problem can be tricky as it was implic-
itly assumed that obtaining all provenance paths can be reduced to obtaining
one path. However, given the restriction test of different chase, provenance path
loss can occur in certain cases depending on the order in which rules are applied.
This provenance path loss can be critical in applications such as defeasible rea-
soning [11]. To resolve this problem, we extended the notion of a graph of atom

dependency, and showed how the chase choice impacts its construction. We then
used this graph to generate all minimal provenance paths for a given atom.

For future work directions we aim to define an optimized algorithm for con-
junctive atomic queries. The ideas developed in this paper can be used to tackle
this issue however performance can optimized when paths intersect. We also
plan to consider the core chase, and investigate the use of the GAD in the back-
ward chaining reasoning; more precisely, we plan to study if this could lead to a
beneficial combination of backward and forward chaining.

References

1. T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D. Srivastava. Explain-
ing program execution in deductive systems. In Deductive and Object-Oriented
Databases, pages 101–119. Springer, 1993.

2. J.-F. Baget, F. Garreau, M.-L. Mugnier, and S. Rocher. Extending acyclicity
notions for existential rules. In ECAI, pages 39–44, 2014.

3. P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated
databases. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 539–550. ACM, 2006.

4. R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. A theoretical framework for the
declarative debugging of datalog programs. In Semantics in Data and Knowledge
Bases, pages 143–159. Springer, 2008.

5. A. Calı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. Proc. of KR, pages 70–80, 2008.

6. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. Web Semantics: Science, Services and
Agents on the World Wide Web, 14:57–83, 2012.

7. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog
(and never dared to ask). Knowledge and Data Engineering, IEEE Transactions
on, 1(1):146–166, 1989.

8. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theoretical Computer Science, 336(1):89–124, 2005.

9. W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in
databases: An overview. AI magazine, 13(3):57, 1992.

10. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and
applications. Discrete applied mathematics, 42(2):177–201, 1993.

11. A. Hecham, M. Croitoru, and P. Bisquert. Argumentation-based defeasible rea-
soning for existential rules. In Proceedings of AAMAS ’17, 2017. To appear.

12. R. Ikeda and J. Widom. Data lineage: A survey. 2009.
13. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-

ming. Handbook of logic in artificial intelligence and logic programming, 5:235–324,
1998.

14. B. Marnette. Generalized schema-mappings: from termination to tractability. In
Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 13–22. ACM, 2009.

15. S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. In Combina-
torial Optimization, pages 258–271. Springer, 1989.

16. C. Ré and D. Suciu. Approximate lineage for probabilistic databases. Proceedings
of the VLDB Endowment, 1(1):797–808, 2008.

17. J. Widom. Trio: A system for data, uncertainty, and lineage. Managing and Mining
Uncertain Data, 35, 2008.

