
A Decidable Confluence Test for Cognitive
Models in ACT-R

Daniel Gall and Thom Frühwirth

Institute of Software Engineering and Programming Languages, Ulm University,
89069 Ulm, Germany,

{daniel.gall,thom.fruehwirth}@uni-ulm.de

Abstract. Computational cognitive modeling investigates human cogni-
tion by building detailed computational models for cognitive processes.
Adaptive Control of Thought – Rational (ACT-R) is a rule-based cog-
nitive architecture that offers a widely employed framework to build
such models. There is a sound and complete embedding of ACT-R in
Constraint Handling Rules (CHR). Therefore analysis techniques from
CHR can be used to reason about computational properties of ACT-R
models. For example, confluence is the property that a program yields the
same result for the same input regardless of the rules that are applied.
In ACT-R models, there are often cognitive processes that should always
yield the same result while others e.g. implement strategies to solve a
problem that could yield different results. In this paper, a decidable
confluence criterion for ACT-R is presented. It allows to identify ACT-R
rules that are not confluent. Thereby, the modeler can check if his model
has the desired behavior.
The sound and complete translation of ACT-R to CHR from prior work is
used to come up with a suitable invariant-based confluence criterion from
the CHR literature. Proper invariants for translated ACT-R models are
identified and proven to be decidable. The presented method coincides
with confluence of the original ACT-R models.

Keywords: computational cognitive modeling, confluence, invariants,
ACT-R, Constraint Handling Rules

1 Introduction

Computational cognitive modeling is a research field at the interface of cognitive
sciences and computer science. It tries to explain human cognition by building
detailed computational models of cognitive processes [15]. To support the model-
ing process, cognitive architectures like Adaptive Control of Thought – Rational
(ACT-R) provide the ability to create models of specific cognitive tasks by offering
representational formats together with reasoning and learning mechanisms to
facilitate modeling [16].

ACT-R is widely employed in the field of computational cognitive modeling.
It is defined as a production rule system that offers advanced conflict resolution
mechanisms to model learning and competition of different strategies for problem

ar
X

iv
:1

70
5.

08
39

2v
1

 [
cs

.L
O

]
 2

3
M

ay
 2

01
7

2 D. Gall, T. Frühwirth

solving. Therefore, many ACT-R models are highly non-deterministic to resemble
the applicability of more than one strategy in many situations. The strategy is
chosen depending on information learned from situations in the past.

Confluence is the property of a program that regardless of the order its rules
are applied, they finally yield the same result. By identifying the rules that lead
to non-confluence, model quality can be improved: It allows to check if the model
has the desired behavior regarding competing strategies and e.g. identify rules
that interfere with each other unintentionally.

In this paper, we present a decidable confluence test for the abstract operational
semantics of ACT-R using confluence analysis tools for CHR. In prior work,
we presented a sound and complete embedding of ACT-R in CHR [9,8]. An
invariant-based confluence test for CHR [6,11] is used to decide confluence of the
translated models with invariants on CHR states that come from the abstract
operational semantics of ACT-R. The confluence test identifies the rules that lead
to non-confluence supporting the decision if a model has the desired behavior
regarding competing strategies.

First the preliminaries are recapitulated in section 2. The main section 3
describes the confluence criterion for ACT-R models. For this purpose, the
invariant-based confluence test for CHR is introduced briefly (section 3.1). Then,
the ACT-R invariant is defined and a decidable criterion for the invariant is given
(section 3.2). It is shown that the ACT-R invariant is maintained in the translation.
The theoretical foundations to apply the CHR invariant-based confluence test to
ACT-R models are derived resulting in a confluence criterion for terminating
ACT-R models (section 3.3). An example is given in section 3.4.

2 Preliminaries

2.1 Confluence
Confluence is the property of a state transition system that same inputs yield
the same results regardless of which rules are applied.
Definition 1 (joinability and confluence [7]). In a state transition system
(S, 7→) with states S and a transition relation 7→: S × S with reflexive transitive
closure 7→∗, two states σ1, σ2 ∈ S are joinable, denoted as σ1 ↓ σ2, if there exists a
state σ′ such that σ1 7→∗ σ′ and σ2 7→∗ σ′. A state transition system is confluent,
if for all states σ, σ1, σ2 : (σ 7→∗ σ1) ∧ (σ 7→∗ σ2)→ (σ1 ↓ σ2).
Hence, a program is confluent if for all states that lead to different successor states,
those states are joinable. A program is locally confluent, if (σ 7→ σ1)∧ (σ 7→ σ2) in
one transition step and σ1 and σ2 are joinable. It can be shown that for all state
transition systems local confluence and confluence are equivalent [7]. Figure 1
illustrates (local) confluence.

2.2 Adaptive Control of Thought – Rational (ACT-R)
In this section, ACT-R is introduced briefly. An extensive introduction to the
theory can be found in [3,16]. ACT-R is a modular production rule system.

A Decidable Confluence Test for Cognitive Models in ACT-R 3

σ

σ1 σ2

σ′

∗ ∗

∗ ∗

σ

σ1 σ2

σ′∗ ∗

Fig. 1. Confluence and local confluence.

Its data elements are so-called chunks. A chunk has a type and a set of slots
(determined by the type) that are connected to other chunks. Hence, human
declarative knowledge is represented in ACT-R as a network of chunks. Figure 2
shows an example chunk network that models the representation of an order over
natural numbers.

a1 2 b 3
first

second
first

second

Fig. 2. A chunk network that represents the order of natural numbers 1, 2, 3. The
chunks are represented by nodes, the slots by labeled edges. The labels of the nodes are
chunk identifiers. Chunks 1, 2 and 3 are of type number that has no slots. Chunks a
and b are of type order that has a first and a second slot.

ACT-R’s modules are responsible for different cognitive features. For instance,
the declarative knowledge (represented as a chunk network) can be found in the
declarative module. Each module has a set of associated buffers that contain at
most one chunk. The heart of ACT-R is the procedural system that consists of a
set of production rules. Those rules only have access to the contents of the buffers.
They match the contents of the buffer, i.e. they check if the chunks of particular
buffers have certain values. If a rule is applicable, it can modify particular slots
of the chunk in the buffer, request the module to put a whole new chunk in
its buffer or clear a buffer. Modifications and clearings are available directly
for the production rule system, whereas requests can take some time while the
procedural system is continuing work in parallel.

Syntax of ACT-R We use our simplified syntax in form of first-order terms
that can be derived directly from the original syntax [9,8]. The syntax of ACT-R
is defined over two disjoint sets of constant symbols C and variable symbols V.
An ACT-R model consists of a set of types T with type definitions and a set of
rules Σ.

A production rule has the form L ⇒ R where L is a finite set of buffer tests.
A buffer test is a first-order term of the form =(b, t,P) where the buffer b ∈ C,
the type t ∈ C and P ⊆ C × (C ∪ V) is a set of slot-value pairs (s, v) where s ∈ C
and v ∈ C ∪V . This means that only the values in the slot-value pairs can consist
of both constants and variables.

4 D. Gall, T. Frühwirth

The right-hand side R ⊆ A of a rule is a finite set of actions where A =
{a(b, t, P) | a ∈ A, b ∈ C, t ∈ C and P ⊆ C × (C ∪ V)}. Hence, an action is a
term of the form a(b, t, P) where the functor a of the action is in A, the set
of action symbols, the first argument b is a constant (denoting a buffer), the
second argument is a constant t denoting a type, and the last argument is a set
of slot-value pairs, i.e. a pair of a constant and a constant or variable. Usually,
the action symbols are defined as A := {=,+,−} for modifications, requests and
clearings respectively. Only one action per buffer is allowed, i.e. if a(b, t, P) ∈ R
and a′(b′, t′, P ′) ∈ R, then b 6= b′ [4].

We assume the rules to be in so-called set normal form that requires the slot
tests of a rule to be total and unique with respect to the type of the test. This
means that each slot defined by the type of the tested chunk must appear at
most once in the set of slot-value pairs. Every rule can be transformed to set
normal form [8].

Operational Semantics of ACT-R For the understanding of this paper, it is
sufficient to define ACT-R states and rules formally. The formal definition of the
operational semantics can be found in [9,8]. We define the operational semantics
of ACT-R through our CHR translation that has been first presented in [9] and
in its most current form in [8]. Since the translation is sound and complete, we
omit the formal definition of the ACT-R semantics here, since it would only
distract from the contribution of this paper.
Definition 2 (chunk types, chunk stores). A typing function τ : T → 2C
maps each type from the set T ⊆ C to a finite set of allowed slot names. A
chunk store ∆ is a multi-set of tuples (t, val) where t ∈ T is a chunk type and
val : τ(t)→ ∆ is a function that maps each slot of the chunk (determined by the
type t) to another chunk. Each chunk store ∆ has a bijective identifier function
id∆ : ∆→ C that maps each chunk of the multi-set a unique identifier.

Additional information represents the inner state of the modules and so-called
sub-symbolic information used in ACT-R implementations to model cognitive
features like forgetting, latencies and conflict resolution. The information is
expressed as a conjunction of predicates from first-order logic. We now define
ACT-R states as follows:
Definition 3 (cognitive state, ACT-R state). A cognitive state γ is a func-
tion B→ ∆×R+

0 that maps each buffer to a chunk and a delay. The delay decides
at which point in time the chunk in the buffer is available to the production system.
A delay d > 0 indicates that the chunk is not yet available to the production
system. This implements delays of the processing of requests.

An ACT-R state is a tuple 〈∆; γ; υ〉 where γ is a cognitive state and υ is a
multi-set of ground, atomic first order predicates (called additional information).

2.3 Constraint Handling Rules (CHR)
In this section, syntax and semantics of CHR are summarized briefly. For an
extensive introduction to CHR, its semantics, analysis and applications, we refer

A Decidable Confluence Test for Cognitive Models in ACT-R 5

to [7]. We use the latest definition of the state transition system of CHR that is
based on state equivalence [12]. The definitions from those canonical sources are
now reproduced.

The syntax of CHR is defined over a set of variables, a set of function symbols
with arities and a set of predicate symbols with arities that is disjointly composed
of CHR constraint symbols and built-in constraint symbols. The set of constraint
symbols contains at least the symbols = /2, >/0 and ⊥/0. In this paper, we
allow the terms to be sets of terms as they can be simply represented as lists
in implementations. For a constraint symbol c/n and terms t1, . . . , tn over the
variables and function symbols, c(t1, . . . , tn) is called a CHR constraint or a
built-in constraint, depending on the constraint symbol. We now define the notion
of CHR states.

Definition 4 (CHR state). A CHR state is a tuple 〈G;C;V〉 where the goal
G is a multi-set of constraints, the built-in constraint store C is a conjunction
of built-in constraints and V is a set of global variables.

All variables occurring in a state that are not global are called local variables.

CHR states can be modified by rules that together form a CHR program. For
the sake of brevity, we only consider simplification rules, as they are the only
type of rules needed for the understanding of the paper.

Definition 5 (CHR program). A CHR program is a finite set of rules of the
form r @ H ⇔ G | Bc, Bb where r is an optional rule name, the heads H are
multi-sets of CHR constraints, the guard G is a conjunction of built-in constraints
and the body is a multi-set of CHR constraints Bc and a conjunction of built-in
constraints Bb. If G is empty, it is interpreted as the built-in constraint >.

Informally, a rule is applicable, if the head matches constraints from the store
G and the guard holds, i.e. is a consequence of the built-in constraints C. In that
case, the constraints matching H are removed and the constraints from Bc, Bb
and G are added.

In the context of the operational semantics, we assume a constraint theory
CT for the interpretation of the built-in constraints. We define an equivalence
relation over CHR states.

Definition 6 (CHR state equivalence [11,12]). Let ρ := 〈G;C;V〉 and ρ′ :=
〈G′;C′;V′〉 be CHR states with local variables ȳ, ȳ′ that have been renamed apart.
ρ ≡ ρ′ if and only if

CT |= ∀(C→ ∃ȳ′.((G = G′) ∧ C′)) ∧ ∀(C′ → ∃ȳ.((G = G′) ∧ C))

where ∀F denotes the universal closure of formula F .

The operational semantics is now defined by the following transition scheme
over equivalence classes of CHR states i.e. [ρ] := {ρ′ | ρ′ ≡ ρ}

Definition 7 (operational semantics of CHR [11,12]). For a CHR program
the state transition system over CHR states and the rule transition relation 7→ is

6 D. Gall, T. Frühwirth

defined as the following transition scheme:
r @ H ⇔ G | Bc, Bb

[〈H]G;G ∧ C;V〉] 7→r [〈Bc]G;G ∧Bb ∧ C;V〉]
Thereby, r is a variant of a rule in the program such that its local variables are
disjoint from the variables occurring in the representative of the pre-transition
state. We may just write 7→ instead of 7→r if the rule r is clear from the context.

2.4 Translation of ACT-R to CHR
We briefly summarize the translation of ACT-R models to CHR first presented
in [9,8]. Since the translation is proven to be sound and complete [8], we explain
the operational semantics of ACT-R with the help of the translation.

Definition 8 (translation of abstract states). An abstract ACT-R state
σ := 〈∆; γ; υ〉 can be translated to the following CHR state:

〈{delta({chunk(id∆(c), t, JvalK) | c ∈ ∆ ∧ c = (t, val)})}
] {gamma(b, id∆(c), d) | b ∈ B ∧ γ(b) = (c, d) ∧ c = (t, val)}; υ; ∅〉

Thereby, JvalK denotes the explicit relational notation of the function val as a set
of tuples. We denote the translation of an ACT-R state σ by chr(σ).

The chunk store is represented by a delta constraint that contains a set of
chunk/3 terms representing the chunks with their identifiers, types and slot-value
pairs.

For every buffer of the given architecture, there is a constraint gamma with
buffer name, chunk identifier and delay. Since γ is a total function, every buffer
has exactly one gamma constraint. Additional information is represented directly
as built-in constraints.

Definition 9 (translation of rules). Let cogstate(B) := {(b, Cb) | b ∈ B} be
the relation that connects each buffer with a variable Cb. An ACT-R rule in
set-normal form r := L ⇒ R can be translated to a CHR rule of the form:

r @ delta(D)] {gamma(b, Cb, Eb) | b ∈ B}
⇔ ∧

=(b,t,P)∈L

(chunk(Cb, t, P) in D ∧ Eb=0) |

{delta(D∗)}] {gamma(b, C∗∗b , resdelay(b)) | b ∈ B ∧ a(b, t, P) ∈ R}
] {gamma(b, Cb, Eb) | b ∈ B ∧ a(b, t, P) /∈ R},∧

α=a(b,t,P)∈R

action(α,D, cogstate(B), D∗b , C∗b , E∗b)

∧ merge([D∗b : a(b, t, P) ∈ R], D′)} ∧merge([D,D′], D∗)]

∧
∧

a(b,t,P)∈R

map(D,D′, C∗b , C∗∗b).

A Decidable Confluence Test for Cognitive Models in ACT-R 7

Note that ACT-R constants and variables from C and V are implicitly translated
to corresponding CHR variables.

We denote the translation of a rule r by chr(r) and the translation of an
ACT-R model Σ that is a set of ACT-R rules by chr(Σ). Thereby, chr(Σ) :=
{chr(r) | r ∈ Σ}.

The rule removes the delta and all gamma constraints from the store. It binds
the translation of the chunk store ∆ to the variable D. For all buffers b, each
variable Cb is bound to the chunk identifier of the chunk in b, i.e. Cb = id∆(γ(b)).
The guard now performs all buffer tests =(b, t,P) from the ACT-R rule by testing
if a chunk term chunk(Cb, t, P) is in the translated chunk store D that has type
t and matches all slot-value pairs in P . The ACT-R variables in P are bound to
the values in the state.

In the body, the built-in constraints action perform the actions of the ACT-R
rule as defined by the architecture. An action constraint gets the action term α
of the rule (with all variables bound through the matching), the original chunk
store and a representation of the cognitive state. Since the Cb have been bound
in the matching, it consists of tuples that connect each buffer b with the chunk
identifier it holds.

The action built-in constraint returns a chunk store D∗b , a chunk identifier
C∗b that represents the resulting chunk from the request and a result delay E∗b .
The merge constraints merge the chunk stores of all actions with the original
store D to the store D∗. The result of merging two chunk stores can vary from
implementation to implementation, but has to obey some rules defined in [8].
One can think of it as a multi-set union. As chunk identifiers might change in
the merging process, the built-in map maps the chunk identifier of the results to
the corresponding identifiers in the merged store.

Then, a new ∆ constraint with the resulting chunk store D∗ is added as well
as the gamma constraints. If the buffer b has been part of an action, then it is
altered such that it holds the resulting chunk identifier C∗∗b after the merge and
the resulting delay E∗b . If it was not part of an action, its parameters Cb (the
chunk identifier) and Eb (the delay) remain unchanged. This is possible, since
the chunk merging guarantees that chunks in the original chunk store D the
constraint gamma is referring to, are also part of the merged chunk store D∗.

Example 1 (counting). We now give an example ACT-R rule to explain its
operational semantics. A classical example in ACT-R is counting by recalling
count order facts. The model uses chunks of type order as illustrated in figure 2.
An order chunk has a first and a second slot that link two chunks representing
natural numbers in the right order. Additionally, we define a second chunk type
g that memorizes the current number in the counting process. The main rule is
defined as:

=(goal, g, {(current,X)}), =(retrieval, order , {(first,X), (second,Y)})
⇒ =(goal, g, {(current,Y)}), +(retrieval, order , {(first,Y)})

8 D. Gall, T. Frühwirth

The left-hand side tests if there is a chunk of type g in the goal buffer. The value
of its current slot is bound to variable X by the matching. The second buffer
test checks the retrieval buffer for a chunk of type order that has X in its first
slot. The value of the second slot is bound to variable Y .

The right-hand side modifies the chunk in the goal buffer such that Y is
written to the current slot. The second action requests the retrieval buffer for
an order chunk that has Y in its first slot. As soon as the requested chunk is
available, the program can apply the rule again. The head and guard of the CHR
translation H ⇔ G | B of the rule is

H := {delta(D), gamma(g, Cg, 0), gamma(retrieval, Cr, 0)},
G := chunk(Cg, g, {(current, X)}) in D ∧

chunk(Cr, order , {(first, X), (second, Y)}) in D.

3 Confluence Criterion for ACT-R

This section is the main contribution of the paper. We gradually develop a
decidable criterion for confluence of ACT-R using the CHR embedding.

Therefor, a brief introduction to invariant-based confluence analysis for CHR
is given that extends the standard confluence criterion to handle invariants
that must hold for the regarded states. We then define the ACT-R invariant A
that is satisfied if a CHR state has been derived from an ACT-R state. Then a
decidable criterion for the invariant is presented and it is shown that the invariant
is maintained in translated ACT-R models. It is shown how invariant-based
confluence analysis for CHR can be applied to decide ACT-R confluence.

3.1 Invariant-based Confluence

We now give a brief introduction to invariant-based confluence analysis for CHR.
The first results stem from [6]. We summarize the main theorem of the improved
version that can be found in [11, section 14].

The main idea of the confluence criterion is that heads and guards of the
rules are overlapped to an overlap state. Then both overlapping rules are applied
to this state forming a critical pair that is checked for joinability for all possible
overlap states. An overlap is defined as follows:
Definition 10 (overlap and critical pairs [7,11]). For any two (not neces-
sarily different) rules of a CHR program with renamed apart variables of the form
r @ H ⇔ G | Bc, Bb and r′ @ H ′ ⇔ G′ | B′c, B′b, let O ⊆ H, O′ ⊆ H ′ such that
for B := (O = O′) ∧G ∧G′ it holds that CT |= ∃.B and O 6= ∅, then the state

σ = 〈R]R′]O;B;V〉

is called an overlap of r and r′ where R := H \ O, R′ := H ′ \ O′ and V is the
set of all variables occurring in heads and guards of both rules. The pair of states
σ1 := 〈R′]Bc;B ∧Bb;V〉 and σ2 := 〈R]B′c;B ∧B′b;V〉 is a critical pair of the
overlap σ.

A Decidable Confluence Test for Cognitive Models in ACT-R 9

CHR has the monotonicity property. It states that all rules that are applicable
in a state, are also applicable in any larger state. This idea can be exploited
to reason from joinable overlap states about local confluence and therefore
confluence of a CHR program. The problem with invariant-based confluence is
that the idea of using monotonicity to reason about larger states does not work
for states where the invariant does not hold. An overlap that does not satisfy the
invariant makes all information about this state irrelevant [11, p. 79]. The idea
of the invariant-based confluence theorem for CHR is to extend all states where
the invariant does not hold such that the invariant is repaired and include the
extended states in the confluence test. Since in general there are infinitely many
extensions that maintain the invariant, only minimal extensions according to a
partial order defined in [11] have to be considered. Then, monotonicity can be
applied again.
Theorem 1 (invariant-based confluence for CHR [11]). For an invariant
I, let ΣI([ρ]) := {[ρ′] | [ρ′] is an extension of [ρ] such that I holds } be the set
of satisfying extensions of [ρ]. The setMI([ρ]) is the set of minimal elements
of ΣI([ρ]) w.r.t. the partial order on states defined in [11].

Let P be a CHR program andMI([ρ]) be well-defined for all overlaps ρ. P is
locally confluent with respect to I if and only if for all overlaps ρ with critical
pairs (ρ1, ρ2) and all [ρm] ∈ MI([ρ]) holds that [ρ1] extended by [ρm] and [ρ2]
extended by [ρm] are joinable. We then say that P is I-(locally) confluent.
There are two problems with this result making it possibly undecidable: The
invariant could be undecidable and the set of minimal elements can be infinitely
large. We will show that in the case of the ACT-R invariant that we use for
our confluence test, the set of satisfying extensions is empty and the invariant
is decidable. Hence, it is not necessary for the understanding of this paper how
the partial order on states and therefore the set of minimal elements is defined
formally, since the set of satisfying extensions is already empty for the ACT-R
invariant. The ACT-R invariant is defined in the following section.

3.2 ACT-R Invariant
To reason about confluence of ACT-R models in CHR, we need an invariant that
restricts the CHR state space to states that stem from a valid ACT-R state. In
the following example, we show how overlapping translated ACT-R rules can
lead to overlap states that do not describe a valid ACT-R state.
Example 2. Let {delta(D), gamma(B,C, 0)} ⇔ chunk(C, T, P) in D | . . . be a
CHR rule that has been obtained from an ACT-R rule. By overlapping the rule
with itself, we could get

σ :=〈delta(D), gamma(B,C, 0), gamma(B,C ′, 0);
chunk(C, T, P) in D ∧ chunk(C ′, T ′, P ′) in D;V〉.

However, this state does not stem from a valid ACT-R state, since γ is a function
with only one value for each buffer and therefore the translation of an ACT-R
state can never contain two gamma constraints for the same buffer B.

10 D. Gall, T. Frühwirth

In the following, we define the ACT-R invariant A on CHR states that limits
the state space to states that stem from valid ACT-R states. We show that the
invariant is decidable by breaking it down to five fine grained invariants. We also
show that it actually defines an invariant for translated ACT-R models.

Definition 11 (ACT-R invariant). Let [ρ] be a CHR state. The ACT-R in-
variant A holds if and only if there is an ACT-R state σ such that ρ ≡ chr(σ).

Basically, this means that A([ρ]) holds if [ρ] is the valid translation of an ACT-R
state. However, by this definition it is hard to decide if a CHR state satisfies the
invariant.

We now show some decidable sub-invariants on CHR states and prove that
their conjunction is equivalent to A. For this purpose, we define an auxiliary
function ids that returns the set of chunk identifiers for a set of chunk/3 terms.

Definition 12 (chunk identifiers). Let d be a set. Then

ids(d) := {c | chunk(c, t, p) ∈ d}

is the set of chunk identifiers of the set d.

The sub-invariants mainly consist of uniqueness invariants, i.e. they require
that there is only one constraint of a certain kind for a class of arguments, and
functional dependency invariants, i.e. that certain sets that represent relations
appearing in constraints are functions. Eventually, the constraints that can be
be used in a state are restricted.

Theorem 2 (ACT-R invariants). Let ρ ≡ 〈G;C;V〉 be a CHR state. We
define the following sub-invariants:

1. unique chunk store
A1([ρ])↔ There is exactly one constraint delta(d) ∈ G for some ground set
d. For all elements e ∈ d, it holds that there exist c ∈ C, t ∈ T, p ∈ C × C, s ∈
τ(t), v ∈ C such that e = chunk(c, t, p) and p = {(s, v) | s ∈ τ(t)∧v ∈ ids(d)}.

2. functional dependency of cognitive state
A2([ρ])↔ For all buffers b ∈ B there is exactly one gamma(b, c, e) ∈ G where
c ∈ ids(d) for some delta(d) ∈ G and e ∈ R+

0 .
3. unique chunk identifiers
A3([ρ]) ↔ For all chunk identifiers c ∈ C and constraints delta(d) ∈ G, if
chunk(c, t, p) ∈ d, then there is no other term chunk(c, t′, p′) ∈ d.

4. functional dependency of slot-value pairs
A4([ρ])↔ For all constraints delta(d) ∈ G, terms chunk(c, t, p) in set d and
(s, v) in set p, there is no other term (s, v′) in p.

5. allowed constraints
A5([ρ])↔ In G there are only delta/1 and gamma/3 constraints, only syn-
tactic equality = /2 and the allowed constraints defined by the ACT-R archi-
tectures appear in C and [ρ] is ground.

For all CHR states [ρ] it holds that A([ρ])↔
∧5
i=1Ai([ρ]).

A Decidable Confluence Test for Cognitive Models in ACT-R 11

Proof. if direction If A([ρ]), then [ρ] is the product of the translation of an
ACT-R state. It follows directly from definition 8 that in that case, A1([ρ]),
A2([ρ]), A3([ρ]), A4([ρ]) and A5([ρ]) hold.

only-if direction We have to show that for all CHR states [ρ] where the invari-
ants A1([ρ]), A2([ρ]), A3([ρ]), A4([ρ]) and A5([ρ]) hold, there is an ACT-R
state σ such that ρ ≡ chr(σ). Let [ρ] := [〈G;C;V〉].
We construct the ACT-R state σ := 〈∆; γ; υ〉. Since A1([ρ]), there is exactly
one delta(d) constraint for a set d and all elements in d are of the form
chunk(c, t, p) where c ∈ C, t ∈ T and p is a set of elements (s, v) with s ∈ τ(t)
and v ∈ ids(d). The set p is total with respect to s and the v are chunk
identifiers that appear in d. Due to A4, there is exactly one (s, v) ∈ p for
each s ∈ τ(t), hence p is the relational representation of a value function.The
invariant A3 guarantees that the chunk identifiers are unique.
We define ∆ := {(t, p) | chunk(c, t, p) ∈ d} with the identifier function
id∆ := {((t, p), c) | chunk(c, t, p)}.
Due to invariant A2, the cognitive state can then be defined for all b ∈ B
such that γ(b) := (id−1

∆ (c), e) for each gamma(b, c, e) ∈ G.
Since A5([ρ]), [ρ] is ground. Hence, we can find another representative of
the state with ρ ≡ 〈G′;C′; ∅〉, that applies all equality constraints X=t in C
such that only constants appear in G′ and C′ and C′ only consists of allowed
predicates defined by the ACT-R architecture. Therefore, we can set υ := C′.
From the construction of σ it is clear that ρ ≡ chr(σ).

The invariants A1, . . . ,A5 are obviously decidable. Since they are equivalent
to the ACT-R invariant A, theorem 2 gives us a decidable criterion for the ACT-R
invariant A.

In the next step, we show that the ACT-R invariant A is maintained by
transitions that come from a translated ACT-R program, i.e. that it really is an
invariant.
Lemma 1. Let 7→ be the state transition relation derived from the translation
of an ACT-R model and [ρ] a CHR state with A([ρ]). If [ρ] 7→ [ρ′], then A([ρ′]).

Proof. We are going to use soundness and completeness [8] to prove this.
Let [ρ] be a CHR state with A([ρ]). Since A([ρ]), there is an ACT-R state σ

with ρ ≡ chr(σ). Due to the sound and complete embedding of ACT-R in CHR,
there is an ACT-R state σ′ with ρ′ ≡ chr(σ′). Hence, A([ρ′]) holds.

3.3 Invariant-Based Confluence Test

We want to use theorem 1 [11, p. 83, theorem 6] to prove confluence of all states
[ρ] that satisfy the ACT-R invariant, i.e. where A([ρ]). Therefore, we have to
construct the set ΣA([ρ]) for each state [ρ] that does not satisfy A. It contains
all states that can be merged to [ρ] such that they satisfy A (see theorem 1). The
minimal elements in this set have to be considered in the confluence test.

We will see that for all states [ρ] that do not satisfy A, the set of minimal
elements is empty. Intuitively, this means that there are no states that can extend
[ρ] such that it satisfies A.

12 D. Gall, T. Frühwirth

Lemma 2 (minimal elements for A). Let A be the ACT-R invariant as
defined in definition 2. For all states [ρ] such that A([ρ]) does not hold, ΣA([ρ]) =
∅ and thereforeMA([ρ]) = ∅.

Proof. Let [ρ] := [〈G;C;V〉]. We use theorem 2 that allows us to analyze the
individual sub-invariants:

1. If A1 is violated, there are the following cases:
– There are two constraints delta(d), delta(d′) ∈ G. We cannot extend [ρ]
(i.e. add constraints) to satisfy A1.

– There is only one unique delta(d) ∈ G, with elements that do not have
the required form. Again, no constraints can be added to satisfy A1.

2. If A2 is violated, there are two constraints gamma(b, c, e), gamma(b′, c′, e′) ∈
G. We cannot satisfy A2 for such a state.

3. The proof is analogous for A3 and A4.
4. If A5 is violated, there are other constraints then delta or gamma in G or

other than the allowed constraints defined by the architecture in C. This
cannot be repaired by extending G or C.

We can directly apply theorem 1: For all overlaps ρ where A([ρ]) holds, the
set of minimal elements is MA([ρ]) = {[ρ∅]} [11, p.80, lemma 13.13] where
ρ∅ := 〈∅;>; ∅〉 is the empty CHR state. Hence, for overlaps where A holds, we
only have to show joinability of the critical pairs that stem from the overlap itself.
This coincides with the regular confluence test of CHR as defined in [7].

For all overlaps ρ where A([ρ]) does not hold, the set of minimal elements
isMA([ρ]) = ∅ by lemma 2. Therefore, no critical pairs have to be tested. We
summarize this in the following theorem.

Theorem 3 (A-local confluence). A CHR program is A-local confluent if and
only if for all critical pairs (ρ1, ρ2) with overlap ρ for which A(ρ), it is ρ1 ↓ ρ2.

Proof. This follows directly from theorem 1 and lemma 2 for overlaps where
A([ρ]) does not hold. For overlaps with A([ρ]), the unique minimal element is
the empty state [ρ∅] := [〈∅;>; ∅〉] which is the neutral element for state merging
[11, lemma 13.13, p. 80]. Therefore, if A([ρ]) holds, it suffices to test the critical
pairs that stem from [ρ] by theorem 1.

We now have a criterion to decide A-confluence of A-terminating CHR pro-
grams that have been translated from an ACT-R model. In the next theorem, we
show that A-confluence of such CHR programs coincides with ACT-R confluence.
Therefore, the confluence criterion is applicable to decide confluence of ACT-R
models.

Theorem 4 (confluence in ACT-R). Let M be an ACT-R model. Then M
is terminating and confluent if and only if chr(M) is A-terminating and A-
confluent.

A Decidable Confluence Test for Cognitive Models in ACT-R 13

Proof. A-termination is maintained through soundness and completeness. We
now show that confluence for terminating models and their CHR counterparts
coincides. Confluence is defined as (σ 7→∗ σ1) ∧ (σ 7→∗ σ2) → (σ1 ↓ σ2) for
all states σ, σ1, σ2. It remains to show that joinability in ACT-R and CHR are
equivalent, i.e. (σ1 ↓ σ2)↔ ([chr(σ1)] ↓ [chr(σ2)]).
If-direction If (σ1 ↓ σ2), there is a state σ′ such that σ1 �∗ σ′ and σ2 �∗

σ′. Due to soundness and completeness of the embedding, we have that
[chr(σ1)] 7→∗ [chr(σ′)] and [chr(σ2)] 7→∗ [chr(σ′)].

Only-if-direction This is analogous. We just have to construct the ACT-R
state from the joined CHR state [ρ′]. Since A([ρ′]) holds by lemma 1, this
state exists.

3.4 Example: Counting
We continue our example 1. We assume that each number chunk only appears in
at most one order chunk at first or second position. This means that the model
has learned a stable order on the numbers and hence requests to the declarative
module are deterministic. It is clear that this example model terminates for finite
declarative memories. Therefore, we can apply our confluence criterion.

The rule can overlap with itself, e.g. 〈delta(D), delta(D′), . . . ; . . . ; . . .〉. This
state invalidates invariant A1 and hence is not part of the confluence test. Another
overlap is 〈delta(D), gamma(g, Cg, 0), gamma(g, C ′g, 0), . . . ; . . . ; . . . 〉. It violates
invariant A2, because it has two gamma constraints for the same buffer.

All overlaps consist of the following built-in store:
〈delta(D), . . . ;chunk(Cg, g, {(current, X)}) in D

∧ chunk(Cg, g, {(current, X ′)}) in D, . . . ; {D,X,X ′, . . . }〉.
By invariant A3 it must be X = X ′, because otherwise there were two different
chunk terms in the same chunk store with the same chunk identifier.

The overlap 〈H;G;V〉 that only consists of the head and guard of the rule
where V contains all variables of H and G is joinable, because we assumed
determinism of requests, i.e. there is only one possible result chunk for each
request. It can be seen that all possible overlaps in this small example invalidate
the ACT-R invariant A or are joinable. Therefore, the model consisting only
of this one counting rule is confluent. If we would assume an agent that has
not learned a stable order of numbers, yet, i.e. there are numbers with different
successors, the model would not be confluent. The confluence test constructs
minimal representations of the states that are not joinable, i.e. giving an insight
to the reason why a model is not confluent. This allows to decide whether the
model has the desired behavior when it comes to different available strategies.

4 Related Work
There exist CHR embeddings of other rule-based approaches. The results on
invariant-based confluence analysis have been used successfully to the embedding
of graph transformation systems in CHR [10,13].

14 D. Gall, T. Frühwirth

In the context of ACT-R, there are – to the best of our knowledge – no other
approaches that deal with confluence so far. There have been other approaches
to formalize the architecture with the aim to reason about cognitive models.
For instance, F-ACT-R [2,1] formalizes the architecture of ACT-R to simplify
comparison of different models or to use model checking techniques. In [14] math-
ematical reformulations of ACT-R models are used for parameter optimization
by mathematical optimization techniques.

5 Conclusion

In this paper, we have shown a decidable confluence test for the abstract op-
erational semantics of ACT-R. A confluence test can help to improve ACT-R
models by identifying the rules that inhibit confluence. This enables the modeler
to decide about the correct behavior of the model regarding competing strategies.
In our approach, we use the sound and complete embedding of ACT-R in CHR to
apply the invariant-based confluence criterion for CHR to reason about ACT-R
confluence, since standard CHR confluence is too strict.

We have defined the ACT-R invariant A on CHR states such that it is satisfied
for all states that stem from a valid ACT-R state. The first main result is a
decidable criterion for the ACT-R invariant (theorem 2).

Furthermore, the theoretical foundations for applicability of CHR invariant-
based confluence for the ACT-R invariant A are established. This leads to the
second main result: an invariant-based CHR A-confluence test (theorem 3).

Eventually, it is shown that A-confluence coincides with ACT-R confluence
(theorem 4). This makes our CHR approach applicable to decide ACT-R con-
fluence. The criterion is decidable as long as the constraint theories behind the
actions are decidable, because the invariant is decidable and the preconditions
for the invariant-based confluence test are satisfied in the context of ACT-R.

For the future, we want to investigate how the approach can be extended to
confluence modulo equivalence [5], since ACT-R confluence can be too strict due
to possibly differing chunk identifiers in the processing of the production rules.
An equivalence relation on chunk networks that is defined as a special form of
graph isomorphism could abstract from chunk identifiers making a chunk store
more declarative. By summarizing possible outcomes of a model in equivalence
classes, confluence modulo equivalence can also help to reason about correctness
of a model. Confluence modulo this equivalence relation would then guarantee
that the model always gives a result of a certain kind defined by the equivalence
class. For instance, it would be possible to check if a model always yields a chunk
of a certain type, e.g. a number or an order chunk.

Reasoning about requests to modules that appear in a confluence proof can
be extended by specific constraint theories on the modules that integrate domain-
specific knowledge about the model. This idea can be extended by allowing for
model-specific constraint theories. For instance, the integration of domain-specific
knowledge on chunk types in the context of a particular cognitive model could
improve reasoning about module requests in such models.

A Decidable Confluence Test for Cognitive Models in ACT-R 15

References
1. Albrecht, R., Westphal, B.: Analysing psychological theories with F-ACT-R. In:

Proceedings of the 12th Biannual conference of the German cognitive science society
(Gesellschaft für Kognitionswissenschaft). Cognitive Processing, vol. 15 (Suppl. 1),
pp. 27–28. Springer (2014)

2. Albrecht, R., Westphal, B.: F-ACT-R: defining the ACT-R architectural space. In:
Proceedings of the 12th Biannual conference of the German cognitive science society
(Gesellschaft für Kognitionswissenschaft). Cognitive Processing, vol. 15 (Suppl. 1),
pp. 79–81. Springer (2014)

3. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

4. Bothell, D.: ACT-R 6.0 Reference Manual – Working Draft. Department of Psy-
chology, Carnegie Mellon University, Pittsburgh, PA

5. Christiansen, H., Kirkeby, M.H.: On proving confluence modulo equivalence for
Constraint Handling Rules. Formal Aspects of Computing 29(1), 57–95 (2017),
http://dx.doi.org/10.1007/s00165-016-0396-9

6. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for Constraint
Handling Rules. In: Logic Programming, pp. 224–239. Springer (2007)

7. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
8. Gall, D., Frühwirth, T.: An Operational Semantics for the Cognitive Architecture

ACT-R and its Translation to Constraint Handling Rules. ArXiv e-prints (Feb
2017)

9. Gall, D., Frühwirth, T.: Translation of Cognitive Models from ACT-R to Constraint
Handling Rules. In: Alferes, J.J., Bertossi, L., Governatori, G., Fodor, P., Roman,
D. (eds.) Rule Technologies. Research, Tools, and Applications: 10th International
Symposium, RuleML 2016, Stony Brook, NY, USA, July 6-9, 2016. Proceedings. pp.
223–237. Springer International Publishing (2016), http://dx.doi.org/10.1007/
978-3-319-42019-6_15

10. Raiser, F.: Graph transformation systems in CHR. In: Dahl, V., Niemelä, I. (eds.)
Logic Programming: 23rd International Conference, ICLP 2007, Porto, Portugal,
September 8-13, 2007. Proceedings. pp. 240–254. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74610-2_17

11. Raiser, F.: Graph Transformation Systems in Constraint Handling Rules: Improved
Methods for Program Analysis. Ph.D. thesis, Ulm University, Germany (2010),
http://dx.doi.org/10.18725/OPARU-1742

12. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR states revisited. In: Raiser,
F., Sneyers, J. (eds.) 6th International Workshop on Constraint Handling Rules
(CHR). pp. 33–48. KULCW, Technical report CW 555 (July 2009)

13. Raiser, F., Frühwirth, T.: Analysing graph transformation systems through Con-
straint Handling Rules. Theory Practice of Logic Programming 11(1), 65–109 (Jan
2011)

14. Said, N., Engelhart, M., Kirches, C., Körkel, S., Holt, D.V.: Applying mathematical
optimization methods to an ACT-R instance-based learning model. PloS one 11(7),
e0158832 (2016)

15. Sun, R.: Introduction to computational cognitive modeling. In: Sun, R. (ed.) The
Cambridge Handbook of Computational Psychology, pp. 3–19. Cambridge University
Press, New York (2008)

16. Taatgen, N.A., Lebiere, C., Anderson, J.: Modeling paradigms in ACT-R. In: Cog-
nition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation.,
pp. 29–52. Cambridge University Press (2006)

http://dx.doi.org/10.1007/s00165-016-0396-9
http://dx.doi.org/10.1007/978-3-319-42019-6_15
http://dx.doi.org/10.1007/978-3-319-42019-6_15
http://dx.doi.org/10.1007/978-3-540-74610-2_17
http://dx.doi.org/10.18725/OPARU-1742

	A Decidable Confluence Test for Cognitive Models in ACT-R

