Skip to main content

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control

  • Conference paper
  • First Online:
  • 600 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10311))

Abstract

Mass surveillance and a lack of end-user encryption, coupled with a growing demand for key escrow under legal oversight and certificate authority security concerns, raise the question of the appropriateness of continued general dependency on PKI. Under this context, we examine Identity-Based Encryption (IBE) as an alternative to public-key encryption. Cascade encryption, or sequential multiple encryption, is the concept of layering encryption such that the ciphertext from one encryption step is the plaintext of the next. We describe CARIBE, a cascaded IBE scheme, for which we also provide a cascaded CCA security experiment, IND-ID-C.CCA, and prove its security in the computational model. CARIBE combines the ease-of-use of IBE with key escrow, limited to the case when the entire set of participating PKGs collaborate. Furthermore, we describe a particular CARIBE scheme, CARIBE-S, where the receiver is a self-PKG – one of the several PKGs included in the cascade. CARIBE-S inherits IND-ID-C.CCA from CARIBE, and avoids key escrow entirely. In essence, CARIBE-S offers the maximum flexibility of the IBE paradigm and gives the users complete control without the key escrow problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. http://code.google.com/p/relic-toolkit/

  3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/BFb0055718

    Google Scholar 

  4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679_25

    Chapter  Google Scholar 

  5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyen, X.: A tapestry of identity-based encryption: practical frameworks compared. Int. J. Appl. Cryptogr. 1(1), 3–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006). doi:10.1007/11818175_17

    Chapter  Google Scholar 

  8. Chatterjee, S., Sarkar, P.: Identity-Based Encryption. Springer Science & Business Media, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00468-1_15

    Chapter  Google Scholar 

  10. Chow, S.S.M., Boyd, C., Nieto, J.M.G.: Security-mediated certificateless cryptography. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 508–524. Springer, Heidelberg (2006). doi:10.1007/11745853_33

    Chapter  Google Scholar 

  11. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003). Society for Industrial and Applied Mathematics

    Article  MathSciNet  MATH  Google Scholar 

  13. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7_11

    Chapter  Google Scholar 

  14. Even, S., Goldreich, O.: On the power of cascade ciphers. Technical report no. 275, Computer Science Department, Technion, Haifa, Israel, May 1983

    Google Scholar 

  15. Even, S., Goldreich, O.: On the power of cascade ciphers. In: Chaum, D. (ed.) Advances in Cryptology: Proceedings of CRYPTO 1983, pp. 43–50. Springer US, New York (1984)

    Chapter  Google Scholar 

  16. Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7_3

    Chapter  Google Scholar 

  17. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  18. Greenwald, G.: XKeyscore: NSA tool collects nearly everything a user does on the internet, 31 July 2013. http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data. Accessed 2 June 2015

  19. Greenwald, G., MacAskill, E.: NSA Prism program taps in to user data of Apple, Google and others, 7 June 2013. http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data. Accessed 2 June 2015

  20. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7_31

    Chapter  Google Scholar 

  21. Hurd, W., Lieu, T.W.: Congressman Lieu Letter to FBI Director Comey on Encryption “Backdoor” Proposal, 1 June 2015. https://lieu.house.gov/media-center/. Accessed 2 June 2015

  22. IACR: IACR Statement on Mass Surveillance: Copenhagen Resolution, 14 May 2014. http://www.iacr.org/misc/statement-May2014.html. Accessed 2 June 2015

  23. Joux, A.: Introduction to Identity-Based Cryptography. Identity- Based Cryptography (2009)

    Google Scholar 

  24. Joye, M., Neven, G.: Identity-Based Cryptography, vol. 2. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  25. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–453. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4_27

    Chapter  Google Scholar 

  26. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  27. Leavitt, N.: Internet security under attack: the undermining of digital certificates. Computer 44(12), 17–20 (2011)

    Article  Google Scholar 

  28. Lynn, B.: PBC library manual 0.5.11 (2006)

    Google Scholar 

  29. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall PTR, Upper Saddle River (2004)

    MATH  Google Scholar 

  30. Maurer, M., Massey, J.: Cascade ciphers: the importance of being first. J. Cryptol. 6(1), 55–61 (1993). Springer

    Article  MATH  Google Scholar 

  31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012), 28 (2008)

    Google Scholar 

  32. National Institute of Standards and Technology. http://www.nist.gov/. Accessed 2 June 2015

  33. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryption with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5_23

    Chapter  Google Scholar 

  34. Popov, V., Kurepkin, I., Leontiev, S.: RFC 4357: Additional Cryptographic Algorithms for Use with GOST 28147–89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms, January 2006

    Google Scholar 

  35. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, pp. 135–148 (2000)

    Google Scholar 

  36. Scott, M.; MIRACL - Multiprecision Integer and Rational Arithmetic C/C++ Library (2007)

    Google Scholar 

  37. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  38. Stein, W., Joyner, D.; Sage: system for algebra and geometry experimentation. Commun. Comput. Algebra (SIGSAM Bull.) (2005). http://sage.sourceforge.net

  39. Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs: tight bounds via the interactive hardcore lemma. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 37–54. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_3

    Chapter  Google Scholar 

  40. The PARI Group: Bordeaux. PARI/GP version 2.7.0 (2014). http://pari.math.u-bordeaux.fr/

  41. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of PGP 5.0. In: Usenix Security, vol. 1999 (1999)

    Google Scholar 

  42. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: Proceedings of the 11th ACM conference on Computer and communications security, pp. 354–363. ACM (2004)

    Google Scholar 

  43. Yuen, T.H., Susilo, W., Mu, Y.: How to construct identity-based signatures without the key escrow problem. Int. J. Inf. Secur. 9(4), 297–311 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers of Mycrypt 2016 for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Hale .

Editor information

Editors and Affiliations

A Scheme Comparison

A Scheme Comparison

Table 3. Comparison of properties among composition IBE schemes including CARIBE and CARIBE-S.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hale, B., Carr, C., Gligoroski, D. (2017). CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control. In: Phan, RW., Yung, M. (eds) Paradigms in Cryptology – Mycrypt 2016. Malicious and Exploratory Cryptology. Mycrypt 2016. Lecture Notes in Computer Science(), vol 10311. Springer, Cham. https://doi.org/10.1007/978-3-319-61273-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61273-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61272-0

  • Online ISBN: 978-3-319-61273-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics