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Abstract. Balancing and reacting to strong and unexpected pushes is a
critical requirement for humanoid robots. We recently designed a capture
point based approach which interfaces with a momentum-based torque
controller and we implemented and validated it on the iCub humanoid
robot. In this work we implement a Receding Horizon control, also known
as Model Predictive Control, to add the possibility to predict the future
evolution of the robot, especially the constraints switching given by the
hybrid nature of the system. We prove that the proposed MPC extension
makes the step-recovery controller more robust and reliable when exe-
cuting the recovery strategy. Experiments in simulation show the results
of the proposed approach.
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1 Introduction

A humanoid robot is generally built with the final intent of having a machine
which can help humans performing boring or dangerous tasks. The adoption of
a two legged design ideally allows the robot to share the same environment of
humans. On the other hand, embedding relatively simple motor skills on such
complicated machines is not a straightforward task. A recent trend consists in
facing this problem through the adoption of optimal control techniques, like
Model Predictive Controllers (MPC). The peculiarity of MPC resides in the
possibility of inserting a feedback from the plant into the optimization procedure,
through the “Receding Horizon Principle” [1].

Changes in the constraints set, e.g. when walking, result in a different evolu-
tion of the constrained dynamical system, making the overall system hybrid [2].
Model Predictive Controllers are appealing for controlling hybrid systems [3]. In
fact, while predicting future states, MPC allow to cope with both time- and state-
dependent switching, eventually undertaking actions to prepare for impending
dynamics variations. Nevertheless, MPC is affected by the same problematics
related to hybrid systems integration, which are indeed open research problems.
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In literature the complexity of the robot dynamics is usually boiled down
to simplified models like the Linear Inverted Pendulum [4], in order to devise
simple strategies. In this context, in [5] a model predictive controller has been
employed to stabilize walking patterns. It is also worth mentioning the Capture
Point framework [6] which allows to elaborate conditions about the possibility
of the robot to maintain the upright position. In [7] it has also been applied in
conjunction with MPC.

In our approach we decided to take a different direction, taking into account
the dynamic evolution of the center of mass (CoM) rather then adopting simple
models. In addition, with respect to [8], [0, [10] we define a reactive planner which
directly interfaces with the momentum-based whole body torque controller al-
ready implemented on iCub [II], [I2]. The hybrid nature of the system is taken
into account by means of time-varying constraints.

2 Background

Throughout this paper we adopt the following notation.

— T represents an inertial reference frame with the origin placed on the ground,
with the z—axis pointing against the gravity and the x—axis oriented frontally
with respect to the robot.

— xoom € R? is the position of the center of mass with respect to Z.

— Hx||‘2/v = 2" W is the weighted square norm of z.

— 1, represents a n X n identity matrix. 0, x,, € R™*™ is a zero matrix while
0,, = 0,,x1 is a zero column vector of size n.

— 2/ € R3*3 denotes the skew-symmetric matrix such that 2"y = x x y, where
x denotes the cross product operator in R3.

2.1 Momentum-based whole-body torque control

The momentum-based balancing controller has a hierarchical structure accom-
plishing two different control tasks. The most important task is in charge of
controlling the robot linear and angular momentum.

We denote with H = [Hl—irn,Ha—;g}T € RS the robot linear and angular mo-
mentum (computed around the CoM). Its rate of change is:

H= Z COMX f; +mg (1)

=1

where f; € RS = [f,, 7, T]T is the i-th of the n. contact wrenches. They are
measured in a frame fixed with the contact surface. Matrices ©°MX,; € R6x6
transform these wrenches in a frame oriented as the inertial frame Z, with the
origin located on the center of mass position. Finally the robot total mass is
indicated with m while § € R® is the 6D gravity acceleration vector. By con-
trolling the robot momentum through joint torques, the first task enables us to
consider f = [f',---, f1]T as virtual control inputs.

rJIne
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The second objective is responsible of tracking joint references, without in-
terfering with the momentum control. In addition, it guarantees the stability of
the zero dynamics resulting from the convergence of the first task. For additional
details see the results in [11].

2.2 Optimal control problem

A continuous time optimal control problem can be stated as follows:

Hglci(?)iﬂm(it%e r :/0 L(z(t), u(t))dt + E(z(ty)) (2a)
subject to @(t) = f(z(t),u(t)), =x(0)==z¢ te€[0,ts] (2b)
g9(x(t), u(t)) <0, te [0,ty] (2¢)

where 7 is the “control horizon”, u € R™ is the control variable, z € R" is the
state variable (whose initial value is o) and f : R xR™ — R" the corresponding
state evolution. L(z(t), u(t)) is the integral cost, while E(x(tf)) weights = at the
end of the horizon. Finally g : R™ x R™ — R™s is the constraints function,
embracing both equalities and inequalities.

3 Problem Formulation

3.1 The model

In this work we focus on the dynamics of the center of mass. If we consider our
case of interest, where no contacts are available except the two applied at the
feet, we can rewrite Eq. [T] as:

. -1
ZooM m™ 13 03x3| [coM y CoM fil -
{ — X X 3
[Hang] [ O3x3 13 } [ : r} AR )

where the indexes [ and r are relative to the left and right foot respectively, and
we used the fact that Hyy, = mIcom-

In order to model the step in a model predictive framework, we can assume
to know the instant in which the swing foot will touch the ground. In fact, the
considered model does not contain any information about the posture of the
robot and therefore it is not possible to define a “transition function”, e.g. the
distance from the foot to the ground is generally used to predict when the step is
going to take place. In other words, the controller is aware that the impact will
take place in a precise instant in the future, but it does not know whether the
quantities involved in the model will affect this instant or not. The most viable
choice is then to consider this instant as constant and known in advance, equal
t0 timpact, i-€. to the time needed to perform a step.

For the same reason, the position that the swing foot will have after the step
is also assumed to be known and constant. This takes particular importance
since ““M X (where s refers to the swing foot) directly depends on this position.
Summarizing, the peculiar characteristics of the step, i.e. the duration and the
target position, are assumed to be known and constant.
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3.2 The angular momentum

We focus now on the matrix “°MX; (here i is a placeholder for subscript [ or
r), whose structure depends on the choice of the frame to describe the robot
momentum. The matrix has the following form:

1 0

CoM 3 3%3

X, = . 4
(i —zcom)” 13 @)

The derivative of the angular momentum Hang may thus be written as Hang =
Eﬁ’r(xi — xcoMm)” fi + 7. The product between zcon and f; causes the whole
formulation to be non-convex which makes the resolution dramatically more
complex. In literature this problem is faced by minimizing an upper-bound of the
angular momentum [I0], or by approximating it through quadratic constraints
[13]. In our application, angular momentum is mainly needed to bound the usage
of contact wrenches, rather than be precisely controlled to zero. Thus, we can
accept a more coarse approximation, relying on its Taylor expansion (around
the last available values of f; and zconm) truncated to the first order, namely:

{Z)T} 3 >

. . O0H,, OH,y

Hang ~ Z Hang + af S (fz — f?) + 6;[)C l\i (xCOM — IOC0M>
{Lr}

. A A
Hyng = Z i + <:cZ — m%OM) 0+ (9:Z — x%OM> (]‘fi — f?) +

A
+ (ﬂ‘?) (xCoM - x%OM) .
g [ 0 A o\ 0
= Hang ~ Z Ti + (xz - ICoM) f; + (ﬂ) (9300M - JTCOM) (5)

where we exploited the anticommutative property of the cross product, i.e.
A"B = —B"A. The superscript  refers to the point at which the Taylor
expansion is computed, in our case from the last feedback obtained from the
robot. The approximation introduced with the truncation to the first order is
o ((ffl - ff?) (wCOM — x%OM)). If we consider a controller horizon ¢y not too wide,
the term related to the position of the CoM is expected to be small enough, mak-
ing this linear approximation effective.

Finally, by deﬁninTg the state variable v and the control input variable f as
v i= 2w #Eom Hing ] fi= 17 £7 ]T we can rewrite Eq. as:

"Y:EU77+va+é7+g3a (6)
3 O3x3 13 O3xsz| 033 0353 O3x3 O3x3
Ev, = O3x3 N O3x3 O3x3| , Fy= m~11; . O3x3 m~113 . O3x3| ,
(£ 4+ £2)" 03x3 O3x3 (1 —220m)" 13 (zr —2lom) 13

QD
)
|
| —

03} 30 _ Os R
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3.3 Constraints definition

The constraints to be enforced are mainly related to the feasibility of the exerted
wrenches, e.g. center of pressure and friction cone among the most common
constraints related to unilateral contacts. Furthermore the wrench acting on the
swinging foot should be null for every instant before the impact, i.e. tjmpact-

We start by examining the constraints acting on the stance foot (here as-
sumed to be the left):

Aclfl < bcl Vt:t < tf. (7)

Eq. (7)) encompasses all the considered inequalities constraints, namely: i) friction
cone with linear approximation, ii) center of pressure, iii) positivity of the normal
component of the contact force.

The constraints on the swing foot instead, catches the hybrid nature of the
system. In particular they represent the fact that the wrench must be null before
the impact and feasible after it. Formally:

fr = 0¢ Vit < timpact
Acrfr < bcr Vi : timpact <t< tf

(®)

where A, and b., describe the same feasibility constraints as A, and b.. The
above equation assumes that ¢;mpacc < ty. If the impact does not occur inside
the control horizon, then the wrench exerted by the right foot is forced to be
null throughout the whole horizon.

We also included an additional constraint to enforce that balancing is kept
after the step. In particular, after this instant, we can constraint the instanta-
neous capture point to be inside the convex hull of the two feet, which can be
predicted by knowing the future position of the right foot. Thus, we can define a
set of linear inequalities such that if Acp@icp < bep,  VE it > timpacr 1s satisfied,
than x;p, i.e. the instantaneous capture point location, is in the convex hull. By
imposing this constraint, we are forcing the instantaneous capture point to be in
a capturable state after the step is performed. In fact, the convex hull represents
the region in which it is possible to stabilize the instantaneous capture point
dynamics without taking additional steps.

3.4 Cost function definition

Following the optimal control formulation of Eq. we are left to define the
cost function applied within the MPC controller, called I'. Note that different
terms of the cost function act only after the step is taken. Formally, it has the
following expression:

t
o 1 </ !

2 0

ty 9 ty
+/ ||f(7')||deT+[ ‘
0 timp

1) =@ @t [ o) )

~

imp
timp Ky

J:iCp(T) - zzdcp(T) H ) Kimp
° Y

o drte) =t )
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Fig.1: (a) represents the center of mass evolution while performing the step.
The first dotted line denotes the time of the push which occurred at ¢t = 2.4s.
The second one at t = 3.0s indicates when the right foot hits the ground. (b)
presents the evolution of the y-component of the instantaneous capture point.
The horizontal green dotted lines represent the approximation of the convex hull.

where the superscript d indicates the reference values. K (()) is a real positive
semi-definite matrix of gains with suitable dimensions, accounting also for unit
of measurement mismatches inside I'. ¢;,,;, is the minimum between ¢;y,pqct and
t¢ while, for the sake of simplicity, the initial time instant is set to zero. Thus, it
is possible to vary the cost applied to the state v after the impact. This is done
through the use of the matrix Kfymp which, after the impact, adds up to K.
Finally, a terminal cost term is inserted using the same matrix Kfymp , to model
the finiteness of the control horizon.

Consider now the final objective of having the center of mass over the centroid
of the support polygon once the step is made. We decide to weight only the
z—component of the CoM error throughout the whole horizon, while weighting
the traverse components (i.e.  and y) only in the terminal cost (last term of
Eq.(9)) and after the step is made (second part of Eq.(0)). The same rationale
could be applied to the reference for the instantaneous capture point. During
the step, its dynamics is exponentially diverging and, as a consequence, this
contribution takes a role only after t;,pqct, Where its distance from the centroid
of the convex hull is weighted.

Finally, the requested reaction forces are weighted too, mostly for avoiding
impulsive responses which are dangerous for the mechanical structure of the
robot, without any warranty that they will be actually attained through the
underneath controller. Intuitively, the tracking error for the desired wrenches
will be lower with a smooth and limited reference.
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Fig. 2: Representation of the z-component of the demanded forces.

4 Simulation Results

The proposed MPC approach has been tested on an iCub model in the Gazebo
simulator [14], employing YARP Plugins [15].

The iCub humanoid robot [I6] possesses 53 actuated joints, but nearly half
of them are concentrated on the eyes and the hands. For this reason only 23
degrees of freedom (DoF') are torque controlled and used for balancing purposes.

The proposed controller has been implemented in the MATLAB® /Simulink®
environment, using the WBToolbox library[I7]. The experimental scenario con-
sists of the robot balancing on its left foot. We have chosen this simple scenario
to test the performance of the presented strategy with a single contact activation.

When a strong push occurs the step recovery strategy starts. The time step
dt is set to 10ms, while the controller horizon N is chosen to be 15. It has
been observed that for smaller control horizons, the robot is not able to sustain
the disturbance. Figure [I] depicts the result of the push experiment performed
adopting the MPC approach. The robot was able to fully recover after the push,
undergoing just a slight oscillation after the impact of the swing foot, whose oc-
currence is highlighted by the second dashed line. The capability of recovering by
performing the step can be noticed also from Figure[I} where the behavior of the
y-component of the Instantaneous Capture Point is depicted (the 2 component
has undergone just a slight perturbation). In particular the Capture Point, after
exiting the support polygon (corresponding to the left foot), is fully contained
in the new convex hull once the step is performed.

Finally, it is worth considering the desired wrenches. Figures [2| compare the
desired vertical force obtained using the presented control strategy and the one
proposed in [I8] (on the right). While oscillating in the first stage of the double
support, the steady state is reached much faster than the previous approach.

5 Conclusions and Future Work

The presented approach adopts, as model, the dynamics of the center of mass
with only a small approximation necessary to remove non-convexities. It also
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considers the discontinuous contribution of the swing foot through the adoption
of time varying constraints. With respect to [I8], this approach does not need the
definition of a trajectory for the CoM, which indeed is part of the optimization
process. As a consequence, the robustness of this technique relies more in the
intrinsic knowledge of the system rather than in the expertise of the designer.

This approach has been meant not to be a simple planner, but instead to
provide reaction to external disturbances in real-time. However, at the present
time it takes almost 0.1 seconds to get a solution on a machine running Ubuntu
14.04 on a quad-core Intel® Core i5@2.30GHz with 16GB of RAM, by using as
solver the MATLAB® interface of MOSEK®. As a future work, this strategy will
be implemented on an optimized C++ code and applied on the real platform.

Finally, as an additional improvement we plan to supply the controller with
more informations about the kinematics of the leg, thereby modeling the step
movement directly as part of the problem formulation and relaxing the hypoth-
esis of knowing a priori the time of the impact.
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