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Abstract. Modern solvers for quantified Boolean formulas (QBF) not
only decide the satisfiability of a formula, but also return a set of Skolem
functions representing a model for a true QBF. Unfortunately, in combi-
nation with a preprocessor this ability is lost for many preprocessing tech-
niques. A preprocessor rewrites the input formula to an equi-satisfiable
formula which is often easier to solve than the original formula. Then
the Skolem functions returned by the solver represent a solution for the
preprocessed formula, but not necessarily for the original encoding.
Our solution to this problem is to combine Skolem functions obtained
from a QRAT trace as produced by the widely-used preprocessor Bloqqer
with Skolem functions for the preprocessed formula. This approach is
agnostic of the concrete rewritings performed by the preprocessor and
allows the combination of Bloqqer with any Skolem function producing
solver, hence realizing a smooth integration into the solving tool chain.

1 Introduction

Quantified Boolean formulas (QBFs) [1] extend propositional logic with existen-
tial and universal quantifiers over the Boolean variables. This extension allows a
compact formalization of PSPACE-hard problems, thus QBFs can be remarkably
beneficial in applications of formal verification [2], synthesis [3], and artificial in-
telligence [4], driving the demand for efficient and reliable QBF solving tools.

Modern QBF solvers not only decide the satisfiability of a formula, but also
produce certificates [5–14]. Such a certificate is either syntactical or semantical.
A syntactical certificate is basically a trace of the individual steps taken by a
solver to derive either a conflict in the case of unsatisfiability or to derive the
empty formula in the case of satisfiability. The correctness of the individual steps
has to be checkable efficiently, i.e., in polynomial time by an external tool that
independently confirms the correctness of the solving result. Examples of such
syntactical certificates are Q-resolution proofs [15], the QBF variant of resolution
proofs produced by solvers based on conflict/solution-driven clause/cube learn-
ing (QCDCL) [16], and QRAT proofs [12]. Quantified Asymmetric Tautologies
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(QRAT) is a redundancy criterion allowing for the safe addition/deletion/update
of clauses with this property. A semantic certificate is a model (counter-model)
of a satisfiable (unsatisfiable) QBF. Usually such certificates are represented as
so-called Skolem (Herbrand) functions, encoding a strategy to set the existen-
tial (universal) variables to satisfy (falsify) the QBF. Skolem functions are of
particular interest when solving application problems, because they contain in-
formation about the solution. For example, if a verification approach based on
bounded model checking reports that an error state is reachable by the program
to be verified, then the Skolem function encodes a program trace showing the
erroneous behavior. Checking the correctness of a Skolem (Herbrand) function is
a coNP-complete (NP-complete) problem, because the validity (satisfiability) of
a propositional formula has to be checked. Skolem functions are either efficiently
extracted from syntactic certificates like Q-resolution and QRAT proofs [12, 7],
or they are produced directly by a solver [17].

QBF solving tool chains often involve an additional preprocessing phase in
which the original QBF is rewritten to an equi-satisfiable formula that is then
passed to the solver. In many cases, solvers are only able to solve the prepro-
cessed formula, but not the original one [18, 19]. Then, however, the found set
of Skolem functions is only a solution and witness for the preprocessed formula,
because in general, the preprocessing techniques are not model-preserving. To
enable both preprocessing and certification at the same time, Janota at al. [20]
showed how to obtain Skolem functions for a subset of the preprocessing tech-
niques implemented in the widely-used preprocessor Bloqqer [21] by establishing
a solution reconstruction rule for each of the considered preprocessing technique.

In this paper, we present a general approach to obtain Skolem functions with
all preprocessing techniques implemented in Bloqqer enabled. Therefore, we use
the QRAT trace produced by Bloqqer together with the Skolem function produced
by state-of-the-art QBF solvers like DepQBF [22] or Caqe [17]. The QRAT trace is
not a full syntactical certificate if the formula is not solved by Bloqqer, but it only
justifies the rewriting steps from the original QBF to the preprocessed formula.
We show that it is nevertheless sufficient to build an incomplete Skolem function
which—when continued with the Skolem function provided by the solver—yields
a complete Skolem function for the original problem.

This paper is structured as follows. First we review the basic concepts of
QBFs and Skolem functions in Section 2, then in Section 3 we present the formal
foundation of our procedure and illustrate the approach on a simple example. In
Section 4 we describe the main steps of our general tool chain to construct valid
Skolem functions for true QBFs in presence of preprocessing. Finally, the paper
ends with the experimental evaluation in Section 5 and concludes in Section 6.

2 Preliminaries

In this section, we introduce concepts and terminology used in the rest of the
paper. A literal is a variable (x) or the negation of a variable (x̄). The negation of
a literal l is denoted by l̄ and var(l) := x if l = x or l = x̄. A clause is a disjunction



of literals and (possibly negated) truth constants > (verum) and ⊥ (falsum). A
propositional formula in conjunctive normal form (CNF) is a conjunction of
clauses. A QBF in prenex conjunctive normal form (PCNF) has the form Π.ψ
where ψ is a propositional CNF formula defined over the variables of prefix Π :=
Q1X1 . . . QnXn with Qi ∈ {∀,∃}, Qi 6= Qi+1, and Xi ∩ Xj = ∅. The set of all
variables occurring in prefix Π is denoted by vars(Π). The quantifier quant(Π, l)
of literal l is Qi if var(l) ∈ Xi. If quant(Π, l) = Qi and quant(Π, k) = Qj , then
l <Π k if i < j. A QBF ∀xΠ.ψ is satisfiable iff both Π.ψ[x/>] and Π.ψ[x/⊥] are
satisfiable where ψ[x/t] denotes the replacement of x by t in ψ. Dually, a QBF
∃xΠ.ψ is satisfiable iff Π.ψ[x/>] or Π.ψ[x/⊥] is satisfiable. The truth constants
> and ⊥ as well as the Boolean connectives follow the standard propositional
semantics. Two QBFs φ1 and φ2 are equivalent (written as φ1 ∼ φ2) iff they have
the same truth value. The expression ite(c, b1, b2) stands for (c→ b1)∧ (c̄→ b2).

The Skolem function of an existential variable x w.r.t. QBF φ = Π.ψ is a
propositional formula f(y1, . . . , yn) where y1, . . . , yn are all the universal vari-
ables of φ with yi <Π x. A Skolem function fx for variable x of QBF Π.ψ
is valid iff Π.ψ ∼ Π.ψ[x/fx]. A Skolem set F of QBF φ maps each existen-
tial variable x of φ to a Skolem function F(x) of x. A Skolem set is valid if it
maps existential variables only to valid Skolem functions. By φ[F] we denote
φ[x1/F(x1), . . . , xn/F(xn)] where x1, . . . , xn are the existential variables of φ. If
clear from the context, we sometimes speak about Skolem functions when refer-
ring to a complete Skolem set.

3 Skolem Function Continuation

Skolem functions as introduced above yield a strategy for assigning truth values
to the existential variables based on the truth values of the universal variables
such that the QBF under consideration evaluates to true. Some solvers are able
to directly produce Skolem functions [8, 17, 6] while for others it is possible to
extract the Skolem functions from proofs produced during the search [7, 10, 12].
In [12] we showed how to extract a Skolem function if the preprocessor Bloqqer
is able to solve a true formula. In that case the produced QRAT proof of Bloqqer
provides all the necessary information to construct a Skolem function. Now we
reuse this technique for the case that not Bloqqer solves the formula, but another
solver finds the solution for the preprocessed formula produced by Bloqqer.

In particular, we consider the following scenario: Given a satisfiable QBF φ,
a QRAT trace T produced by a preprocessor rewriting φ to a QBF φ′, and a
valid Skolem set F′ of φ′, we show how to obtain a valid Skolem set F for φ.

Definition 1. A QRAT trace T of a QBF Π.ψ is a sequence of clause addi-
tions and clause deletions in the form of (p1, C1), . . . , (pn, Cn), where prefix
pi ∈ {+,−}3 indicates if clause Ci is added (pi = +) or deleted (pi = −)
justified by the rules of the QRAT proof system [12].

3 In the QRAT format, clause deletion lines start with “d”.



For the detailed definitions of the QRAT rules and soundness arguments, we
kindly refer to [12]. Note that the QRAT proof system also contains rules for
modifying clauses. We omit these rules here because for satisfiable formulas a
modification rule always can be expressed by a clause addition and a clause
deletion rule. Basically, a QRAT trace of a QBF Π.ψ compactly describes the
sequence ψ0

T , . . . , ψ
n
T of propositional formulas as follows:

ψiT :=


ψ if i = 0

ψi−1
T ∪ {Ci} if pi = +

ψi−1
T \ {Ci} if pi = −

A clause addition step may even introduce new variables. We follow the conven-
tion of the QRAT proof format that such variables are existentially quantified
and that they are appended right-most to the quantifier prefix. By Πi

T we there-
fore refer to the quantifier prefix of ψiT . A QRAT trace T with |T | = n of a QBF
Π.ψ is a satisfaction proof if ψnT = ∅. To construct a valid Skolem set from a
QRAT satisfaction proof, a randomly initialised Skolem set is refined by travers-
ing the proof backwards until it is valid [12]. For the case that the formula has
not been solved by the preprocessor, i.e., ψnT 6= ∅, we use the Skolem functions
of the preprocessed formula for this initialization.

Definition 2. Let φ = Π.ψ be a satisfiable QBF that is transformed to an equi-
satisfiable QBF φ′ = Π ′.ψ′ with valid Skolem set F′. Further, let T be a QRAT
trace, with |T | = n, that describes the transformation of ψ to ψ′ by the sequence
(ψ0
T , . . . , ψ

n
T ) of propositional formulas where ψ = ψ0

T , ψ′ = ψnT , and Π ′ = Πn
T

as above.

Then a sequence of Skolem sets (F0
T , . . . ,F

n
T ) for (ψ0

T , . . . , ψ
n
T ) is defined as

follows. The Skolem sets FiT for 0 ≤ i < n are constructed as in [12] and

FnT (x) :=

{
F′(x) x ∈ vars(Π ′)
⊥ x ∈

⋃n−1
j=0 vars(Π

j
T ) \ vars(Π ′).

Variables not occurring in φ′, but somewhere in the QRAT trace are assigned
an arbitrary value in FnT (⊥ in our case). Next, we argue that each FiT is a valid
Skolem set for Πi

T .ψ
i
T and so F0

T is a valid Skolem set for φ, the formula for
which we want to construct the Skolem set.

Theorem 3. Let φ = Π.ψ be a satisfiable QBF that is transformed to an equi-
satisfiable QBF φ′ = Π ′.ψ′ with valid Skolem set F′. Further, let T be a QRAT
trace that describes the transformation of ψ to ψ′. Then the Skolem set FT = F0

T

obtained from (F0
T , . . . ,F

n
T ) as described above, is valid on φ.

Proof. We show by reverse induction that Skolem set FiT is valid on Πi
T .ψ

i
T , i.e.,

ψiT [F iT ] ∼ >, for all 0 ≤ i ≤ |T |. Since F′ is a valid Skolem set on φ′, the base
case (i = n = |T |) trivially holds. The induction step is the same as in [12]. ut



QBF φ

∀x∃y.(x ∨ ȳ) ∧ (x̄ ∨ y)

p cnf 2 2
a 1 0
e 2 0
1 -2 0

-1 2 0

(a)

QRAT trace T of φ

delete x̄ ∨ y

d -2 1 0

(b)

φ′: preprocessed φ

∀x∃y.(x ∨ ȳ)

p cnf 2 1
a 1 0
e 2 0

-1 2 0

(c)

QRP trace of φ′

Q-resolution proof

p qrp 2 1
a 1 0
e 2 0
1 -1 2 0 0
2 2 0 0
3 0 2 0
r SAT

(d)

Fig. 1. (a) original QBF φ in QDIMACS format, (b) QRAT trace, (c) preprocessed
formula φ′ in QDIMACS format, (d) Q-resolution satisfaction proof in QRP format.

As a consequence of Theorem 3 we can reuse the Skolem function extraction
algorithm of [12] and extract partial Skolem functions which we then continue
with the Skolem functions of the preprocessed formula resulting in a valid Skolem
set of the original formula. The approach is illustrated by the following example.

Example 4. Let φ be the true QBF ∀x ∃y .(x∨ ȳ)∧ (x̄∨ y) (the QDIMACS repre-
sentation is shown in Figure 1(a)). Assume that a simple preprocessor removes
the first clause because it is a blocked clause [21] producing the QRAT trace T
shown in Figure 1(b). The preprocessed formula φ′ = ∀x∃y .(x̄ ∨ y) (see Fig-
ure 1(c)) is then passed to a QBF solver that decides its satisfiability. A solver
like DepQBF also produces a Q-resolution proof in the QRP format [10] as shown
in Figure 1(d). From this proof, a Skolem set F′ can be extracted for φ′ with
F′(y) = f ′y(x) = > [7]. Note that F′ is not a valid Skolem set for φ because
φ [y/>] ∼ ⊥. In order to get a valid Skolem set for φ, we use the extraction
algorithm of [12] and get F0

T (y) = fy(x) = ite(x̄,⊥, I), where we plug in f ′y for
I. After simplifications, we get fy(x) = x which is a valid Skolem function for φ.

4 Architecture

We implemented the Skolem function continuation approach described above in
a tool called extract, which is available on http://fmv.jku.at/sk-extract. The
full tool chain is shown in Figure 2. The upper part shows the typical QBF
evaluation process involving preprocessing. The lower part shows the extension
with our new tool. Given a satisfiable QBF problem φ in PCNF, it is first
simplified by the preprocessor Bloqqer, that employs different rewritings on the
formula and produces a QRAT trace in order to ensure the correctness of these
simplification steps. We modified the qrat-trim tool for checking QRAT traces
(the original version only checks full QRAT proofs). The simplified formula φ′

is then passed to a QBF solver that decides its truth value. The solver also
generates (maybe with the help of further tools) a valid Skolem set F′ on φ′.



Notations

φ: original QBF
φ′: preprocessed QBF
F′: Skolem set of φ′

Fφ: combined Skolem set

QBF φ Bloqqer QBF φ′ QBF Solver true/false

QRAT
Trace

extract F′

Fφ

Certifier ok/error

Fig. 2. Overview of our Skolem function continuation tool chain. The upper part of the
figure shows a standard QBF evaluation process including preprocessing with Bloqqer,
while the lower part presents the Skolem function combination steps.

This Skolem set is assumed to be represented as an And-Inverter-Graph (AIG)
in the AIGER format (see http://fmv.jku.at/aiger/). Note that the AIG is the
only interface to the QBF solver, hence the approach can be used with any solver
that produces Skolem functions in AIGER format.

Given QBF φ, the QRAT trace, as well as the Skolem set of the preprocessed
formula in AIGER format as input, extract constructs a valid Skolem function
set Fφ of the original QBF φ. In a final step, we check if the produced Skolem set
is valid. Therefore, the Certifier of Figure 2 (1) checks the structural correctness
of the Skolem set with the tool cheskol and (2) builds φ [Fφ] that is a universally
quantified formula. For evaluating it with a SAT solver, its negation is translated
to a CNF formula that must be unsatisfiable if F is valid.

5 Experimental Evaluation

To evaluate our approach we consider 367 formulas of the QBF Eval 2016 main
track that was claimed to be satisfiable by at least one QBF solver participating
in the competition. All experiments were run on a cluster of computers with
Intel Q9550 2.83GHz CPUs equipped with 8GB of memory. We set the memory
limit to 7GB and the time limit to 900s for the full solving tool chain.

For preprocessing with QRAT tracing, we use the preprocessor Bloqqer ver-
sion v038 in configurations FULL (all options enabled), noMS (miniscoping for



Table 1. Comparison of different Skolem function extraction tool chains

solver pre-# sol-# ext-# che-# MO-# TO-# che-t tot-t

DepQBF – 160 151 123 10 234 21 30
Caqe – 148 148 111 186 70 31 40
Bloqqer-BP-DepQBF 114 273 268 251 12 104 14 48

Bloqqer-noCCE-QRAT-DepQBF 150 282 275 258 7 102 18 39
Bloqqer-FULL-QRAT-DepQBF 178 289 275 257 9 101 14 28
Bloqqer-noMS-QRAT-DepQBF 136 281 266 247 11 109 21 35
Bloqqer-noCCE-QRAT-Caqe 150 270 268 236 53 78 18 35

pre-#: formulas solved by preprocessor sol-#: formulas solved in total MO-#: memoryouts

ext-#: extracted Skolem functions che-#: checked Skolem functions TO-#: timeouts

ch-t: average checking time (s) tot-t: average total time without time/memoryouts (s)

universal expansion disabled), and noCCE (covered clause elimination disabled).
Miniscoping is a syntactic-based technique relaxing the quantifier ordering and
is the only technique currently not supported by the qrat-trim checker which
verifies that all steps of the QRAT trace are correct. If we keep miniscoping en-
abled, we currently lose this additional check. CCE is a preprocessing technique
that often considerably increases the size of the Skolem functions. For compari-
son, we also include the version of Bloqqer modified by Janota et al. [20] (called
Bloqqer-BP in the following) that performs only a subset of preprocessing tech-
niques for which solution reconstruction is implemented in a tool called backport.
Checking the extracted Skolem functions is done with the checker king-cc. In
all other tool chains, we use the SAT solver Lingeling version ayv for verifying
that the extracted Skolem functions are valid. We further checked syntactical
correctness of the Skolem functions generated by our approach with the tool
cheskol. As complete QBF solvers, we integrated the two recent tools Caqe [17]
and DepQBF [22] into the framework as shown in Figure 2. Both of them provide
Skolem functions represented as AIG. The solver Caqe directly produces Skolem
functions during solving, while DepQBF dumps Q-resolution proofs from which
Skolem functions are extracted by qbfcert [10].

The results of our experiments are summarized in Table 1. Timeouts and
memory outs are given in columns TO-# and MO-#. Column sol-# shows the
number of solved formulas. Out of them pre-# formulas are directly solved by
the preprocessor. The column che-# shows the number of formulas that passed
the complete solving flow, i.e., for these formulas Skolem functions could be
extracted that were successfully checked. We did not encounter any formulas
where the check failed except for timeouts or memoryouts. With preprocessing
enabled more than 100 further formulas pass the whole solving flow. We also
observe that our general approach based on QRAT traces performs in the same
order of magnitude as the specialized approach based on the traces produced by
Bloqqer-BP. Detailed runtime comparisons between all solvers and a comparison
of Skolem function sizes produced by the Bloqqer-BP-DepQBF and the Bloqqer-
noCCE-QRAT-DepQBF configurations are shown in Figure 3. Scripts and log-files
of the experiments are available on http://fmv.jku.at/sk-extract.
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Fig. 3. Runtime comparison of full tool chains (left) and size comparison of Skolem
functions by Bloqqer-BP-DepQBF and Bloqqer-noCCE-QRAT-DepQBF (right).

6 Conclusion

In this paper we described a general approach to obtain valid Skolem functions
for a quantified Boolean formula that has been preprocessed by a QRAT trace
producing preprocessor like Bloqqer. The described method reuses and modi-
fies a previously presented approach for extracting Skolem functions from QRAT
proofs [12]. We showed how to continue the incomplete Skolem functions ex-
tracted from the QRAT trace with the Skolem functions of the preprocessed
formula. We implemented this method in a new Skolem function extraction tool
and performed an extensive evaluation on formulas of the QBF Eval 2016 main
track. We observed that our general method performs similarly well as the only
available specialized approach for that purpose. Thus, our tool can be smoothly
integrated into typical QBF solving tool chains in order to find semantic cer-
tificates of true QBFs. Such certificates are witnesses for the correctness of the
solving results as solutions of the application problem encoded in QBF.

Potential future work is the extraction of Herbrand functions as witnesses of
unsatisfiable QBFs as well as the optimization of extracted Skolem functions.
For obtaining a tighter integration of preprocessing and solving, we consider to
directly integrate proofs of different proof systems.
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