
Technische Berichte Nr. 118

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Probabilistic Timed
Graph Transformation
Systems
Maria Maximova, Holger Giese, Christian Krause

ISBN 978-3-86956-405-0
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 118

Maria Maximova | Holger Giese | Christian Krause

Probabilistic Timed Graph Transformation Systems

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2017
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URN urn:nbn:de:kobv:517-opus4-397055
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397055

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-405-0

mailto:verlag@uni-potsdam.de

Today, software has become an intrinsic part of complex distributed embed-
ded real-time systems. The next generation of embedded real-time systems will
interconnect the today unconnected systems via complex software parts and the
service-oriented paradigm. Therefore besides timed behavior and probabilistic be-
havior also structure dynamics, where the architecture can be subject to changes at
run-time, e.g. when dynamic binding of service end-points is employed or complex
collaborations are established dynamically, is required. However, a modeling and
analysis approach that combines all these necessary aspects does not exist so far.

To fill the identified gap, we propose Probabilistic Timed Graph Transformation
Systems (PTGTSs) as a high-level description language that supports all the nec-
essary aspects of structure dynamics, timed behavior, and probabilistic behavior.
We introduce the formal model of PTGTSs in this paper and present a mapping of
models with finite state spaces to probabilistic timed automata (PTA) that allows
to use the PRISM model checker to analyze PTGTS models with respect to PTCTL
properties.

5

Contents

1 Introduction 8

2 Probabilistic Timed Automata 11

3 Probabilistic Timed Graph Transformation Systems 16

4 Modeling 21

5 Analysis 27

6 Conclusion and Future Work 32

7

1 Introduction

Today, software has become an intrinsic part of complex distributed embedded
real-time systems, which need to realize more advanced functionality. The next
generation of embedded real-time systems will interconnect the today unconnected
systems via complex software parts and the service-oriented paradigm. It is envi-
sioned that such networked systems will be able to behave much more intelligently
by building communities of autonomous agents that exploit local and global net-
working to adapt and optimize their functionality [6].

In contrast to today’s real-time systems, their behavior will in addition be charac-
terized by structure dynamics that results from their complex coordination behavior.
This structure dynamics requires execution in real-time and reconfiguration at
run-time to adjust the systems behavior to its changing context and goals, leading
to self-adaptation and self-optimization [24]. For these systems, also the structure
resp. architecture is subject to changes at run-time, e.g. when dynamic binding of
service end-points is employed or complex collaborations are established dynam-
ically. In the latter case, often the structural context in the form of local topology
and distribution information is particularly important.

As a concrete example for such an advanced embedded real-time system, the
RailCab research project [23] aims at combining a passive track system with intelli-
gent shuttles that operate autonomously, act individually, and make independent
and decentralized operational decisions. For the RailCab application example it
holds that some functionality may be safety-critical such as the convoy coordination,
or mission-critical for economic reasons such as the negotiation of the transport
contracts. Furthermore, the required properties are not merely qualitative ones but
also quantitative ones involving time as well as probabilities. For instance, convoy
coordination protocols have to be established between shuttles nearby in the topol-
ogy, usually involving hard real-time constraints, and the sent protocol message
may be lost with a non-zero probability. Consequently, we need methods and tools
to guarantee critical quantitative properties when developing such systems, which
include structure dynamics, timed behavior, and probabilistic behavior.

Combinations of different modeling approaches have led to a number of new
interesting applications in the last couple of years. In the following, we briefly
describe related modeling and analysis approaches, which combine some of the
aspects of structure dynamics, timed behavior, and probabilistic behavior.

8

1 Introduction

Timed graph transformation systems (TGTSs) [4, 9, 21] facilitate the modeling of
timed behavior in graph transformation systems using timed automata concepts.1

Specifically, nodes can be annotated with real-valued clocks which can be dynam-
ically added and removed from the systems. Rules can include clock constraints
as additional application conditions, and clocks can be reset. Using symbolic, zone-
based representations [7, 19] and an implementation in an extension [21] of the
GROOVE tool [15], the state spaces of TGTSs can be explored and analyzed, e.g. for
time-bounded reachability checks. Moreover, inductive invariant checking [4] for
TGTSs provides a means to deal with infinite-state systems. Thus, TGTSs enable
the analysis of combined models with structure dynamics and real-time behavior.
However, probabilistic behavior is not supported.

A combination of structure dynamics and probabilistic behavior is supported by
probabilistic graph transformation systems (PGTSs) [16], which are an extension
of the graph transformation theory with discrete probabilistic behavior. In PGTSs,
transformation rules are allowed to have multiple right-hand sides, where each
of them is annotated with a probability. The choice for a rule match is nondeter-
ministic, whereas the effect of a rule is probabilistic. This approach can be used to
model randomized behavior and on-demand probabilistic failures, such as message
loss in unreliable communication channels and supports modeling and analysis by
an extension of the HENSHIN [13] tool and a mapping to the PRISM [17] model
checker.2

Real-time rewrite theories as supported by the executable specification language
of Real-time Maude [22] facilitate combined modeling of structure dynamics and
real-time behavior. Analysis goals include reachability checks for failures of safety
properties and model checking of time-bounded temporal logic properties. Such
properties are in general not decidable and therefore the provided tool support is
incomplete.

Probabilistic rewrite theories implemented in PMaude [1] provide a combi-
nation of structure dynamics, probabilistic behavior for discrete branching, and
stochastic timed behavior. Properties for PRTs are specified using probabilistic
temporal logic and checked using discrete event simulation, e.g. using the Vesta

tool [26]. However, in order to simulate and analyze models in PMaude, all non-
determinism has to be resolved, i.e., neither discrete nondeterministic choice nor
timed nondeterminism as required for real-time behavior, are allowed.

Probabilistic Timed Automata (PTA) [18] combine the modeling features of
Markov decision processes (MDPs) [5] and timed automata (TA) [2, 3] and thereby

1An alternative approach for graph transformation systems with time was developed
in [10]. However, this approach is not suitable in our context since symbolic state space
representations and quantitative analysis methods are not considered in [10].

2Also stochastic graph transformation systems (SGTSs) [12] that incorporate stochastic
timed behavior into GTSs by including continuous-time probability distributions that
describe the average delay of firing of rules, once they are enabled, have been proposed.
However, note that they do neither support probabilistic behavior nor real-time behavior
as they assume a different model of time.

9

1 Introduction

allow to analyze systems exhibiting both timed and probabilistic phenomena. Anal-
ysis goals for PTA include the checking of probabilistic time-bounded reachability,
computation of rewards, as well as PTCTL model checking [18]. Such properties
can be analyzed for PTA, e.g., using the PRISM tool.

The timed and probabilistic extensions of rewrite systems, specifically rewrite
theories in Maude variants and GTSs, provide the best coverage for the required
modeling features. However, none of the existing models facilitates the modeling
and analysis of all identified requirements.

To fill the identified gap, we propose to combine and extend the existing models
to the formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs)
that supports modeling and analysis of structure dynamics, timed behavior, and proba-
bilistic behavior. We introduce the formal model of PTGTSs in this paper and present
a mapping of models with finite state spaces to probabilistic timed automata (PTA)
that allows to use the PRISM model checker to analyze PTGTS models with respect
to PTCTL properties.

This technical report is structured as follows. First, the necessary prerequisites
in form of probabilistic timed automata (PTA) are recapitulated in Chapter 2.
Then, we introduce Probabilistic Timed Graph Transformation Systems (PTGTSs) in
Chapter 3. Subsequently in Chapter 4, we present the tool support for our approach
using the graph transformation tool HENSHIN and apply it to model our running
example handling a shuttle scenario. Finally in Chapter 5, we consider the analysis
of PTGTS models by combining the state space generation of HENSHIN and the
PTA model checking of the PRISM tool via a mapping. The technical report is
closed with some final conclusions and an outlook on planned future work.

10

2 Probabilistic Timed Automata

In this chapter we first informally introduce the formalisms of probabilistic [25]
resp. timed automata [2, 3] and then combine them to the notion of probabilistic
timed automata [18] used for modeling of real-time systems with probability.

Probabilistic automata (PA) were introduced in [25] to add probabilistic choice
to finite automata by assigning to each edge a probability. The notion of discrete
probability distribution plays a central role in the context of PA.

Definition 1 (Discrete Probability Distribution)
Consider a denumerable set A.

• A function µ : A→[0, 1] is a discrete probability distribution if ∑a∈A µ(a) = 1.
• Dist(A) denotes the set of all discrete probability distributions µ : A→[0, 1].

Timed automata (TA) [2, 3] have proven to be a very successful modeling and
analysis formalism for real-time systems such as embedded software. TA extend
finite automata by making use of clocks, which restrict the behavior of the TA
based on invariants, guards, and clock resets making use of constraints over clocks.

Definition 2 (Clock Constraints)
For a set X of clocks Φ(X) denotes the set of all clock constraints φ generated by:

φ ::= xi ∼ c | xi − xj ∼ c | φ ∧ φ,

where ∼∈ {<, >, ≤, ≥}, c ∈ N ∪ {∞ } are constants, and xi, xj ∈ X are clocks.

The configurations of TA consist of the current location of the automaton and
an assignment of each clock to a current clock value given as a real number,
called clock valuation. This clock valuation is used to evaluate clock constraints
introduced before to restrict the behavior of an automaton.

Definition 3 (Clock Valuation)
For a set X of clocks V(X) denotes the set of all functions v : X→R called clock valua-
tions, which are also used in the context of the following notions:

• Clock Reset: Let v : X→R and X′ ⊆ X. Then v[X′ := 0] : X→R is a clock
reset such that for any x ∈ X holds if x ∈ X′ then v[X′ := 0](x) = 0 else
v[X′ := 0](x) = v(x).

• Clock Increment: Let v : X→R and δ ∈ R. Then v + δ : X→R is a clock
increment such that for any x ∈ X holds (v + δ)(x) = v(x) + δ.

• Clock Constraint Satisfaction: Let v : X→R and φ be some constraint over X.
Then v |= φ denotes that v satisfies the constraint φ.

• Initial Clock Valuation: v0 : X→R is the initial clock valuation if v0(x) = 0
for every x ∈ X. V0(X) is the singleton set containing the (unique) initial clock
valuation.

11

2 Probabilistic Timed Automata

The formalism of probabilistic timed automata (PTA) is an extension of TA.
PTA allow for nondeterministic system behavior and, in addition, a probabilistic
choice between follower states using discrete probability distributions over edges.
An important feature of PTA are invariants given by clock constraints. Invariants
enable the specification of upper time bounds for steps to be executed and, hence,
restrict the set of admissible reachable states of a system. In the following we
consider the formal definition of PTA in the sense as introduced in [18].

Definition 4 (Probabilistic Timed Automata)
A tuple A = (S, LAP, s0, X, I, P, τ) is a probabilistic timed automaton (PTA) if

• S is a finite set of locations,
• LAP : S→ 2AP is a labeling function assigning to each location the set of atomic

propositions that are true in that location,
• s0 is an initial location with s0 ∈ S,
• X is a finite set of clocks,
• I : S→Φ(X) is a function assigning to each location a clock constraint (also called

an invariant),
• P : S→ 2Dist(S×2X)

fn is a function assigning to each location a finite nonempty set3

of discrete probability distributions containing follower locations and corresponding
clock resets,

• τ = (τs)s∈S is a family of functions where, for any s ∈ S, τs : P(s)→Φ(X) assigns
to each p ∈ P(s) a clock constraint (also called a guard).

The single step relation describes the behavior of PTA by defining two kinds of
steps: timed steps where all clock values are increased by the time elapsed and
transition steps where a PTA switches states when allowed by the current clock
values according to the used probability distributions without elapsing of time.

Definition 5 (Single Step Relation)
Let A = (S, LAP, S0, X, I, P, τ) be a PTA and states of A elements of S× V(X). Then the
single step relation is given as follows:

• Timed Step: (s, v) δ−→ PTA
A (s, v + δ) if δ > 0 and for each δ′ it holds that 0 ≤ δ′ ≤ δ

implies that v + δ′ |= I(s),
• Transition Step: (s, v)

µ−→ PTA
A (s′, v[X′ := 0]) if X′ ⊆ X, µ ∈ P(s), µ(s′, X′) > 0,

v |= τs(µ), and v[X′ := 0] |= I(s′).

In the following we provide an example coming from the context of the RailCab
scenario [23] to demonstrate the behavior of PTA informally.

Example 1 (Probabilistic Timed Automata)
To avoid collisions, and to reduce energy consumption shuttles can communicate and
form convoys. We consider a small example for a PTA A, which models the sending of a
communication request by a shuttle (see the picture below). The system has a global clock x,
which is initially set to 0. Starting in location s0, a shuttle sends a communication request,

3For an arbitrary set M, 2M
fn denotes the set of finite nonempty subsets of M.

12

2 Probabilistic Timed Automata

which can be received by another shuttle in location s1 with the probability 0.9 or can be
lost during the communication process with the probability 0.1. The sending procedure can
start after at least two minutes (given by the guard x ≥ 2) and should be finished after at
most four minutes (given by the invariant x ≤ 4 on the location s0). If the communication
request is lost, the shuttle returns back to the starting position in location s0, the global clock
is reset to 0 (see the label {x} at the loop), and the shuttle can repeat the whole procedure
again. If the communication request is received successfully, the system terminates in the
location s1, for which only the trivial invariant true has to be satisfied, without additional
resetting of the global clock (see the label ∅ at the edge between s0 and s1). The described
probability distribution for the probabilistic step leaving s0 is called µ in the following
exemplary step sequence of the PTA A consisting of timed steps and transition steps.

(s0, {x 7→ 0}) 3.4−→ PTA
A (s0, {x 7→ 3.4}) µ−→ PTA

A (s0, {x 7→ 0})
2.3−→ PTA

A (s0, {x 7→ 2.3}) µ−→ PTA
A (s1, {x 7→ 2.3})

x ≤ 4

s0

true

s1

0.1

0.9

x ≥ 2

∅

{x}

x = 0

The iterated execution of the sending until location s1 is reached can be analyzed w.r.t.
its timing. In fact, when the communication happens as soon as possible the probability to
reach the location s1 in 2n minutes is 1− 0.1n.

According to [18], the underlying model for PTA is given by so-called proba-
bilistic timed structures (PTSs). A PTS is a variant of a Markov decision process
(MDP) [5], which is obtained by extension of a timed structure [14] with the proba-
bilistic choice over transitions, i.e., the transition function Steps of a PTS results in a
choice over pairs consisting of a duration of a transition and a discrete probability
distribution over the follower states.

Definition 6 (Probabilistic Timed Structure)
A probabilistic timed structure (PTS)M = (Q, Steps, LAP) is a labeled MDP where

• Q is a set of states,
• Steps : Q→ 2R×Dist(Q) is a transition function assigning to each state q ∈ Q a set

Steps(q) of pairs (t, p), where t ∈ R is a duration of a transition and p ∈ Dist(Q)

is a discrete probability distribution over the follower states,
• LAP : Q→ 2AP is a state labeling function.

Besides the definition of PTA behavior in the form of the single step relation, we
also define in the following how PTA give rise to PTSs to enable the comparison of
PTA and PTGTS models later on and to be able to make use of the PTCTL logic [18],
which has a semantics defined on PTSs as well.

13

2 Probabilistic Timed Automata

Definition 7 (Induced PTS for a PTA)
Let A = (S, LAP, s0, X, I, P, τ) be a PTA. ThenMA = (QA, StepsA, LA) is the induced
PTS if

• QA = {(s, v) | (s0, v0)
∗−→ PTA

A (s, v)},
• LA(s, v) = LAP(s),
• StepsA(s, v) = { (δ, ν) | (s, v) δ−→ PTA

A (s, v + δ) ∧ ν(s, v + δ) = 1 }
∪ { (0, ν) | (s, v)

µ−→ PTA
A (s′, v[X′ := 0])

∧ ν(s, v) = ∑
µ∈P(s): µ(s′′,X′′)>0 ∧ (s,v)

µ−→PTA
A (s′′,v[X′′ :=0])=(s,v)

µ(s′′, X′′) }.

For the case of a transition step we define the probability distribution ν on the
possible follower states such that if alternative PTA steps result in identical PTA
configurations, the probabilities for their occurrence are added, as required to
obtain a well-defined probability distribution.

We use the PTCTL logic defined on PTSs to state various relevant properties on
probabilistic real-time systems.

Definition 8 (Syntax of PTCTL)
Let AP be a set of atomic propositions. The set of PTCTL formulas ψ over AP is given as
follows:

ψ ::= true | a | φ | ψ1 ∧ ψ2 | ¬ψ1 | Z.ψ1 | Pwλ(ψ1 ∃ U ψ2) | Pwλ(ψ1 ∀ U ψ2)

where a ∈ AP, φ is a clock constraint, Z ⊆ Z is a set of formula clocks disjoint to the
clocks in X, ψ1, ψ2 are PTCTL formulas, λ ∈ [0, 1], w∈ {>, ≥}, P is a probabilistic
operator from PCTL, and U is a temporal until-operator from CTL.

The semantics for PTCTL is defined using a satisfaction relation. Let M =

(Q, Steps, LAP) be a PTS and AdvS the set of all its adversaries4. Then for an arbitrary
state q ∈ Q, clock valuation v : X→R with the set X of clocks, and PTCTL formula
ψ, the satisfaction relation (q, v) |=AdvS ψ is defined, according to [18], inductively
as follows:

• (q, v) |=AdvS true is satisfied for all states q and clock valuations v.
• (q, v) |=AdvS a if a is an atomic proposition associated to the state q by the

labeling function LAP.
• (q, v) |=AdvS φ if a clock constraint φ is true when valuated using the clock

valuation v.
• (q, v) |=AdvS ψ1 ∧ ψ2 if (q, v) satisfies both ψ1 and ψ2.
• (q, v) |=AdvS ¬ψ1 if (q, v) does not satisfy ψ1.
• (q, v) |=AdvS Z.ψ1 if ψ1 is satisfied by q and the valuation obtained by the

clock reset v[Z′ := 0].
• (q, v) |=AdvS Pwλ(ψ1 ∃ U ψ2) if for some adversary A ∈ AdvS it holds that the

added probability of the paths starting in q and satisfying ψ1 until satisfying
ψ2 is greater (resp. greater equal) than λ.

4An adversary resolves the nondeterminism occurring in an execution trace by choosing
the step to be executed in each case. Hence, the choice of the adversary has often a
great impact on the satisfaction of a PTCTL formula.

14

2 Probabilistic Timed Automata

• (q, v) |=AdvS Pwλ(ψ1 ∀ U ψ2) if for all adversaries A ∈ AdvS it holds that the
added probability of the paths starting in q and satisfying ψ1 until satisfying
ψ2 is greater (resp. greater equal) than λ.

In our running example, introduced in Chapter 4, we state the desired probabilis-
tic reachability properties and verify them using the PRISM model checker, which
is able to check a subset of PTCTL using multiple back-end engines.

15

3 Probabilistic Timed Graph
Transformation Systems

In this chapter we recall the framework of graph transformation systems (GTSs) and
introduce a new formalism of Probabilistic Timed Graph Transformation Systems
(PTGTSs) allowing for modeling and analysis of structure dynamics, timed behavior
as well as probabilistic behavior of systems.

In context of our approach we focus on the formalism of typed graphs. A graph
G = (GV , GE, sG, tG) consists of a set GV of nodes, a set GE of edges, and source
and target functions sG, tG : GE→GV . For two given graphs G = (GV , GE, sG, tG)

and H = (HV , HE, sH, tH), a graph morphism f : G→H is a pair of mappings
fV : GV→HV , fE : GE→HE compatible with the source and target functions, i.e.,
fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE.

Let TG be a distinguished graph, called a type graph. Then a typed graph is
given by a tuple (G, type) consisting of a graph G together with a graph morphism
type : G→ TG. For two given typed graphs G′1 = (G1, type1) and G′2 = (G2, type2),
a typed graph morphism f : G′1→G′2 is a graph morphism f : G1→G2 compatible
with the typing functions, i.e., type2 ◦ f = type1.

The adaptation of graphs can be realized using graph transformation rules,
which are to be understood as local rule-based modifications defining additions

and removals of substructures. A rule ρ = L l←− K r−→ R is given by a span of
injective typed graph morphisms with the graphs L and R called the left-hand resp.
the right-hand side of the rule. The transformation procedure defining a graph
transformation step is formally introduced by the DPO approach [8], where a rule
application is defined in terms of category theory by a diagram consisting of two
pushouts with total morphisms. For a formal definition of DPO transformation
steps see [8].

In the following we introduce the new formalism of PTGTSs. We assume here
that all graphs considered in the context of PTGTSs are typed over some type graph
TG containing at least a type node Clock. Furthermore, for every graph G we use
the function CN(G) = {n | n ∈ GV ∧ typeV(n) = Clock} returning all nodes of
the type Clock contained in G to identify in every graph the nodes used for time
measurement only. In the following we call such identified nodes simply clocks.

The formalism of PTGTSs is a combination of Probabilistic Graph Transformation
Systems (PGTSs) [16] and Timed Graph Transformation Systems (TGTSs) [4, 9, 21].
Similarly to PGTSs, transformation rules in PTGTSs can have multiple right-hand
sides, where each of them is annotated with a probability. The choice for a rule
match is nondeterministic, whereas the effect of a rule is probabilistic. Similarly to
TGTSs, each probabilistic timed graph transformation rule has a guard formulated

16

3 Probabilistic Timed Graph Transformation Systems

over clocks contained in the left-hand side of the rule, which is used to control the
rule application. Moreover, each rule contains the information about clocks that
have to be reset during the rule application.

Definition 9 (Probabilistic Timed Graph Transformation Rule)
R = (L, P, µ, φ, rC) is a probabilistic timed graph transformation rule if

• L is a common left-hand side graph,
• P is a finite set of graph transformation rules ρ with lhs(ρ) = L, where lhs(ρ)

provides the left-hand side of the rule ρ,
• µ ∈ Dist(P) is a probability distribution,
• φ ∈ Φ(CN(L)) is a guard over nodes of the type Clock contained in the left-hand

side graph L,
• rC ⊆ CN(L) is a set of nodes of the type Clock contained in the left-hand side graph

L to be reset.

In the following we give a short example for a probabilistic timed rule.

Example 2 (Probabilistic Timed Graph Transformation Rule)
As an example we model the failure of a hardware node using a probabilistic timed rule
fail, which has two right-hand sides for the case where the node fails with the probability
of 10% or not with the probability of 90%. The adjacent clock is used to ensure that the
probabilistic timed rule is executed not more than every two time units by resetting the
clock during each application and by using a guard that requires the clock to have a value
greater than or equal two to capture that the hardware node can fail for not modeled external
requests with a minimal arrival time greater than or equal two time units. The underlying
type graph for this rule is depicted in the picture (a) below. Formally, the rule is given by
fail = (L1, P1, µ1, φ1, rC1) with L1 as given in the picture (b) to the left, P1 = {ρ0

1, ρ1
1} with

rhs(ρ0
1)

5 and rhs(ρ1
1) as given in the picture (b) to the right, µ1 = {(ρ0

1, 0.1), (ρ1
1, 0.9)},

φ1 = (c ≥ 2), and rC1 = {c}.

Node
failed : bool

Clock
at

(a)
x : Node
failed = false

c : Clock

x : Node
failed = true

c : Clock

x : Node
failed = false

c : Clock

at

at

at

(b)

L1

rhs(ρ0
1)

rhs(ρ1
1)

Invariants, as a central concept of PTA, are given for PTGTSs in the form of
conditions over clocks that are checked to be satisfied for a given configuration.

Definition 10 (Probabilistic Timed Graph Transformation Invariant)
Θ = (L, φ) is a probabilistic timed graph transformation invariant if

5rhs(ρ) denotes the right-hand side of the rule ρ.

17

3 Probabilistic Timed Graph Transformation Systems

• L is a graph,
• φ ∈ Φ(CN(L)) is an invariant formula over nodes of the type Clock contained in

the graph L.

For atomic propositions, which are used in the context of the PTCTL logic, we
make use of the same kind of conditions as for invariants. For this reason we
formally denote an atomic proposition also by Θ = (L, φ). The atomic propositions
are checked to set the appropriate labels to the PTGTS configurations.

In the following we define PTGTSs comprising the notions introduced above. For
a concrete example of a PTGTS see Chapter 4.

Definition 11 (Probabilistic Timed Graph Transformation System)
S = (TG, G0, v0, Π, I, AP, prio) is a probabilistic timed graph transformation system
(PTGTS) if

• TG is a finite type graph including the type node Clock,
• G0 is a finite initial graph over TG,
• v0 : CN(G0)→R is the initial clock valuation assigning the clock value 0 to every

node of the type Clock in G0,
• Π is a finite set of probabilistic timed rules,
• I is a finite set of probabilistic timed invariants,
• AP is a finite set of probabilistic timed atomic propositions,
• prio : Π→N is a priority function assigning a priority to each rule.6

As a next step we define when a PTGTS configuration consisting of a graph and
a current clock valuation satisfies some invariant.

Definition 12 (Probabilistic Timed Invariant Satisfaction)
Let S = (TG, G0, v0, Π, I, AP, prio) be a PTGTS, Θ = (L, φ) ∈ I, G be a graph typed
over TG, and v ∈ V(CN(G)) be a clock valuation for nodes of the type Clock in G. Then
(G, v) |= Θ if for every injective match m : L→G with m = (mV, mE) it holds that
v ◦mV |= φ.

Not every configuration of a PTGTS reached by rule based structure adaptation
is valid since the invariants of the PTGTS need to be considered, too.

Definition 13 (Probabilistic Timed Graph Transformation State)
Let S = (TG, G0, v0, Π, I, AP, prio) be a PTGTS. Then q = (G, v) is a probabilistic
timed graph transformation state (also called configuration) of S (written q ∈ states(S))
if

• G is a graph typed over TG,
• v ∈ V(CN(G)) is a clock valuation for nodes of the type Clock in G,
• (G, v) |= Θ for each Θ ∈ I.

6For the priority function it holds that the higher the number assigned to a rule the higher
is the priority of the rule.

18

3 Probabilistic Timed Graph Transformation Systems

The behavior of PTGTSs is defined by the probabilistic timed graph transforma-
tion steps. We distinguish here similarly to PTA two kinds of steps: timed steps
increasing the clock values by the time elapsed and transition steps allowing to
switch a configuration under certain conditions as defined below. For the transition
steps we ensure that the guard of the rule is satisfied by the current clock valuation
and match, that no transition step with higher priority can be executed, and that
all steps in the selected probability distribution µ are enabled. Furthermore, con-
sidering a rule ρ with non-zero probability µ(ρ), we define the single rule single
step relation based on the expected DPO transformation step and ensure that the
clock valuations of the source and target states are compatible also enforcing the
clock resets of the rule.

Definition 14 (Probabilistic Timed Graph Transformation Step)
Let S = (TG, G0, v0, Π, I, AP, prio) be a PTGTS. Then the single step relation is given
as follows:

• Timed Step: (G, v) δ−→ PTGTS
S (G, v + δ) if δ > 0 and for each δ′ it holds that

0 ≤ δ′ ≤ δ implies that (G, v + δ′) ∈ states(S).

• Transition Step: (G1, v)
R,ρ,m−−−→ PTGTS

S (G2, v′) if
– R = (L, P, µ, φ, rC) ∈ Π is a probabilistic timed rule,
– m : L→G1 with m = (mV, mE) is an injective match,
– v ◦mV |= φ,
– ρ ∈ P is a transformation rule with non-zero probability µ(ρ) > 0,

– @G′2, v′′, R′, ρ′, m′ such that (G1, v)
R′,ρ′,m′−−−−→ PTGTS

S (G′2, v′′) and
prio(R′) > prio(R),

– (G1, v)
R,ρ,m−−−→→ PTGTS

S (G2, v′),
– ∀ρ′ ∈ P \ {ρ} such that µ(ρ′) > 0 there is a graph G′2 such that

(G1, v)
R,ρ′,m−−−→→ PTGTS

S (G′2, v′),

where (G1, v)
R,ρ,m−−−→→ PTGTS

S (G2, v′) is the single rule single step relation if
– (G1, v), (G2, v′) ∈ states(S),

– ρ = (L l← K r→ R) is a graph transformation rule,
– (1) + (2) is a DPO diagram for the transformation step G1

ρ,m
=⇒ G2,

– clock valuation functions v : CN(G1)→R and v′ : CN(G2)→R are compat-
ible, i.e., ∀X ∈ CN(G1). (∀Y ∈ CN(D). (l′V(Y) = X)⇒
(v′(r′V(Y)) = v[mV(rC) := 0](X)))7

– the clock value 0 is assigned to all created nodes of the type Clock, i.e., ∀Z ∈
CN(G2) \ r′V(CN(D)). v′(Z) = 0.

7For morphisms between clocks we omit the restricted notation fV|CN(G1)
:

CN(G1)→CN(G2) and use the unrestricted notation fV : CN(G1)→CN(G2) to sim-
plify the representation.

19

3 Probabilistic Timed Graph Transformation Systems

L K R

(1) (2)

G1 D G2

l r

m

l′

k

r′

CN(L) CN(K) CN(R)

= =

CN(G1) CN(D) CN(G2)

R
v v′

lV rV

mV

l′V

kV

r′V

In our subsequent translation of PTGTSs into the corresponding PTSs we identify
configurations of PTGTSs up to isomorphism. For this purpose we now introduce
such isomorphisms.

Definition 15 (Isomorphisms on States of PTGTSs)
Let S be a PTGTS and (G1, v1), (G2, v2) ∈ states(S).
Then (G1, v1) ∼= (G2, v2) if

• i : G1→G2 with i = (iV, iE) is an isomorphism,
• ∀X ∈ CN(G1) it holds that v1(X) = v2(iV(X)).

CN(G1) CN(G2)

R

=

iV

v2v1

Analogously to PTA we provide a PTS for every PTGTS and, hence, allow for a
comparison of PTA and PTGTSs by comparing their semantics in the sense of the
corresponding PTSs.

Definition 16 (Induced PTS for a PTGTS)
Let S = (TG, G0, v0, Π, I, AP, prio) be a PTGTS. Then MS = (QS, StepsS, LS) is the
induced PTS if

• QS = {[(G, v)]∼= | (G0, v0)
∗−→ PTGTS

S (G, v)},
• LS([(G, v)]∼=) = {Θ ∈ AP | (G, v) |= Θ},
• StepsS([(G, v)]∼=) = { (δ, ν) | (G, v) δ−→ PTGTS

S (G′, v′) ∧ ν([(G′, v′)]∼=) = 1 }
∪ { (0, ν) | R = (L, P, µ, φ, rC) ∈ Π ∧ ρ ∈ P ∧ (G, v)

R,ρ,m−−−→ PTGTS
S (G′, v′) }

where ν([(G, v)]∼=) = ∑
ρ′∈P:(G,v)

R,ρ′ ,m−−−→PTGTS
S (G′′,v′′)∼=(G,v)

µ(ρ′).

In the induced PTS we consider configurations up to isomorphism using their
equivalence classes and derive the labeling of configurations by evaluating the
atomic propositions of the PTGTS. For the step relation we need to collate PTGTS
steps with common target when constructing the probability distribution ν to
ensure well-definedness.

We furthermore employ negative application conditions (NACs) [11] and at-
tributes for PTGTSs. They allow to increase the descriptive expressiveness of the
rules and can be added straightforwardly to the presented formalization.

20

4 Modeling

To support modeling and, subsequently, analysis of PTGTS models with their prob-
abilistic and timed behavior, we extended the existing support of the HENSHIN
tool [13] for PGTSs [16]. Analogously to PGTSs, the elements and links between
the elements are captured by an EMF model represented as a class diagram (the
type graph of the PTGTS as given in Figure 4.1a). In addition, we require a Clock
element to be present in the EMF model to enable the modeling of timed behavior.
The probabilistic choices are modeled as for PGTSs with multiple HENSHIN trans-
formation rules with the same name and the same left-hand side (e.g., depicted in
Figures 4.2d and 4.2e for the rule connect). To support the modeling of real-time
behavior, we associate clock guards (CG), clock invariants (CI), and clock resets
(CR) to the rules via corresponding annotations added to the property list of the
GTS in HENSHIN. Consequently, the HENSHIN model includes all details of a
PTGTS model. Since HENSHIN does not include rules’ annotations in their visual
representation we label the rules in this paper (e.g., in Figure 4.2) with (CG); (CI);
(CR) where void elements are represented by —.

Syntactically, a rule L l←− K r−→ R in HENSHIN is given by a single graph
annotated with specific stereotypes. The stereotypes «preserve», «delete», and «create»
correspond to the elements of K, L without K, and R without K, respectively. The
stereotype «forbid» is used to specify NACs and can be parametrized as in «forbid#n»
for n ∈ N to distinguish between multiple NACs.

As a running example, we model a scenario inspired by the RailCab project
[23], where a service choreography coordinates the movement of shuttles on tracks,
as a PTGTS using HENSHIN. The type graph and the initial track topology are
given in Figure 4.1. In the context of our scenario, tracks are connected to the
adjacent tracks by next edges. Shuttles are located on tracks, which is represented
by at edges. Shuttles can move forward on tracks being in the DRIVE mode or can
initiate emergency brakes changing to the BRAKE mode to avoid collisions. To avoid
collisions shuttles can also communicate and establish connections. A connection is
associated with the leading shuttle via a target edge and with the following shuttle
via a source edge. The connection attempt between two shuttles may fail, but it can
be repeated after both involved shuttles moved one track forward. This aspect is
expressed by the shuttle’s attribute canConnect. Two connected shuttles are allowed
to be at the same track without being involved in a collision. In the initial topology
parallel tracks leading to the same track after one, two or more successor tracks
are marked by conflict nodes. Two shuttles can try to establish a connection if they
are on tracks connected by a conflict node. Another reason for communication of
the shuttles is the reduction of energy consumption. For this reason shuttles can
form convoys also establishing a connection. We also equip shuttles and tracks

21

4 Modeling

Shuttle
mode : {DRIVE, BRAKE}
canConnect : bool

Connection

Track

Con f lictClock

(a)

sourcetarget

next

at

atat at

: Track

: Track

: Track

: Track

: Track

: Track

: Con f lict

: Track

: Track

: Con f lict

: Track

: Track

: Con f lict

: Track

: Track

: Shuttle
mode = DRIVE

: Shuttle
mode = DRIVE (b)

next

next
next

next

next

at

at

next

next

at

at

next

next

at

at

next

next

at

at

Figure 4.1: Type graph of the shuttle scenario (a) and topology with 3 conflict
nodes (b)

with clocks needed for time measurement only to be able to control the time for
rule applications. Note that we do not depict the nodes of the type Clock in the
rules explicitly to keep the rule representation concise but use the annotation e.c to
refer to the clock c linked to some element e.

The behavior of the shuttle scenario is modeled in HENSHIN using the following
probabilistic timed rules. Shuttles can drive alone or can build convoys to reduce
the energy consumption. The rule driveAlone (see Figure 4.2a) allows a shuttle that
is leading a convoy or a shuttle driving without a convoy to move forward if there
are no shuttles located at the track after the subsequent track and any of that track’s
predecessor tracks. The four driveConvoy rules (see Figure 4.3) allow a shuttle to
follow a leading shuttle depending on the layout of single tracks in the current
situation. Following the aim to reflect the real-time behavior properly, we require
that moving on a single track can take between 3 and 4 minutes, which we express
using the corresponding guards and invariants, respectively, formulated over the
track clocks for the driving rules. For the rule driveAlone, the corresponding guard
is given by the annotation t1.c ≥ 3 and the corresponding invariant is not depicted
in Figure 4.2a but is given by ΘdriveAlone = (lhs(driveAlone), t1.c ≤ 4) for a track t1
with its clock c. To be able to measure the time spent on a track properly, we reset
the clock of a track to which a shuttle is moving after applying one of the driving
rules. Considering again the rule driveAlone, the corresponding clock reset is given
by the annotation t2.c′ = 0 for a track t2 with its clock c′.

Shuttles may connect with each other to create convoys and to prevent collisions.
Figures 4.2d and 4.2e depict the probabilistic timed rule connect allowing two
driving shuttles located at parallel critical tracks to communicate and to create a
convoy. The NACs of the rule express intuitively that there must not already exist a
connection between the two considered shuttles, the shuttle chosen as the leader
must not be leading another convoy, and the shuttle chosen as the following shuttle
must not be following another shuttle. Since a connection request can be lost after

22

4 Modeling

(4.2a): t1.c ≥ 3; p = 1; t2.c′ = 0 & x.c′ = 0

(4.2b): true

(4.2c): true

(4.2d): x.c ≥ 2 & y.c ≥ 2; p = 0.9; — (4.2e): x.c ≥ 2 & y.c ≥ 2; p = 0.1; —

Figure 4.2: Rules driveAlone and connect as well as atomic propositions collision and
brake

its sending, the rule connect has two different right-hand sides representing on the
one hand, the case that the connection is established successfully as depicted in
Figure 4.2d (which happens with the probability of 90%) and on the other hand
the situation that the connection request has been lost as depicted in Figure 4.2e
(which occurs with the probability of 10%). We assume furthermore that each
communication attempt takes at least two minutes for each shuttle and model this
behavior by using the corresponding guard x.c ≥ 2 & y.c ≥ 2 (for two shuttles
x, y and their respective clocks c) for communicating shuttles in both basic rules
connect (see Figures 4.2d and 4.2e). Moreover, since a communication attempt can
be repeated only after each of the shuttles has moved one track forward, we reset
a clock of a shuttle each time it has used the rule driveAlone after a communication

23

4 Modeling

attempt, which is formulated by the corresponding clock reset x.c′ = 0 of the rule
driveAlone for a shuttle x with its clock c′.

After establishing a connection, which leads to the creation of a convoy, the fol-
lower shuttle moves forward using one of the rules driveConvoy given in Figure 4.3.
The rule driveConvoy1 (see Figure 4.3a) allows a shuttle following another shuttle
to move to the track on which the leading shuttle is currently located. The rule
driveConvoy2 (see Figure 4.3b) allows a shuttle in a convoy to move to the next track
if its leading shuttle is two tracks ahead. The rule driveConvoy3 (see Figure 4.3c)
allows a shuttle in a convoy to move to the subsequent track if that track is par-
allel (connected by a conflict node) to its leading shuttle’s current position. The
rule driveConvoy4 (see Figure 4.3d) allows a shuttle in a convoy to move to the
subsequent track if that track’s successor track is parallel to the leading shuttle’s
current position. To be able to express that moving on a single track can take
between 3 and 4 minutes, we use similar to the rule driveAlone the correspond-
ing guards and invariants formulated over the track clocks. For each of the rules
driveConvoyI for I ∈ {1, 2, 3, 4} the corresponding guard is given by the annotation
t1.c ≥ 3 and the corresponding invariant is not depicted in Figure 4.3 but is given
by ΘdriveConvoyI = (lhs(driveConvoyI), t1.c ≤ 4) for a track t1 with its clock c. To be
able to measure the time spent on a track properly, we reset the clock of a track to
which a shuttle is moving after applying one of the driveConvoyI rules. The corre-
sponding clock reset for each of the driveConvoyI rules is given by the annotation
t2.c′ = 0 for a track t2 with its clock c′.

In the case if no connection attempt was successful, a shuttle, which is driving
behind another one, has to brake to avoid a collision, if both shuttles come too
close to each other. The rules for the execution of emergency brakes are given in
the Figure 4.4. If a shuttle without a leader is two tracks behind another shuttle, it
may move to the adjacent track and switch then from the driving into the braking
mode, which is ensured by the rule brake1 (see Figure 4.4a). Furthermore, if an
unconnected shuttle is on a track whose successor is parallel to a track occupied by
another shuttle with both parallel tracks having the same successor track, it may
move to the subsequent track and switch from the driving into the braking mode
according to the rule brake2 given in Figure 4.4b. The brake rules do not depend
on the current clock valuation and are applied solely based on the current graph
structure, hence, both rules have only the non-restricting guard true as well as no
invariants and clock resets.

After a shuttle has changed into braking mode, the system detects the safety-
critical situation and terminates using the rule cleanupError (see Figure 4.5a). The
rule cleanupError deletes both shuttles from the considered topology to establish
a terminal state representing an unsafe run of the system and adds two isolated
tracks to the system to distinguish terminal states. Otherwise, if one of both shuttles
has reached the next-to-last track of the system and both shuttles are still in the
driving mode, the system terminates using the rule cleanupOk (see Figure 4.5b),
which establishes the terminal state that represents a safe run of the system by
deleting both shuttles from the considered topology. As before, to distinguish
terminal states, one isolated track is added to the system. Similar to the brake rules,

24

4 Modeling

(4.3a): t1.c ≥ 3; p = 1; t2.c′ = 0 (4.3b): t1.c ≥ 3; p = 1; t2.c′ = 0

(4.3c): t1.c ≥ 3; p = 1; t2.c′ = 0 (4.3d): t1.c ≥ 3; p = 1; t2.c′ = 0

Figure 4.3: Rules driveConvoy

the cleanup rules do not depend on the current clock valuation and are applied
solely based on the current graph structure, hence, both rules have only the non-
restricting guard true as well as no invariants and clock resets.

In the context of our shuttle scenario, we consider two atomic propositions
collision and brake modeled as non-changing rules in HENSHIN as depicted in
Figures 4.2b and 4.2c, respectively. The atomic proposition collision depicts the
situation when a collision occurs, which means that two shuttles are located at
the same track without having a connection, while the atomic proposition brake
shows a shuttle in braking mode. Using these atomic propositions we can mark
the configurations in the state space that satisfy these atomic propositions and
subsequently use these marked configurations for the analysis of the system. Since
atomic propositions are used in the context of our example for marking purposes
only, we equip them always with the clock constraint true.

In our running example we also make use of priorities (also for the non-changing
rules representing atomic propositions) to ensure (a) that collisions are detected
properly (prio(collision)=2 as a highest priority for the atomic proposition collision),
(b) that the rule cleanupError and the atomic proposition brake detect emergency
brakes immediately (prio(brake)=prio(cleanupError)=2), and (c) that the rule connect
is applied whenever possible to guarantee that the shuttles do not continue to drive

25

4 Modeling

(4.4a): true; p = 1; — (4.4b): true; p = 1; —

Figure 4.4: Rules brake

(4.5a): true; p = 1; —
(4.5b): true; p = 1; —

Figure 4.5: Rules cleanup

alone without executing connection attempts (prio(connect)=1). All other rules have
the default priority 0.

The extension of HENSHIN as well as the full details of the shuttle scenario
modeled as a PTGTS are available at http://mde-lab.de/ptgts-checking.

26

http://mde-lab.de/ptgts-checking

5 Analysis

As outlined in the previous chapter, we can model PTGTSs using the HENSHIN
tool. To analyze a PTGTS model, we can chain together the capabilities of the
HENSHIN tool for GTSs and the PRISM model checker for PTA.

In Step 1 we use the capability of HENSHIN to generate the state space of a GTS
by considering the probabilistic choices between the different right-hand sides of
probabilistic timed rules as if they were nondeterministic and ignoring clock guards,
clock resets as well as clock invariants. In Step 2 we extend our mapping from PGTSs
to PA [16] to be able to convert the state space generated for the PTGTS into the
corresponding PTA. In this step we replace the nondeterministic choice between the
different right-hand sides of probabilistic timed rules by probabilistic transitions,
including clock guards and clock resets as well as adding atomic propositions and
the set of clock invariants, which must hold for all valid states of the system. The
PTA generated in this way has an input format of PRISM allowing to verify PTCTL
properties by computing the corresponding minimum and maximum probabilities.
Finally, in Step 3 we can model check the resulting PTA with PRISM according to
the properties of interest for the PTGTS. Note that this tool chain can only be used
in practice, if the state space generation using HENSHIN terminates in Step 1 and
results in a finite state space of moderate size, which PRISM is capable to analyze.

For the shuttle PTGTS described in the previous chapter, we executed several
experiments by using this outlined tool chain.

In our first experiment we determined using PRISM the states generated by
HENSHIN that remain reachable with non-zero probability when considering the
timing behavior. Thereby we exclude many of the calculated traces from the further
analysis since they do not satisfy the corresponding time constraints. In Figure 5.2
we have visualized for the topology with 3 conflict nodes (given in Figure 4.1b)
the reachable part of the GTS state space calculated by HENSHIN as depicted in
Figure 5.1. Moreover, for the shuttle example PRISM detects for the topologies with
2–6 conflict nodes 53.1%, 58.0%, 62.0%, 64.3%, and 65.8% of the states generated by
HENSHIN to be non-reachable as visualized in Figure 5.3.

In our second experiment we analyzed whether the considered shuttle scenario
can under any circumstances exhibit a collision. In fact, collisions between shuttles
cannot occur due to the nature of the contained transformation rules, which ensure
that emergency brakes are applied if necessary. This can be verified already in
HENSHIN after Step 1 by using the atomic proposition collision (see Figure 4.2b)
with the highest priority detecting a collision by marking configurations in the state
space where the atomic proposition can be matched. In HENSHIN we then observe
that this atomic proposition labels no state and, hence, no additional analysis using
PRISM is required.

27

5 Analysis

Figure 5.1: State space generated by HENSHIN for the topology containing 3 con-
flict nodes with the green start configuration and the red end configurations

28

5 Analysis

e s

Figure 5.2: Reachable part (w.r.t. the timed behavior) of the GTS state space for the
topology with 3 conflict nodes. Legend: drive rules (thick, continuous arrows),
connect rule (dashed arrows), cleanup rules (thin, continuous arrows), brake
rules (dotted arrows), will not make an emergency brake (blue nodes), will make
an emergency brake (red nodes), will or will not make an emergency brake (black
nodes), no emergency brake occurred (node s), and emergency brake occurred
(node e)

2 3 4 5 6
0

50

100

150

200

250

300

2 3 4 5 6
number of conflict nodes in the topology

nu
m

be
r

of
(r

ea
ch

ab
le

)
st

at
es

states generated by HENSHIN
reachable states

Figure 5.3: Fraction of states generated by HENSHIN in Step 1 that satisfy the time
constraints and thus are reachable in the PTA resulting from Step 2

29

5 Analysis

Finally, in our third experiment we verified using PRISM the maximal probability
with which the described shuttle system executes an emergency brake. For this
reason we generated first using HENSHIN in 11.8–17.5 seconds state spaces with
81–269 states for the different topologies with 2–6 conflict nodes, respectively. In
the PTCTL notation our property of interest can be given by P≥λ(true ∃U brake)
for the atomic proposition brake given in Figure 4.2c where PRISM automatically
returns the maximal probability value for λ by checking the equivalent property
Pmax =? [F “brake”] where F is the exists-eventually-operator. In Figure 5.4 we show
for topologies with 2–6 conflict nodes, which also determine the initial distance
of the shuttles to the critical track element, how the corresponding maximal prob-
abilities depend on the likelihood of the successful connection establishment. As
expected, the lower the probability for a non-successful connection attempt (x-axis)
the lower the maximal probability for emergency brake execution (y-axis), which is
the worst case scenario.8 The computation of the probability values using PRISM
required for topologies with 2–6 conflict nodes 0.3–181.7 seconds, respectively.

We can conclude that our running example modeled as a PTGTS behaves as
desired because (a) collisions are avoided altogether and (b) the worst case proba-
bilities for emergency brake can be controlled using the number of conflict nodes
based on the likelihood of unsuccessful connection attempts. Our experiments
demonstrate that we can analyze PTGTSs by employing the explained tool chain
of HENSHIN operating on GTSs and PRISM analyzing PTA.

8The range of the considered probabilities for non-successful connection attempts has
been taken from [20] where for close range communication and high data rates an error
rate of at most 13% has been observed for wireless communication.

30

5 Analysis

0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

probability for unsuccessful connection attempt

w
or

st
ca

se
pr

ob
ab

ili
ty

fo
r

em
er

ge
nc

y
br

ak
e

topology with 2 conflict nodes
topology with 3 conflict nodes
topology with 4 conflict nodes
topology with 5 conflict nodes
topology with 6 conflict nodes

Figure 5.4: Visualization for the probability of an emergency brake

31

6 Conclusion and Future Work

In this paper we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a high-level description language supporting all the necessary aspects
of structure dynamics, timed behavior, and probabilistic behavior that we identified
as relevant for the next generation of embedded real-time systems employing the
service-oriented paradigm. We presented the formal model of PTGTSs and outlined
a mapping of PTGTS models employing the HENSHIN tool to probabilistic timed
automata (PTA) such that the PRISM model checker can be used to analyze PTGTS
models with respect to PTCTL properties.

As a future work we plan to provide a specification formalism operating on
PTGTS to be able to state more complex properties on the structure dynamics,
timed behavior, and probabilistic behavior of the given PTGTS model in a coherent
way. Such an extension is then to be included in the mapping of PTGTS to PTA to
allow for their automated verification using PRISM.

32

References

[1] G. Agha, J. Meseguer, and K. Sen. “PMaude: Rewrite-based Specification
Language for Probabilistic Object Systems”. In: Electron. Notes Theor. Comput.
Sci. 153 (2 2006)., pages 213–239. issn: 1571-0661.

[2] R. Alur, C. Courcoubetis, and D. L. Dill. “Model-Checking in Dense Real-
time”. In: Inf. Comput. 104.1 (1993), pages 2–34. doi: 10.1006/inco.1993.
1024.

[3] R. Alur and D. L. Dill. “A Theory of Timed Automata”. In: Theor. Comput. Sci.
126.2 (1994), pages 183–235. doi: 10.1016/0304-3975(94)90010-8.

[4] B. Becker and H. Giese. “On Safe Service-Oriented Real-Time Coordination
for Autonomous Vehicles”. In: Proc. ISORC’08. IEEE Computer Society Press,
2008, pages 203–210.

[5] R. Bellman. “A Markovian Decision Process”. In: Indiana Univ. Math. J. 6 (4
1957), pages 679–684. issn: 0022-2518.

[6] B. Bouyssounouse and J. Sifakis, editors. Embedded Systems Design: The ARTIST
Roadmap for Research and Development. LNCS 3436. Springer, 2005.

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. “The tool Kronos”. In:
Proc. Hybrid Systems’95. LNCS 1066. Springer, 1996, pages 208–219. isbn:
3-540-61155-X.

[8] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, 2006.

[9] H. Giese. “Modeling and Verification of Cooperative Self-adaptive Mecha-
tronic Systems”. In: Proc. Monterey Workshop 2005. LNCS 4322. Springer, 2007,
pages 258–280.

[10] S. Gyapay, D. Varró, and R. Heckel. “Graph transformation with time”. In:
Fundamenta Informaticae 58 (1 2003), pages 1–22. issn: 0169-2968.

[11] A. Habel, R. Heckel, and G. Taentzer. “GRAPH GRAMMARS WITH NEG-
ATIVE APPLICATION CONDITIONS”. In: Fundam. Inf. 26.3,4 (Dec. 1996),
pages 287–313. issn: 0169-2968.

[12] R. Heckel, G. Lajios, and S. Menge. “Stochastic Graph Transformation Sys-
tems”. In: Fundamenta Informaticae 74 (1 2006)., pages 63–84. issn: 0169-2968.

[13] EMF Henshin. The Eclipse Foundation. 2013.

33

https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8

References

[14] T. A. Henzinger and O. Kupferman. “From Quantity to Quality”. In: Hy-
brid and Real-Time Systems, International Workshop. HART’97, Grenoble, France,
March 26-28, 1997, Proceedings. Edited by O. Maler. Volume 1201. Lecture
Notes in Computer Science. Springer, 1997, pages 48–62. isbn: 3-540-62600-
X. doi: 10.1007/BFb0014712.

[15] H. Kastenberg and A. Rensink. “Model Checking Dynamic States in Groove”.
In: Proc. SPIN’06. LNCS 3925. Springer, 2006, pages 299–305.

[16] C. Krause and H. Giese. “Probabilistic Graph Transformation Systems”. In:
Proc. ICGT’12. LNCS 7562. Springer, 2012, pages 311–325.

[17] M. Kwiatkowska, G. Norman, and D. Parker. “Prism 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. CAV’11. LNCS 6806. Springer,
2011, pages 585–591.

[18] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. “Automatic veri-
fication of real-time systems with discrete probability distributions”. In: Theor.
Comput. Sci. 282.1 (2002), pages 101–150. doi: 10.1016/S0304-3975(01)
00046-9.

[19] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. “Symbolic model
checking for probabilistic timed automata”. In: Inf. Comput. 205 (7 2007).,
pages 1027–1077. issn: 0890-5401.

[20] K. Lan, C. Chou, and D. Jin. “The effect of 802.11a on DSRC for ETC commu-
nication”. In: 2012 IEEE Wireless Communications and Networking Conference,
WCNC 2012, Paris, France, April 1-4, 2012. IEEE, 2012, pages 2483–2487. isbn:
978-1-4673-0436-8. doi: 10.1109/WCNC.2012.6214215.

[21] S. Neumann. “Modellierung und Verifikation zeitbehafteter Graphtransfor-
mationssysteme mittels Groove”. Master’s thesis. University of Paderborn,
2007.

[22] P. C. Ölveczky and J. Meseguer. “Semantics and Pragmatics of Real-Time
Maude”. In: Higher-Order and Symbolic Computation 20 (1 2007)., pages 161–
196.

[23] RailCab homepage. http://www.railcab.de.

[24] W. Schäfer and H. Wehrheim. “The Challenges of Building Advanced Mecha-
tronic Systems”. In: Proc. FOSE’07. IEEE Computer Society, 2007, pages 72–
84.

[25] R. Segala. “Modeling and verification of randomized distributed real-time
systems”. PhD thesis. Massachusetts Institute of Technology, 1996.

[26] K. Sen, M. Viswanathan, and G. A. Agha. “VESTA: A Statistical Model-
checker and Analyzer for Probabilistic Systems”. In: Second International Con-
ference on the Quantitative Evaluaiton of Systems (QEST 2005), 19-22 September
2005, Torino, Italy. IEEE Computer Society, 2005, pages 251–252. isbn: 0-7695-
2427-3. doi: 10.1109/QEST.2005.42.

34

https://doi.org/10.1007/BFb0014712
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1109/WCNC.2012.6214215
https://doi.org/10.1109/QEST.2005.42

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

117

978-3-86956-401-2

Proceedings of the Fourth HPI
Cloud Symposium "Operating
the Cloud” 2016

Stefan Klauck, Fabian
Maschler, Karsten Tausche

116

978-3-86956-397-8

Die Cloud für Schulen in
Deutschland : Konzept und
Pilotierung der Schul-Cloud

Jan Renz, Catrina Grella, Nils
Karn, Christiane Hagedorn,
Christoph Meinel

115

978-3-86956-396-1

Symbolic model generation for
graph properties

Sven Schneider, Leen
Lambers, Fernando Orejas

114

978-3-86956-395-4 Management Digitaler
Identitäten: aktueller Status und
zukünftige Trends

Christian Tietz, Chris Pelchen,
Christoph Meinel, Maxim
Schnjakin

113

978-3-86956-394-7

Blockchain : Technologie,
Funktionen, Einsatzbereiche

Tatiana Gayvoronskaya,
Christoph Meinel, Maxim
Schnjakin

112

978-3-86956-391-6

Automatic verification of
behavior preservation at the
transformation level for
relational model transformation

Johannes Dyck, Holger Giese,
Leen Lambers

111

978-3-86956-390-9

Proceedings of the 10th Ph.D.
retreat of the HPI research
school on service-oriented
systems engineering

Christoph Meinel, Hasso
Plattner, Mathias Weske,
Andreas Polze, Robert
Hirschfeld, Felix Naumann,
Holger Giese, Patrick
Baudisch, Tobias Friedrich,
Emmanuel Müller

110

978-3-86956-387-9

Transmorphic : mapping direct
manipulation to source code
transformations

Robin Schreiber, Robert
Krahn, Daniel H. H. Ingalls,
Robert Hirschfeld

109

978-3-86956-386-2

Software-Fehlerinjektion

Lena Feinbube, Daniel Richter,
Sebastian Gerstenberg, Patrick
Siegler, Angelo Haller,
Andreas Polze

108

978-3-86956-377-0

Improving Hosted Continuous
Integration Services

Christopher Weyand, Jonas
Chromik, Lennard Wolf,
Steffen Kötte, Konstantin
Haase, Tim Felgentreff, Jens
Lincke, Robert Hirschfeld

107

978-3-86956-373-2

Extending a dynamic
programming language and
runtime environment with
access control

Philipp Tessenow, Tim
Felgentreff, Gilad Bracha,
Robert Hirschfeld

106

978-3-86956-372-5

On the Operationalization of
Graph Queries with Generalized
Discrimination Networks

Thomas Beyhl, Dominique
Blouin, Holger Giese, Leen
Lambers

Technische Berichte Nr. 118

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Probabilistic Timed
Graph Transformation
Systems
Maria Maximova, Holger Giese, Christian Krause

ISBN 978-3-86956-405-0
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	2 Probabilistic Timed Automata
	3 Probabilistic Timed Graph Transformation Systems
	4 Modeling
	5 Analysis
	6 Conclusion and Future Work
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

