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Abstract. Optimal support for continuous evolution in model-based
software development requires tool environments to be customisable to
domain-specific modelling languages. An important aspect is the set of
change operations available to modify models. In-place model transfor-
mations are well-suited for that purpose. However, the specification of
transformation rules requires a deep understanding of the language meta-
model, limiting it to expert tool developers and language designers. This
is at odds with the aim of domain-specific visual modelling environments,
which should be customisable by domain experts.
We follow a model transformation by-example approach to mitigate that
problem: Users generate transformation rules by creating examples of
transformations using standard visual editors as macro recorders. Our
ambition is to stick entirely to the concrete visual notation domain ex-
perts are familiar with, using rule inference to generalise a set of transfor-
mation examples. In contrast to previous approaches to the same prob-
lem, our approach supports the inference of complex rule features such as
negative application conditions, multi-object patterns and global invari-
ants. We illustrate the functioning of our approach by the inference of a
complex and widely used refactoring operation on UML class diagrams.

Keywords: Model-driven development; Model evolution; In-place model
transformation; Transformation rules; Model transformation by-example;
Graph transformation

1 Introduction

Model-driven engineering (MDE) [10] raises the level of abstraction in soft-
ware engineering by using models as primary artefacts. In particular, domain-
specific modelling languages (DSMLs) can ease the transition between informally
sketched requirements or designs and implementations by supporting high-level
yet formal representations as a starting point for automation. With models be-
coming an integral part of the software throughout its lifecycle, the effectiveness
of tools managing model evolution is particularly important and has to be cus-
tomised to the DSML and project- or domain-specific settings. This includes
the set of change operations available to modify models of a particular DSML.



2 Timo Kehrer, Abdullah Alshanqiti, Reiko Heckel

In-place model transformations have shown to be well-suited to define model
refactorings, see e.g. [24], and other kinds of complex change operations such as
recurring and highly schematic editing patterns [28]. That means, language- or
project-specific change operations can be specified by model transformation rules
which can be used to adapt a variety of MDE tools supporting model evolution;
advanced model editors [28], modern refactoring tools, high-level differencing [20]
and merging tools [21], or evolution analysis tools [16] being examples of this.

However, generic model transformation techniques and tools supporting in-
place transformations are commonly based on the abstract syntax of modelling
languages, Henshin [5] and VIATRA2 [7] being examples of this. Thus, the spec-
ification of transformation rules requires a deep understanding of the language
meta-model and its relation to the visual representation, which makes dedicated
model transformation techniques only accessible to expert tool developers and
language designers [2,19]. This is at odds with the aim of domain-specific vi-
sual modelling environments, which should be designed and customised with
the help of domain experts. We believe that the customisation of generic model
management tools by complex change operations for creating, manipulating and
refactoring domain-specific models can multiply the benefits of visual DSMLs.
Our aim is to enable such a customisation by the users of the tool, i.e., strictly at
the level of the visual notation without requiring an understanding of the meta-
model and without the need for learning a model transformation language.

We follow the general methodology known as model transformation by-example
(MTBE) [19], where users can describe model transformations using a standard
visual editor as a macro recorder. The examples, recorded in their concrete syn-
tax, are internally mapped to their abstract syntax which in turn is generalised
into a model transformation rule. In previous MTBE approaches targeting in-
place transformations [11,27], this generalisation was not fully automated but
required manual post-processing at the level of the abstract syntax, mainly be-
cause the initial version of a transformation rule was derived from only a single
example. This causes several problems which will be analysed in more detail in
Sec. 2. Our ambition is to stick entirely to the concrete visual notation domain
experts are familiar with, using inference techniques to automatically generalise
a set of examples. Provided enough examples are specified, there is no need to
resort to manual adaptations of inferred transformation rules.

In this paper, we focus on the technical problem of inferring general in-place
transformation rules from specific examples. Our approach builds upon previous
work [3] on the extraction of graph transformation rules describing Java opera-
tions from program execution logs, specifically the generalisation from instance-
level towards general rules, but extends this solution in a number of ways: (A)
The notion of a simple type graph is extended to a type graph with inheritance,
along with an adaptation of the graph matching algorithms used for inference
to the notion of graph morphism with inheritance. This enables further gener-
alisation of rules, especially for meta-models with deep inheritance hierarchies
as, e.g., in the case of the UML. (B) We add support for inferring multi-object
patterns to support universally quantified operations over complex structures.
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(C) The inference of model transformation rules also requires the creation of
negative application conditions as part of the preconditions of these rules, so
we support inference from negative examples. (D) We add a further generalisa-
tion step for identifying and eventually abstracting from global invariants, i.e.,
context universally present in all rules. (E) From a tooling point of view, graph
transformation rules in our approach describe model transformations rather than
object dynamics, so our solution is integrated with the Eclipse Modeling Frame-
work and the model transformation tool Henshin [5].

The paper is structured as follows: Sec. 2 motivates our approach introduc-
ing a complex and widely used refactoring operation on UML class diagrams as
a running example. Our approach to inferring complex in-place transformation
rules is presented in Sec. 3, its integration with an MDE environment is briefly
outlined in Sec. 4. We demonstrate the functioning of our approach by show-
casing the inference of a transformation rule for our running example in Sec. 5.
Related work is discussed in Sec. 6 and Sec. 7 concludes the paper.

2 Problem Analysis and Motivating Example

In this section, we analyse the main reasons which demand manual post-processing
if transformation rules are derived from a single example. These problems apply
to all in-place MTBE approaches proposed in the literature (see Sec. 6).

Consider the well-known object-oriented refactoring operation pullUpAttribute

as a running example. It replaces all common attributes, i.e. attributes having
the same name and type, in a set of subclasses by a single attribute of this
name and type in the superclass. This refactoring operation has been adopted
for UML class diagrams and formally specified using in-place model transfor-
mation techniques [5]. It may be demonstrated by providing an original and a
changed UML class diagram like the ones shown on top of Fig. 2. The correspond-
ing abstract syntax representations of these models, basically attributed graphs

Fig. 1. Excerpt of the UML meta-model.

typed over the UML meta-
model [26], are shown at the
bottom of Fig. 2. The rele-
vant yet slightly simplified
excerpt of the UML meta-
model is shown in Fig. 1.
Provided there is a proper
strategy for identifying the
corresponding elements in
the model versions before
and after the sample trans-
formation, the graphs shown
in Fig. 2 can be considered as pre- and postconditions which may be conveyed in
a model transformation rule following graph transformation concepts. Pre- and
post graphs represent the left-hand side (LHS) and the right-hand side (RHS) of
this rule, respectively. In Fig. 2, correspondences between LHS and RHS nodes
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Fig. 2. Transformation pullUpAttribute demonstrated by a single example: Original
(left) and changed model (right) demonstrating the transformation; concrete syntax
(top) and abstract syntax (bottom).

are indicated by node identifiers. Corresponding edges are given implicitly if they
have the same type and their source and target nodes are corresponding.

In general, transformation rules derived from a single example are neither
correct, i.e. they may allow transformation behaviour which leads to a wrong re-
sult, nor complete, i.e. there may be situations in which the derived rule achieves
only a partial effect or is not applicable at all. In particular, preconditions derived
from a single example are usually too restrictive, while the postconditions are
typically too weak. In the remainder of this section, we discuss the main issues in
more detail, illustrating them by means of our running example of Fig. 2. Issues
(1) , (2), (3) and (4) refer to completeness, while issue (5) pertains correctness.

(1) Overspecified structural context. Transformation rules derived from a single
example are typically affected by overspecified structural context. In our exam-
ple, the UML classes “Class1”, “Class2” and “Class3” as well as the definition of
the UML primitive type called “String” do not necessarily have to be contained
in the same package. Moreover, a derived rule would contain context which does
not prevent a more general usage of the rule but which can be considered as
unnecessary context which might affect the performance of a model transforma-
tion. In the UML, for example, a node of type Model is always the top-most
container of a model. This node will show up as unnecessary context in every
transformation rule obtained from an example.

(2) Literal interpretation of attribute values. Attribute values derived from a
single example are interpreted in a strictly literal way. For instance, a transfor-
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mation rule derived from our example would be only applicable to classes named
“Class1”, “Class2” and “Class3”, and each of these classes would be required to
be a non-abstract class.

(3) Overspecialised typing of nodes. A transformation rule derived from our
example of Fig. 2 may be applied to pull up attributes having a UML primitive
type. However, it should be also capable of handling attributes having a complex
type such as UML class or interface instead of a primitive type. The only relevant
condition is that all attributes share the same type.

(4) Incomplete specification of transformation. A single example is often not
capable of capturing the entire behaviour of the intended operation. In particular,
if the operation involves multi-object patterns, it can not be demonstrated by a
single example. For instance, we may pull up an arbitrary number of attributes
shared among a set of subclasses. This desired transformation behaviour should
be specified by the transformation rule.

(5) Missing negative application conditions. In the same vein as preconditions
derived from a single example often require too much context, they lack condi-
tions on context that must not occur. This may lead to incorrect transformation
behaviour. Negative application conditions are not captured at all if we derive a
transformation rule from positive transformation example(s) only. For instance,
the common superclass which serves as the new container for the attributes to
be pulled up must not already have an attribute with the same name.

3 Inference of Transformation Rules

We work with model transformation rules based on graph transformation con-
cepts following the DPO approach [13], supporting typed attributed directed
multi graphs with node-type inheritance. An attributed type graph TG, visually
represented as a class diagram, defines the DSML meta-model. An object graph
over TG is a graph G equipped with a homomorphism (a structure-preserving
mapping) G → TG that assigns every element in G its type in TG. In accor-
dance with the notion of E-graph [13], data occurring in graphs are represented
by value nodes linked to objects by attribute edges. Apart from equations and as-
signments over attributes, variables and constants we do not infer complex data
conditions or operations. Therefore, we do not require access to the full algebraic
structure (operations and axioms) of the data types used for attribution.

Our aim is to derive rules of the form r : L ⇒ R (formally spans of graph
inclusions L ← K → R) with graphs L and R, called the left- and right-hand
side of the rule, expressing its pre- and postconditions and thus its effect in a
declarative way: L\R, L∩R (= K) and R\L represent the elements to be deleted,
preserved and created by the rule. In addition, a basic rule r may be equipped
with a set NACr of negative application conditions of the form NAC(x), where
x : L → X is a type-preserving monomorphism. The left-hand side of a rule
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r can have several matches (“occurrences”) in a graph G, a match m being a
type-compatible monomorphism m : L → G (types of rule graph elements may
be more general than those of their corresponding model graph elements). Given
a graph G, a rule is applicable at a match m if all negative application conditions
are satisfied, i.e. for all NAC(xi) ∈ NACr with xi : L → Xi, there does not
exist a type-compatible monomorphism p : Xi → G with p◦xi = m. This means
that there is no NAC graph to which the occurrence m(L) of the left-hand side
can be extended. Finally, we use the concepts of rule schemes and amalgamation
as a concise way to specify transformations of recurring model patterns. A rule
scheme RS = (rk,M) consists of a kernel rule rk and a set M = {ri | 1 ≤ i ≤ n}
of multi-rules with rk ⊆ ri for all 1 ≤ i ≤ n. The idea is that each multi-
rule specifies one multi-object pattern and its transformation. A rule scheme is
applied as follows: The kernel rule is applied once, just like a “normal” rule. The
match of this application is used as a common partial match for all multi-rules,
which are matched as often as possible. We will refer to rule schemes as rules with
multi-object patterns. Such a rule distinguishes a set MOP = {Pi | 1 ≤ i ≤ n}
with Pi = ri \rk (Li \Lk, Ki \Kk and Ri \Rk) representing the specification of a
multi-object pattern transformation. Note that, in general, multi-object patterns
are just graph fragments, i.e. partial graphs and not graphs.

Fig. 3 describes our inference process starting from a set of instance-level
transformations, i.e. positive and negative examples demonstrating a dedicated
transformation. We assume here that all examples refer to the same change
operation to be specified by an in-place transformation. Positive examples are
pairs of pre and post graphs of transformations, so-called rule instances. Negative
examples are individual graphs, referred to as NAC graph instances, to which the
rules to be derived shall not be applicable. From sets of rule instances and NAC
graph instances, general rules with negative application conditions and multi-
object patterns can be inferred as follows. First, we combine the given instances
into higher-level rules by (1) classifying them by effect and (2) abstracting from
non-essential context. Then, we (3) derive negative application conditions using
NAC graph instances. Next, we (4) further generalise by identifying complex
object structures being treated in a uniform way by a set of generalised rules,
but with different cardinalities. The result is a set of generalised rules with NACs
and multi-object structures. Taking this set of generalised rules as input, we (5)
further raise the level of abstraction by extracting context universally present
as global invariant (not shown in Figure 3). Each of the above mentioned steps
will be discussed in the remainder of this section.

Classification by effect and derivation of shared context. For each rule instance,
we generate a minimal rule that is able to perform the rule instance’s effect in
a minimal context. It is obtained from an instance by cutting all context not
needed to achieve the observed changes. The result is a classification of rule
instances by effect: All instances with an isomorphic minimal rule have the same
effect, but possibly different preconditions. Minimal rule construction has been
formalised in [9] and implemented (without considering node-type inheritance)
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Fig. 3. Overview of the rule inference process.

in [4]. Formally, given a rule instance i : G⇒ H, its minimal rule is the smallest
rule L⇒ R such that L ⊆ G, R ⊆ H with G \H = L \R and H \G = R \ L.

Here, we extend the minimal rule construction by exploiting node-type in-
heritance. Two minimal rules may be merged if they only differ in the types
of their context nodes and these types share a common super type to which
the respective nodes can be generalised. More formally, given two minimal rules
r1 : L1 ⇒ R1 and r2 : L2 ⇒ R2, they may be merged to a single rule r : L⇒ R if
there are type-compatible isomorphisms L1 → L,L2 → L and R1 → R,R2 → R
such that L \R = L1 \R1 = L2 \R2 and R \L = R1 \L1 = R2 \L2. That means
r, r1 and r2 specify the same effect while the types of context nodes in L ∩ R
may be more general than those in L1 ∩R1 and L2 ∩R2, respectively.

Sets of rule instances classified by a minimal rule are generalised by one so
called maximal rule which extends the minimal rule by context that is present
in all instances, essentially the intersection of all its instances’ preconditions [3].

For a rule instance obtained from our example shown in Fig. 2, a minimal
rule would only contain the nodes of type Class and Property along with their
connecting edges. All other graph elements are context elements not required
to achieve the transformation effect. Since there is only one rule instance, they
would be part of the maximal rule. Note that if we provide another example in
which we replace the primitive type of the UML attribute being pulled up by a
UML complex type such as Class or Interface, we still obtain a single minimal
(and maximal) rule, however, with the Property node (representing the UML
attribute) typed over the more general type Type.

Derivation of negative context. Providing negative examples enables the deriva-
tion of negative application conditions for maximal rules. The idea is to associate
a negative example to a positive one, thereby implying which model elements
prevent a transformation rule from being applicable. In other words, we assume
a NAC graph instance to be a supergraph of a rule instance’s pre graph.

More formally, for each positive example yielding a rule instance i : G⇒ H,
we may add several sets of negative examples, say NEGx. Each negative example
represents a NAC graph instance N ⊇ G, i.e., an extension of the rule instance’s
left-hand side by forbidden context. A NAC graph X is obtained from each of
the sets NEGx as the intersection of all NAC graphs Ni ∈ NEGx, analogously
to the construction of maximal rules. The obtained condition is NAC(x) with
x : G → X. It is translated into a condition NAC(x′) over the maximal rule
rmax : Lmax ⇒ Rmax generalising rule instance i, where x′ : Lmax → X ′ is
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obtained by restricting x to Lmax ⊆ G. After inferring all negative application
conditions for the same maximal rule, duplicate NACs are eliminated.

Please note that, since we treat attributes and their values as attribute edges
and value nodes, the NAC inference procedure includes the derivation of nega-
tive conditions over attributes. In our example of Fig. 2 we can add a negative
example in which the superclass already contains an attribute named “Attr”.

Derivation of multi-object patterns. To derive rules with multi-object patterns
from generalised rules, we have to discover sets of rule patterns that have the
same structure and transformation behaviour, and thus can be represented by
a single multi-object pattern. To that end, we first introduce a notion of rule
pattern and their equivalence. Let rmax : Lmax ⇒ Rmax be a maximal rule
derived in step (2). Let further P = (FL,FR) be a pair of graph fragments
with FL ⊆ Lmax and FR ⊆ Rmax, and let BL ⊆ Lmax and BR ⊆ Rmax

be the smallest graphs completing FL and FR to graphs; we refer to BL and
BP as boundary graphs of FL and FR, respectively. P is a rule pattern in
rmax if BL ⇒ BR is a subrule of rmax. Two rule patterns P1 and P2 in rmax

are equivalent if (i) their boundary graphs are isomorphic, i.e. there are type-
preserving isomorphisms BL1 → BL2 and BR1 → BR2; and (ii) they overlap in
the completing nodes of their boundary graphs, i.e. (BL1 \FL1) = (BL2 \FL2)
and (BR1 \ FR1) = (BR2 \ FR2).

Assume that we extend our example of Fig. 2 such that we have three sub-
classes with a common UML attribute being pulled up. Fig. 4 illustrates the
maximal rule derived from this example, omitting nodes of types Package and
Model, edge types and attributes. It contains two equivalent patterns, the re-
spective graph fragments are completed to boundary graphs by the same nodes.

We derive rules with multi-object patterns in two steps. First, we merge
equivalent rule patterns in maximal rules: For each maximal rule m in a set
of maximal rules, and each non-trivial equivalence class of rule patterns in m,
one pattern is chosen as the representative for that class and added to the set
MOP of multi-object patterns for m, while all other patterns of that class are
deleted. The resulting set of rules with multi-object patterns is MOR. Second,
we combine isomorphic rules: A maximal set of structurally equivalent rules in

9 : Property

8 : PrimitiveType

10 : Property 9 : Property

8 : PrimitiveType

Fig. 4. Maximal rule illustrating the occurrence of two equivalent rule patterns P1 =
(FL1, FR1) and P2 = (FL2, FR2).



Automatic Inference of Complex In-place Model Transformation Rules 9

MOR forms an isomorphism class. For each such class we derive a single rule
by selecting a representative one.

Derivation of universal context. To extract and cut context universally present
in all generalised rules, we employ a similar proceeding as for the derivation
of maximal rules. That is, we compare the preconditions of all maximal rules
to identify structures that are universally present. Universal context presented
as global invariant can reduce the size of rules, make them more concise and
readable. In case of the UML, for instance, we could spot the universal presence
of a Model node serving as a container for all model elements.

4 Integration with an MDE Development Environment

Our approach is open to be used in the context of any modelling environment or
visual editor that can be used for specifying example transformations, and any
model transformation engine for executing the inferred transformation rules.

As a proof of concept, we implemented the inference approach presented in
Sec. 3 based on the Eclipse Modeling Framework (EMF) and the rule-based
model transformation language and tool Henshin, available from the accom-
panying website for this paper [1]. Since EMF and Henshin employ the usual
object-oriented representation with attributes being inlined as properties of ob-
jects, attributes are transformed into our conceptual representation based on
attribute edges and value nodes. The general idea of exporting attribute edges
and value nodes occurring in generalised rules is to derive equations over at-
tributes from attribute edges, e.g., if two attributes a, b point to the same value
node, an equation a = b is added. In Henshin, an internal variable, say x, has
to be defined and assigned to attributes, i.e., we have a = x and b = x for the
attributes a and b in the example above.

To be independent of the visual editor being used to specify example trans-
formations, we follow a state-based approach to transformation recording [19].
To reliably identify the corresponding model elements in the original and the
changed model of an example, we assume a model matcher [22] for a given
DSML to be readily available.

5 Case-based Evaluation

In this section, we illustrate the applicability of our approach by means of the ex-
ample of Sec. 2. We show how a suitable rule can be inferred using our approach
and tool. For depicting transformations, we use the visual UML editor Papyrus
(v. 1.0.2), which is based on an EMF-based implementation of the UML Super-
structure Specification (v. 2.5) [26]. We generally ignore meta-model elements
defined by the UML Superstructure for which there is no visual representation
in the diagram notation supported by Papyrus. Since Papyrus attaches univer-
sally unique identifiers (UUIDs) to model elements, we employ the UUID-based
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matching facility of the model comparison tool EMF Compare for deriving cor-
responding elements in the original and the changed model of an example.

Sec. 5.1 outlines the examples defined for demonstrating the refactoring op-
eration pullUpAttribute. We concentrate on the rationale of each of the examples
w.r.t. the desired effect on the generalised rule(s), thereby emphasising the issues
presented in Sec. 2. We discuss threats to validity in Sec. 5.2.

5.1 Solving the Motivating Example

To infer a general transformation rule for the refactoring pullUpAttribute, we start
by providing an initial example (Example1) corresponding to the one presented
in Fig. 2. W.r.t. to the state-of-the-art in generating in-place transformation rules
by-example (cf. Sec. 6), the rule derived from this example serves as a baseline
for a qualitative evaluation of our approach. To infer a general transformation
rule, we proceed by adding further examples, each of them addressing one of the
issues discussed in Sec. 2.

(1) Overspecified structural context. We add another transformation example
(Example2) to avoid overspecified structural context, where we abstain from
using a dedicated container of type Package, which thus gets eliminated during
maximal rule construction. Moreover, the element of type Model is identified
as universal context over all examples and gets eliminated, too. The resulting
Henshin rule is shown in Fig. 5 (left). In the Henshin notation, the LHS and
RHS of a rule are merged into a single graph. The LHS comprises all elements
stereotyped by delete and preserve, while the RHS contains all elements anno-
tated by preserve and create. Due to space limitations, we present only a subset
of the generated Henshin rule comprising those rule elements being typed over
the visible excerpt of the UML meta-model shown in Fig. 1. The complete rule
can be found on the supplementary website for this paper [1].

(2) Interpretation of attribute values. As a side-effect of providing a second
example, rule variables x1 to x6 are inferred denoting equalities of attribute
values. For instance, all classes occurring in the transformation rule inferred
from Example1 and Example2 have to be abstract, indicated by variable x4
(see Fig. 5 (left)). To handle attributes properly, we add a third transformation
example (Example3) in which attributes irrelevant for the transformation are
assigned values differing from the ones used in Example1. We rename all classes,
turn these classes into concrete classes, and change the primitive type from
“String” to “int”. As indicated by annotation (2) in Fig. 5, we get rid of all
variables except of x5, which denotes equality of names of the Property to be
pulled up. This is on purpose, i.e., we learn that all attributes to be pulled up
must have the same name.

(3) Overspecialized typing of nodes. The transformation rule pullUpAttribute shall
also be applicable to attributes having a complex type instead of a primitive type.
Thus, we add another example (Example4) which slightly modifies our first one
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(4) Addition of multi-object pattern

(3) Generalisation to Type (5) Addition of NAC(2) Attribute value equalities to be eliminated: x1, x2, x3, x4, x6

Fig. 5. Inferred Henshin rules after providing additional examples of step 1 (left), and
steps 2 to 5 (right).

such that the primitive type called “String” of all attributes “Attr” is exchanged
by a UML class representing a complex type. The minimal rule which results
from Example1 to Example3 may be merged with the minimal rule obtained
for Example4 since (i) the UML node types Class and PrimitiveType share the
same supertype Type (cf. Fig. 1), and (ii) the supertype replacement is permitted
in this context. The effect of adding Example4 is illustrated in the inferred rule
shown in Fig. 5 (right).

Note that Example2 to Example4 could be combined to a single example
achieving the same effect on the generalised transformation rule.

(4) Incomplete specification of transformation. Since, in general, arbitrarily
many attributes may be pulled up to a common superclass, we give another
example (Example5) which differs from Example1 of Fig. 2 in that we have
three subclasses containing an attribute named “Attr” typed by the UML prim-
itive type called “String”. In the inferred rule, we get the specification of the
transformation of a multi-object pattern as shown in Fig. 5 (right).

(5) Missing negative application conditions. Attributes may only be pulled up
if the superclass does not already contain an attribute of the same name. To
that end, we provide two negative examples (Negative1 and Negative2) refer-
ring to Example1. The basic idea is to copy the original model of the positive
example Example1 and to add an attribute named “Attr1” to the common su-
perclass “Class1”. To demonstrate that it is only the name of this additional
attribute which prevents the refactoring from being applied successfully while
we do not care about its type, we provide two negative examples in which the
additional name attribute has different types. As a result, the inferred rule is
equipped with a negative application condition as shown in Fig. 5, indicated
by the stereotype forbid in the Henshin notation. This rule represents the fi-
nal result of our example-driven process to specifying and inferring a general
rule for refactoring pullUpAttribute. It corresponds to the transformation rule
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PUAExecuteRule presented in [5] for the same refactoring operation but a slightly
simplified variant of the UML meta-model.

5.2 Threats to Validity

In this section, we evaluated the applicability of the proposed approach by in-
vestigating a complex in-place transformation rule whose inference from a set
of examples is faced with several challenges. Although our study shows very
promising results, we are aware of some threats to validity giving rise to a criti-
cal discussion.

As every case-based evaluation, our experiment suffers from a lack of compre-
hensiveness, which affects the external validity of our results. We only considered
one meta-model and a single transformation rule typed over this meta-model. We
mitigate this threat by choosing a comprehensive meta-model exposing several
pitfalls for the specification of transformation, and a non-trivial transformation
rule which can be considered as representative for a considerable amount of refac-
toring operations. However, there may be change operations which can only be
expressed using more sophisticated model transformation features than those
supported by our approach. The most severe limitation pertains the handling
of complex constraints on attributes. Ignoring the algebraic structure of data
types used for graph attribution limits our approach to the inference of simple
equations and assignments over attributes, variables and constants.

Another threat to validity is that we defined the transformation examples
ourselves. We are familiar with the UML meta-model, the inference process for
learning transformation rules, and the fact that we exploit persistent identifiers
attached by Papyrus to identify corresponding model elements. These internal
details are typically not known by domain experts who would use our approach.
Thus, they might produce examples leading to transformation rules which are
both incorrect and incomplete, examples that are inconsistent or contradict each
other, or they might simply need significantly more examples to eventually infer
proper transformation rules. Such issues and requirements for future research
must be analysed in an empirical user study, which we leave for future work.

6 Related Work

The main objective of our work is to provide a technique supporting domain ex-
perts in the specification of complex change operations for creating, manipulating
and refactoring domain-specific models. In the model transformation community,
there are two main lines of research which basically pursue the same goal, model-
transformation by-example and model transformation based on concrete syntax,
which we will review in that order as our approach falls into the former category.
Finally, we briefly review related approaches from other domains.

Model transformation by-example. Since specifying model transformations from
scratch using the abstract syntax of a DSML is a difficult and error-prone task,
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learning them from existing transformation examples is highly desirable and has
motivated a plethora of work in this field, see the pre-2012 approaches surveyed
in [19] and, more recently, in [6].

The majority of existing approaches, e.g. [6,8,15,23], target model-to-model
transformations, often referred to as exogenous transformations [25] since source
and target models typically correspond to different meta-models. Such transfor-
mations are well-suited to capture vertical translations, which build the basis
for model refinement and code generation, and horizontal translations, which
are of specific importance in model-based integration and migration scenarios.
Model-to-model transformation scenarios are inherently different from the model
evolution scenarios addressed by our approach. Their main problem is to ade-
quately infer semantically equivalent modelling concepts in the source and target
domain of a transformation, e.g., in UML class models and Entity Relationship
models. This is not an issue at all in case of in-place transformations which are
inherently endogenous [25].

To the best of our knowledge, which is in accordance with the surveys pre-
sented in [6,19], only two dedicated approaches addressing the specification of
in-place transformations by-example have been proposed in the literature [11,27].
They have in common with our approach the idea of using standard visual ed-
itors to demonstrate model transformations. However, transformation rules are
derived from a single example, which merely corresponds to the first step of our
inference process. They do not support to generalise a set of examples includ-
ing advanced features such as the inference of multi-object patterns, negative
application conditions, abstraction from universal context and super type gen-
eralisation as offered by our approach.

Model transformation based on concrete syntax. An alternative approach to im-
prove the usability of transformation languages is to enable modellers to specify
model transformations based on the concrete syntax of a DSML.

One class of approaches is based on the idea of turning a DSML into a
domain-specific transformation language. Hölldobler et al. [18] assume a DSML
to be specified using a context-free grammar and present a generative approach
to systematically derive a textual domain-specific transformation language from
that grammar. Consequently, the approach is limited to textual DSMLs.

In contrast, Grønmo [17] and Acreţoaie et al. [2] address concrete syntax-
based transformation of graphical models. Similar to [18], the approach presented
in [17] is generative in the sense that transformation rule editors are generated
from the DSML meta-model which must be equipped with a mapping to the set
of symbols of the DSML concrete syntax. However, this means domain experts
cannot define the transformation rules using their favourite editor. This problem
is avoided in [2] which follows a generic approach in which transformation rules
are specified using a readily available host language model editor. The only
assumption is that this editor provides a mechanism to annotate models with
certain transformation actions. The approach is similar to ours in the sense that
it aims at achieving transparency w.r.t. the DSML, the modelling environment
and the underlying transformation language at the same time. However, domain
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experts still have to learn a dedicated transformation language called VMTL to
be used for annotating transformation actions.

Approaches from other domains. In other areas, rule inference approaches have
been suggested to address problems of mining business processes [12] and learn-
ing (bio-)chemical reaction rules [14,29]. Although related in the aim of discover-
ing rules, the challenges vary based on the nature of the graphs considered, e.g.,
directed, attributed or undirected graphs, the availability of typing or identity
information, as well as in the scalability requirements in terms of the size and
number of the examples to be considered.

7 Conclusion

In this paper, we presented a novel approach to model transformation by-example
which enables the inference of transformation rules which are formally consid-
ered as graph transformation rules and obtained by generalising over a set of rule
instances. Our approach supports the inference of complex rule features such as
negative application conditions, multi-object patterns and global invariants. The
approach is supported by a tool integrated with the Eclipse Modeling Framework
and the model transformation tool and language Henshin. Our case-based eval-
uation illustrates the applicability of our approach and shows that, in principle,
the inference of complex transformation rules is possible by providing only a few
example transformations. In this paper we focused on the technical approach to
rule inference. We leave a wider empirical evaluation, e.g., of the manual effort
to provide examples for a larger set of transformations for future work.
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