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Preface

The biennal ECSQARU conference is a major forum for advances in the theory and
practice of reasoning under uncertainty. Contributions are provided by researchers in
advancing the state of the art and practitioners using uncertainty techniques in appli-
cations. The scope of the conference includes, but is not limited to, fundamental and
representation issues, reasoning, and decision-making in both qualitative and quanti-
tative paradigms.

Previous ECSQARU conferences were held in Compiègne (2015), Utrecht (2013),
Belfast (2011), Verona (2009), Hammamet (2007), Barcelona (2005), Aalborg (2003),
Toulouse (2001), London (1999), Bonn (1997), Fribourg (1995), Granada (1993), and
Marseille (1991).

The 14th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU 2017) was held in Lugano, Switzerland,
during July 10–14, 2017. The event was co-located with the 10th International Sym-
posium on Imprecise Probability: Theories and Applications (ISIPTA 2017).

A young researcher award granted by Springer for excellent research in the area of
symbolic and quantitative approaches to reasoning with uncertainty was assigned to
Nico Potyka.

The papers in this volume were selected from 63 submissions, after a strict
single-blind review process by the members of the Program Committee. In addition, the
volume contains the abstracts of five invited talks by outstanding researchers in the
field: Leila Amgoud, Alessio Benavoli, Jim Berger, Didier Dubois, and Eyke
Hüllermeier.

We would like to thank all the members of the Program Committee and the addi-
tional reviewers for their timely and valuable reviews. We also thank the members
of the Organizing Committee for their work and contribution to the success of the
conference.

We gratefully acknowledge operational support from IDSIA (Istituto Dalle Molle di
Studi sull’Intelligenza Artificiale), USI (Università della Svizzera Italiana), and SUPSI
(Scuola Universitaria Professionale della Svizzera Italiana) as well as financial support
from ONERA.

July 2017 Alessandro Antonucci
Laurence Cholvy

Odile Papini
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Evaluation Methods of Arguments:
Current Trends and Challenges

Leila Amgoud

IRIT – CNRS, Toulouse, France

Argumentation is a reasoning process based on the justification of conclusions by
arguments. Due to its explanatory power, it has become a hot topic in Artificial
Intelligence. It is used for making decisions under uncertainty, learning rules, modeling
different types of dialogs, and more importantly for reasoning about inconsistent
information. Hence, an argument’s conclusion may have different natures: a statement
that is true or false, an action to do, a goal to pursue, etc. Furthermore, it has generally
an intrinsic strength, which may represent different issues (the certainty degree of its
reason, the importance of the value it promotes if any, the reliability of its source, …).
Whatever its intrinsic strength (strong or weak), an argument may be weakened by
other arguments (called attackers), and may be strengthened by others (called sup-
porters). The overall acceptability of arguments needs then to be evaluated. Several
evaluation methods, called semantics, were proposed for that purpose. In this talk, we
show that they can be partitioned into three classes (extension semantics, gradual
semantics, ranking semantics), which answer respectively to following questions:

1. What are the coalitions of arguments?
2. What is the overall strength of an argument?
3. How arguments can be rank-ordered from the most to the least acceptable ones?

We analyze the three classes against a set of rationality principles, and show that
extension semantics are fundamentally different from the two other classes. This means
that in concrete applications, they lead to different results. Namely, in case of reasoning
with inconsistent information, extension semantics follow the same line of research as
well-known syntactic approaches for handling inconsistency, while the two other
classes lead to novel and powerful ranking logics. We argue that there is no universal
evaluation method. The choice of a suitable method depends on the application at hand.
Finally, we point out some challenges ahead.



Bayes + Hilbert = Quantum Mechanics

Alessio Benavoli

IDSIA, Lugano, Switzerland

Quantum mechanics (QM) is based on four main axioms, which were derived after a
long process of trial and error. The motivations for the axioms are not always clear and
even to experts the basic axioms of QM often appear counter-intuitive. In a recent
paper, we have shown that:

– It is possible to derive quantum mechanics from a single principle of
self-consistency or, in other words, that QM laws of Nature are logically consistent;

– QM is just the Bayesian theory generalised to the complex Hilbert space.

In particular, we have considered the problem of gambling on a quantum experiment
and enforced rational behaviour by a few rules. These rules yield, in the classical case,
the Bayesian theory of probability via duality theorems. In our quantum setting, they
yield the Bayesian theory generalised to the space of Hermitian matrices. This very
theory is QM: in fact, we have derived all its four postulates from the generalised
Bayesian theory. This implies that QM is self-consistent. It also leads us to reinterpret
the main operations in quantum mechanics as probability rules: Bayes’ rule (mea-
surement), marginalisation (partial tracing), independence (tensor product). To say it
with a slogan, we have obtained that quantum mechanics is the Bayesian theory in the
complex numbers.



Encounters with Imprecise Probabilities

Jim Berger

Duke University, Durham, USA

Although I have not formally done research in imprecise probability over the last
twenty years, imprecise probability was central to much of my research in other areas.
This talk will review some of these encounters with imprecise probability, taking
examples from four areas:

– Using probabilities of a “higher type” (I.J. Good’s phrase), with an application to
genome-wide association studies.

– Robust Bayesian bounds, with an application to conversion of p-values to odds.
– Importance (and non-importance) of dependencies in imprecise probabilities.
– Imprecise probabilities arising from model bias, with examples from both statistical

and physical modeling.



Symbolic and Quantitative Representations
of Uncertainty: An Overview

Didier Dubois

IRIT, CNRS and University of Toulouse, Toulouse, France

The distinction between aleatory and epistemic uncertainty is more and more
acknowledged to-date, and the idea that they should not be handled in the same way
becomes more and more accepted. Aleatory uncertainty refers to a summarized
description of natural phenomena by means of frequencies of occurrence, which jus-
tifies a numerical approach based on probability theory. In contrast, epistemic uncer-
tainty stems from a lack of information, and describes the state of knowledge of an
agent. It seems to be basically qualitative, and is captured by sets of possible worlds of
states of nature, one of which is the actual one. In other words, beliefs induced by
aleatory uncertainty are naturally quantitative, while this is less obvious for beliefs
stemming from epistemic uncertainty for which there are various approaches ranging
from qualitative ones like three-valued logics and modal logics to quantitative ones like
subjective probabilities. The qualitative approaches can be refined by considering
degrees of beliefs on finite value scales or yet by means of confidence relations.
Moreover aleatory and epistemic uncertainty may come together, and leads to the use
of upper and lower probabilities.

In this talk, we review the various approaches to the representations of uncertainty,
by showing similarities between quantitative and qualitative approaches. We give a
general definition of an epistemic state or an information item, as defining a set of
possible values, a set of plausible ones, a plausibility ordering on events. Moreover,
epistemic states must be compared in terms of informativeness.

The basic mathematical tool for representing uncertainty is the monotonic
set-function, called capacity of fuzzy measure. In the quantitative case, the most general
model is based on convex probability sets, that is, capacities that stand for lower
probabilities. In the qualitative case, the simplest non-Boolean approach is based on
possibility and necessity measures. It is shown that possibility theory plays in the
qualitative setting a role similar to the one of probability theory in the quantitative
setting. Just as a numerical capacity can, under some conditions, encode a family of
probability distributions, a qualitative capacity always encodes a family of possibility
distributions. For decision purposes, Sugeno integral is similar to Choquet integral.

Logical reasoning under incomplete information can be achieved by means of a
simplified version of epistemic logic whose semantics is in terms of possibility theory,
in contrast with probabilistic reasoning. It can be extended to reasoning with degrees of
beliefs using generalised possibilistic logic. Various ways of defining logics of
uncertainty are outlined, absolute, comparative, or fuzzy.



Finally we discuss the issue of uncertainty due to conflicting items of information.
In the numerical setting this is naturally captured by the theory of evidence, that
essentially models unreliable testimonies and their fusion. A general approach to the
fusion of information items is outlined, proposing merging axioms that apply to
quantitative and qualitative items of information. Finally, we show that using Boolean
valued capacities, we can faithfully represent conflicting information coming from
several sources. In this setting, necessity functions represent incomplete information
while possibility measures represent precise but conflicting pieces of information.

This talk owes much to works performed with M. Banerjee, D. Ciucci, L. Godo,
W. Liu and J. Ma, H. Prade, A. Rico, S. Schockaert, among others.

References
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Learning from Imprecise Data

Eyke Hüllermeier

Paderborn University, Paderborn, Germany

This talk addresses the problem of learning from imprecise data. Although it has been
studied in statistics and various other fields for quite a while, this problem received
renewed interest in the realm of machine learning more recently. In particular, the
framework of superset learning will be discussed, a generalization of standard super-
vised learning in which training instances are labeled with a superset of the actual
outcomes. Thus, superset learning can be seen as a specific type of weakly supervised
learning, in which training examples are imprecise or ambiguous. We introduce a
generic approach to superset learning, which is motivated by the idea of performing
model identification and “data disambiguation” simultaneously. This idea is realized by
means of a generalized risk minimization approach, using an extended loss function
that compares precise predictions with set-valued observations. Building on this
approach, we furthermore elaborate on the idea of “data imprecisiation”: By deliber-
ately turning precise training data into imprecise data, it becomes possible to modulate
the influence of individual examples on the process of model induction. In other words,
data imprecisiation offers an alternative way of instance weighting. Interestingly,
several existing machine learning methods, such as support vector regression or
semi-supervised support vector classification, are recovered as special cases of this
approach. Besides, promising new methods can be derived in a natural way, and
examples of such methods will be shown for problems such as classification, regres-
sion, and label ranking.
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